Orbital stability of Dirac solitons (the massive Thirring model)

Dmitry Pelinovsky (McMaster University, Canada)

in collaboration with Yusuke Shimabukuro (McMaster University, Canada)

Université de Cergy–Pontoise, France, November 18, 2013

The problem

The nonlinear Dirac equations in one spatial dimension,

$$\begin{cases} i(u_t + u_x) + v = \partial_{\bar{u}} W(u, v), \\ i(v_t - v_x) + u = \partial_{\bar{v}} W(u, v), \end{cases}$$

where $W(u, v) : \mathbb{C}^2 \to \mathbb{R}$ satisfies the following three conditions:

- symmetry W(u, v) = W(v, u);
- ► gauge invariance $W(e^{i\theta}u, e^{i\theta}v) = W(u, v)$ for any $\theta \in \mathbb{R}$;

• polynomial in (u, v) and (\bar{u}, \bar{v}) .

The problem

The nonlinear Dirac equations in one spatial dimension,

$$\left\{ \begin{array}{l} i(u_t+u_x)+v=\partial_{\bar{u}}W(u,v),\\ i(v_t-v_x)+u=\partial_{\bar{v}}W(u,v), \end{array} \right.$$

where $W(u, v) : \mathbb{C}^2 \to \mathbb{R}$ satisfies the following three conditions:

- symmetry W(u, v) = W(v, u);
- ► gauge invariance $W(e^{i\theta}u, e^{i\theta}v) = W(u, v)$ for any $\theta \in \mathbb{R}$;

(日) (日) (日) (日) (日) (日) (日) (日)

• polynomial in (u, v) and (\bar{u}, \bar{v}) .

Examples of nonlinear potentials:

- Bragg resonance: $W = |u|^4 + 4|u|^2|v|^2 + |v|^4$.
- Gross–Neveu model: $W = (\bar{u}v + u\bar{v})^2$.
- Massive Thirring model: $W = |u|^2 |v|^2$

Massive Thirring Model (MTM)

The MTM in laboratory coordinates

$$\left\{ \begin{array}{l} i(u_t+u_x)+v=2|v|^2 u, \\ i(v_t-v_x)+u=2|u|^2 v, \end{array} \right.$$

First three conserved quantities are

$$Q = \int_{\mathbb{R}} \left(|u|^2 + |v|^2 \right) dx,$$
$$P = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} + v\bar{v}_x - v_x\bar{v} \right) dx,$$
$$H = \frac{i}{2} \int_{\mathbb{R}} \left(u\bar{u}_x - u_x\bar{u} - v\bar{v}_x + v_x\bar{v} \right) dx + \int_{\mathbb{R}} \left(-v\bar{u} - u\bar{v} + 2|u|^2|v|^2 \right) dx.$$

An infinite set of conserved quantities is available thanks to the integrability of the MTM.

Local and global existence

Theorem

Assume $\mathbf{u}_0 \in H^s(\mathbb{R})$ for any fixed $s > \frac{1}{2}$. There exists T > 0 such that the nonlinear Dirac equations admit a unique solution

 $\mathbf{u}(t) \in C([0,T], H^s(\mathbb{R})) \cap C^1([0,T], H^{s-1}(\mathbb{R})) : \mathbf{u}(0) = \mathbf{u}_0,$

which depends continuously on the initial data.

Theorem Assume that *W* is a polynomial in variables $|u|^2$ and $|v|^2$. A local solution in $H^{[s]}$ is extended globally as $\mathbf{u}(t) \in C(\mathbb{R}_+, H^{[s]}(\mathbb{R}))$.

References: Delgado (1978); Goodman-Weinstein-Holmes (2001); Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right) \\= i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right) = i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p}).$$

By Gronwall's inequality, we have

$$\|\mathbf{u}(t)\|_{L^{2p+2}} \le e^{2|t|} \|\mathbf{u}(0)\|_{L^{2p+2}}, \quad t \in [0,T],$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

which holds for any $p \ge 0$ including $p \to \infty$.

- L^2 conservation gives $\|\mathbf{u}(t)\|_{L^2} = \|\mathbf{u}(0)\|_{L^2}$
- ► To obtain apriori energy estimates, W is canceled in

$$\partial_t \left(|u|^{2p+2} + |v|^{2p+2} \right) + \partial_x \left(|u|^{2p+2} - |v|^{2p+2} \right) \\= i(p+1)(v\bar{u} - \bar{v}u)(|u|^{2p} - |v|^{2p}).$$

By Gronwall's inequality, we have

$$\|\mathbf{u}(t)\|_{L^{2p+2}} \le e^{2|t|} \|\mathbf{u}(0)\|_{L^{2p+2}}, \quad t \in [0,T],$$

which holds for any $p \ge 0$ including $p \to \infty$.

This allows to control

$$\frac{d}{dt} \|\partial_x \mathbf{u}(t)\|_{L^2}^2 \le C_W e^{4(N-1)|t|} \|\partial_x \mathbf{u}(t)\|_{L^2}^2,$$

where N is the degree of W in variables $|u|^2$ and $|v|^2$.

Existence of solitary waves

Time-periodic space-localized solutions

$$u(x,t) = U_{\omega}(x)e^{-i\omega t}, \quad v(x,t) = V_{\omega}(x)e^{-i\omega t}$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\left\{ \begin{array}{l} u(x,t) = i \sin(\gamma) \, \operatorname{sech} \left[x \sin \gamma - i \frac{\gamma}{2} \right] \, e^{-it \cos \gamma}, \\ v(x,t) = -i \sin(\gamma) \, \operatorname{sech} \left[x \sin \gamma + i \frac{\gamma}{2} \right] \, e^{-it \cos \gamma}. \end{array} \right.$$

Existence of solitary waves

Time-periodic space-localized solutions

$$u(x,t) = U_{\omega}(x)e^{-i\omega t}, \quad v(x,t) = V_{\omega}(x)e^{-i\omega t}$$

satisfy a system of stationary Dirac equations. They are known in the closed analytic form

$$\begin{cases} u(x,t) = i\sin(\gamma) \operatorname{sech} \left[x\sin\gamma - i\frac{\gamma}{2}\right] e^{-it\cos\gamma},\\ v(x,t) = -i\sin(\gamma) \operatorname{sech} \left[x\sin\gamma + i\frac{\gamma}{2}\right] e^{-it\cos\gamma}. \end{cases}$$

- ► Translations in *x* and *t* can be added as free parameters.
- Constraint ω = cos γ ∈ (−1, 1) exists because spectrum of linear waves is located for (−∞, −1] ∪ [1, ∞).
- Moving solitons can be obtained from the stationary solitons with the Lorentz transformation.

Orbital stability of solitary waves

Definition

We say that the solitary wave $e^{-i\omega t}\mathbf{U}_{\omega}(x)$ is orbitally stable if for any $\epsilon > 0$ there is a $\delta(\epsilon) > 0$, such that if

$$\|\mathbf{u}(\cdot,0) - \mathbf{U}_{\omega}(\cdot)\|_{H^1} \le \delta(\epsilon)$$

then

$$\inf_{\theta, a \in \mathbb{R}} \| \mathbf{u}(\cdot, t) - e^{-i\theta} \mathbf{U}_{\omega}(\cdot + a) \|_{H^1} \le \epsilon,$$

for all t > 0.

- Spectral stability of Dirac solitons was mainly studied numerically, with the exception of recent results by A.
 Comech and his coauthors (N. Boussaid, S. Gustafson).
- Asymptotic stability of Dirac solitons was proved for quintic nonlinearities in 1D by Pelinovsky–Stefanov (2012) and in 3D by Boussaid–Cuccagna (2012).

Orbital stability of MTM solitons in H^1

Theorem

There is $\omega_0 \in (0,1]$ such that for any fixed $\omega = \cos \gamma \in (-\omega_0, \omega_0)$, the MTM soliton is a local non-degenerate minimizer of R in $H^1(\mathbb{R}, \mathbb{C}^2)$ under the constraints of fixed values of Q and P.

The higher-order Hamiltonian R is

$$R = \int_{\mathbb{R}} \left[|u_x|^2 + |v_x|^2 - \frac{i}{2} (u_x \overline{u} - \overline{u}_x u) (|u|^2 + 2|v|^2) + \frac{i}{2} (v_x \overline{v} - \overline{v}_x v) (2|u|^2 + |v|^2) - (u\overline{v} + \overline{u}v) (|u|^2 + |v|^2) + 2|u|^2 |v|^2 (|u|^2 + |v|^2) \right] dx.$$

R is a conserved quantity of the MTM in addition to the standard Hamiltonian H, the charge Q, and the momentum P.

Similar works

- ► Sachs and Maddocks (1993) used higher-order conserved quantities of the KdV equation to prove orbital stability of *n*-solitons in Hⁿ(ℝ).
- ► Kapitula (2006) used higher-order conserved quantities of the NLS equation to prove spectral and orbital stability of *n*-solitons in Hⁿ(ℝ).
- Deconinck and Kapitula (2010) proved orbital stability of periodic waves in the KdV equation by adding lower-order Hamiltonians to the higher-order Hamiltonian, which has no minimum property at the periodic waves.
- ► Alejo and Munoz (2013) proved orbital stability of breathers in the modified KdV equation in H²(ℝ) by using an additional conserved quantity.

The energy functionals

Critical points of *H* + ω*Q* for a fixed ω ∈ (−1, 1) satisfy the stationary MTM equations. After the reduction (*u*, *v*) = (*U*, *U*), we obtain the first-order equation

$$i\frac{dU}{dx} - \omega U + \overline{U} = 2|U|^2 U,$$

which is satisfied by the MTM soliton $U = U_{\omega}$.

The energy functionals

Critical points of *H* + ω*Q* for a fixed ω ∈ (−1, 1) satisfy the stationary MTM equations. After the reduction (*u*, *v*) = (*U*, *U*), we obtain the first-order equation

$$i\frac{dU}{dx} - \omega U + \overline{U} = 2|U|^2 U,$$

which is satisfied by the MTM soliton $U = U_{\omega}$.

Critical points of R + ΩQ for some fixed Ω ∈ ℝ satisfy another system of equations. After the reduction (u, v) = (U, U), we obtain the second-order equation

$$\frac{d^2U}{dx^2} + 6i|U|^2\frac{dU}{dx} - 6|U|^4U + 3|U|^2\bar{U} + U^3 = \Omega U.$$

Nice surprise is that $U = U_{\omega}$ satisfies this second-order equation if $\Omega = 1 - \omega^2$.

The Lyapunov functional for MTM solitons

We define the energy functional in $H^1(\mathbb{R}, \mathbb{C}^2)$

$$\Lambda_{\omega} := R + (1 - \omega^2)Q, \quad \omega \in (-1, 1),$$

where $Q = ||u||_{L^2}^2 + ||v||_{L^2}^2$.

- U_{ω} is a critical point of Λ_{ω} .
- The second variation of Λ_ω is determined by the 4 × 4 matrix differential operator, which can be block-diagonalized (Chugunova and Pelinovsky, 2006):

$$S^T L S = \begin{bmatrix} L_+ & 0\\ 0 & L_- \end{bmatrix},$$

where L_+ and L_- are 2×2 matrix Schrödinger operators.

The Linearized Operators

We want strict positivity of L in

$$S^T L S = \begin{bmatrix} L_+ & 0\\ 0 & L_- \end{bmatrix}$$

Unfortunately, operators L_+ and L_- have negative and zero eigenvalues. At least, the continuous spectrum of L_{\pm} is strictly positive if $\omega^2 < 1$: $\sigma_c(L_{\pm}) = [1 - \omega^2, \infty)$.

$$L_{+} = \begin{bmatrix} \mathcal{L}_{+} & -6\omega U_{\omega}^{2} \\ -6\omega \overline{U}_{\omega}^{2} & \overline{\mathcal{L}}_{+} \end{bmatrix}, \quad L_{-} = \begin{bmatrix} \mathcal{L}_{-} & 2\omega U_{\omega}^{2} \\ 2\omega \overline{U}_{\omega}^{2} & \overline{\mathcal{L}}_{-} \end{bmatrix},$$

where

$$\mathcal{L}_{+} = -\frac{d^{2}}{dx^{2}} - 6i|U_{\omega}|^{2}\frac{d}{dx}U_{\omega} + 6|U_{\omega}|^{4} - 3U_{\omega}^{2} + 3\overline{U}_{\omega}^{2} - 6\omega|U_{\omega}|^{2} + 1 - \omega^{2},$$

$$\mathcal{L}_{-} = -\frac{d^2}{dx^2} - 2i|U_{\omega}|^2 \frac{d}{dx}U_{\omega} - 2|U_{\omega}|^4 - U_{\omega}^2 + \overline{U}_{\omega}^2 - 2\omega|U_{\omega}|^2 + 1 - \omega^2.$$

・ロト・西ト・ヨト・ヨー シック

The spectral problem of the operator L_{-}

Lemma

For any $\omega \in (-1, 1)$, L_{-} has exactly two eigenvalues below the continuous spectrum. One eigenvalue is zero for any ω . The other eigenvalue is positive for $\omega \in (0, 1)$, negative for $\omega \in (-1, 0)$, and zero for $\omega = 0$.

The spectral problem of the operator L_{-}

Lemma

For any $\omega \in (-1,1)$, L_{-} has exactly two eigenvalues below the continuous spectrum. One eigenvalue is zero for any ω . The other eigenvalue is positive for $\omega \in (0,1)$, negative for $\omega \in (-1,0)$, and zero for $\omega = 0$.

By setting $u(x) = \varphi(x)e^{-i\int_0^x |U_\omega(x')|^2 dx'}$ in the spectral problem $L_-\mathbf{u} = \mu\mathbf{u}$, we obtain an equivalent spectral problem $\widetilde{L}\vec{\phi} = \mu\vec{\phi}$ with

$$\widetilde{L} = \begin{bmatrix} -\partial_x^2 + 1 - \omega^2 - 2\omega |U_{\omega}|^2 - 3|U_{\omega}|^4 & 2\omega |U_{\omega}|^2 \\ 2\omega |U_{\omega}|^2 & -\partial_x^2 + 1 - \omega^2 - 2\omega |U_{\omega}|^2 - 3|U_{\omega}|^4 \end{bmatrix}.$$

Furthermore, if we set $\psi_{\pm} := \varphi(x) \pm \bar{\varphi}(x)$, $z := \sqrt{1 - \omega^2}x$, and $\mu := (1 - \omega^2)\lambda$, we obtain two uncoupled spectral problems

$$-\frac{d^2\psi_+}{dz^2} + \left[1 - \frac{3(1-\omega^2)}{(\omega + \cosh(2z))^2}\right]\psi_+ = \lambda\psi_+$$
(1)

and

$$-\frac{d^2\psi_-}{dz^2} + \left[1 - \frac{3(1-\omega^2)}{(\omega+\cosh(2z))^2} - \frac{4\omega}{\omega+\cosh(2z)}\right]\psi_- = \lambda\psi_-.$$
 (2)

・ロト・西ト・山田・山田・山下

► The eigenfunction of Eq (2) for $\lambda = 0$ for any $\omega \in (-1, 1)$ is

$$\psi_0(z) = \frac{1}{(\omega + \cosh(2z))^{1/2}} > 0.$$

By Sturm's theory, there is no negative eigenvalue.

For the problem with a deeper potential well

$$-\frac{d^2\psi_-}{dz^2} + \left[1 - \frac{8(1-\omega^2)}{(\omega + \cosh(2z))^2} - \frac{4\omega}{\omega + \cosh(2z)}\right]\psi_- = \lambda\psi_-,$$

there is the end-point resonance at $\lambda = 1$:

$$\psi_c(z) = \frac{\sinh(2z)}{\omega + \cosh(2z)}$$

By Sturm's theory, $\lambda = 0$ is the only isolated eigenvalue.

The difference of potentials between Eq (1) and Eq (2) is

$$\Delta V(z) := \frac{4\omega}{\omega + \cosh(2z)}$$

The zero eigenvalue for $\omega = 0$ is a positive eigenvalue for $\omega > 0$ and a negative eigenvalue for $\omega < 0$.

For the problem with a deeper potential well

$$-\frac{d^2\psi}{dz^2} + \left[1 - \frac{3(1-\omega^2)}{(\omega+1+2z^2)^2}\right]\psi = \lambda\psi,$$

there is the end-point resonance at $\lambda = 1$:

$$\tilde{\psi}_c(y) = \frac{z}{\sqrt{\omega + 1 + 2z^2}}$$

By Sturm's theory, the eigenvalue above is the only isolated eigenvalue.

The spectral problem of the operator L_+

Lemma

There is $\omega_0 \in (0,1]$ such that for any fixed $\omega \in (-\omega_0, \omega_0)$, operator L_+ has exactly two eigenvalues below the continuous spectrum. One eigenvalue is zero for any ω . The other eigenvalue is positive for $\omega \in (-\omega_0, 0)$, negative for $\omega \in (0, \omega_0)$, and zero for $\omega = 0$.

The spectral problem of the operator L_+

Lemma

There is $\omega_0 \in (0, 1]$ such that for any fixed $\omega \in (-\omega_0, \omega_0)$, operator L_+ has exactly two eigenvalues below the continuous spectrum. One eigenvalue is zero for any ω . The other eigenvalue is positive for $\omega \in (-\omega_0, 0)$, negative for $\omega \in (0, \omega_0)$, and zero for $\omega = 0$.

By setting $u(x) = \varphi(x)e^{-3i\int_0^x |U\omega(x')|^2 dx'}$ in the spectral problem $L_+\mathbf{u} = \mu\mathbf{u}$, where $\mathbf{u} = (u, \overline{u})^t$ and setting $z := \sqrt{1 - \omega^2}x$ and $\mu := (1 - \omega^2)\lambda$, we obtain an equivalent spectral problem

$$\left[\begin{array}{cc} -\partial_z^2 + 1 + V_1(z) & V_2(z) \\ \overline{V}_2(z) & -\partial_z^2 + 1 + V_1(z) \end{array} \right] \left[\begin{array}{c} \varphi \\ \overline{\varphi} \end{array} \right] = \lambda \left[\begin{array}{c} \varphi \\ \overline{\varphi} \end{array} \right],$$

where

$$V_1(z) := -\frac{3(1-\omega^2)}{(\omega+\cosh(2z))^2} - \frac{6\omega}{\omega+\cosh(2z)}$$

and

$$V_2(z) := -6\omega \frac{\left(1 + \omega \cosh(2z) + i\sqrt{1 - \omega^2}\sinh(2z)\right)^2}{(\omega + \cosh(2z))^3}.$$

◆ロト ◆御 ト ◆ 臣 ト ◆ 臣 ト ○臣 - のへで

▶ $\lambda = 0$ is an eigenvalue for all $\omega \in (-1, 1)$ with the eigenvector $(\varphi_0, \overline{\varphi}_0)$,

$$\varphi_0(z) = \frac{\omega \sinh(2z) + i\sqrt{1 - \omega^2} \cosh(2z)}{(\omega + \cosh(2z))^{3/2}}.$$

- For ω = 0, the zero eigenvalue is double, the end-points have no resonances, and no other eigenvalues exist.
- The assertion is proved by the perturbation theory:

$$\left\langle \begin{bmatrix} \varphi_0 \\ -\bar{\varphi}_0 \end{bmatrix}, L_+ \begin{bmatrix} \varphi_0 \\ -\bar{\varphi}_0 \end{bmatrix} \right\rangle = -12\omega \int_{\mathbb{R}} \frac{3 - \cosh(4z)}{\cosh(2z)^4} dz$$
$$= -16\omega + \mathcal{O}(\omega^2).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <

Conjecture on eigenvalues of the operator L_+

Conjecture

Operator L_+ has exactly two isolated eigenvalues and no end-point resonances for all $\omega \in (-1, 1)$. The non-zero eigenvalue is positive for all $\omega \in (-1, 0)$ and negative for all $\omega \in (0, 1)$.

Convexity of the energy functional

Consider again the energy functional in $H^1(\mathbb{R}, \mathbb{C}^2)$

$$\Lambda_{\omega} := R + (1 - \omega^2)Q, \quad \omega \in (-1, 1),$$

where $Q = ||u||_{L^2}^2 + ||v||_{L^2}^2$.

- U_{ω} is a critical point of Λ_{ω} .
- The second variation of Λ_ω at U_ω is associated with the matrix operator

$$S^T L S = \begin{bmatrix} L_+ & 0\\ 0 & L_- \end{bmatrix},$$

which has exactly one negative eigenvalue for $\omega < 0$ and $\omega > 0$ and a quadripole zero eigenvalue for $\omega = 0$.

Constrained Hilbert spaces

Let us assume that $(u, v) \in L^2(\mathbb{R}; \mathbb{C}^2)$ satisfies the complex-valued constraints:

$$\int_{\mathbb{R}} \left(\bar{U}_{\omega} u + U_{\omega} v \right) dx = 0, \qquad (1)$$
$$\int_{\mathbb{R}} \left(\bar{U}'_{\omega} u + U'_{\omega} v \right) dx = 0, \qquad (2)$$

- Real part of Eq (1) corresponds to fixed Q (charge).
- Imaginary part of Eq. (2) corresponds to fixed P (momentum).
- ► Imaginary part of Eq. (1) corresponds to orthogonality to the gauge translation mode $u \mapsto ue^{i\alpha}$, $v \mapsto ve^{i\alpha}$.
- ► Real part of Eq. (2) corresponds to orthogonality to the space translation mode u(x) → u(x + x₀), v(x) → v(x + x₀).

Convexity of the energy functional

Theorem

There is $\omega_0 \in (0, 1]$ such that for any fixed $\omega \in (-\omega_0, \omega_0)$, the Lyapunov functional Λ_{ω} is strictly convex at $(u, v) = (U_{\omega}, \overline{U}_{\omega})$ in the orthogonal complement of the complex-valued constraints (1) and (2).

The second variation of Λ_ω at U_ω is associated with the matrix operator

$$S^T L S = \begin{bmatrix} L_+ & 0\\ 0 & L_- \end{bmatrix},$$

The constraints remove the negative eigenvalue of L_+ and L_- for $\omega > 0$ and $\omega < 0$ and the zero eigenvalue for all ω .

Orbital stability result

- \triangleright R, Q, and P are conserved in time t.
- Strict positivity of L implies

 $\langle L\mathbf{u},\mathbf{u}\rangle_{L^2} \geq C \|\mathbf{u}\|_{H^1}$

for all $\mathbf{u} \in H^1(\mathbb{R}; \mathbb{C}^2)$ in the constrained space.

Then, we obtain the lower bound via standard arguments:

$$\Lambda_{\omega}(\mathbf{u}) - \Lambda_{\omega}(\mathbf{U}_{\omega}) \ge \inf_{\theta, x_0} \|\mathbf{u}(\cdot, t) - e^{i\theta} \mathbf{U}_{\omega}(\cdot + x_0)\|_{H^1}$$

• This yields orbital stability of \mathbf{U}_{ω} for $\omega \in (-\omega_0, \omega_0)$.

Orbital stability of MTM solitons in L^2

Well-posedness (Candy, 2011): For any $(u_0, v_0) \in L^2(\mathbb{R})$, there exists a unique solution of the MTM $(u, v) \in C(\mathbb{R}, L^2(\mathbb{R}))$:

$$||u(\cdot,t)||_{L^2}^2 + ||v(\cdot,t)||_{L^2}^2 = ||u_0||_{L^2}^2 + ||v_0||_{L^2}^2.$$

Theorem

Let $(u, v) \in C(\mathbb{R}; L^2(\mathbb{R}))$ be a solution of the MTM system and λ_0 be a complex non-zero number. There exist a real positive constant ϵ such that if the initial value $(u_0, v_0) \in L^2(\mathbb{R})$ satisfies

$$||u_0 - u_{\lambda_0}(\cdot, 0)||_{L^2} + ||v_0 - v_{\lambda_0}(\cdot, 0)||_{L^2} \le \epsilon,$$

then for every $t \in \mathbb{R}$, there exists $\lambda \in \mathbb{C}$ such that $|\lambda - \lambda_0| \leq C\epsilon$,

$$\inf_{a,\theta\in\mathbb{R}} (\|u(\cdot+a,t)-e^{-i\theta}u_{\lambda}(\cdot,t)\|_{L^{2}}+\|v(\cdot+a,t)-e^{-i\theta}v_{\lambda}(\cdot,t)\|_{L^{2}}) \leq C\epsilon,$$

(日) (日) (日) (日) (日) (日) (日) (日)

where the constant C is independent of ϵ and t.

Lax operators for the MTM

The MTM is obtained from the compatibility condition of the linear system

$$\vec{\phi}_x = L\vec{\phi}$$
 and $\vec{\phi}_t = A\vec{\phi},$

where

$$L = \frac{i}{2}(|v|^2 - |u|^2)\sigma_3 - \frac{i\lambda}{\sqrt{2}} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{\sqrt{2}\lambda} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\frac{1}{\lambda^2} - \lambda^2\right)\sigma_3$$

and

$$A = -\frac{i}{4}(|u|^2 + |v|^2)\sigma_3 - \frac{i\lambda}{2} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{2\lambda} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\lambda^2 + \frac{1}{\lambda^2}\right)\sigma_3$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

References:

Kaup-Newell (1977); Kuznetsov-Mikhailov (1977).

Bäcklund transformation for the MTM

- Let (u, v) be a C^1 solution of the MTM system.
- Let φ̃ = (φ₁, φ₂)^t be a C² nonzero solution of the linear system associated with (u, v) and λ = δe^{iγ/2}.

A new C^1 solution of the MTM system is given by

$$\mathbf{u} = -u \frac{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2} + \frac{2i\delta^{-1} \sin \gamma \overline{\phi}_1 \phi_2}{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}$$
$$\mathbf{v} = -v \frac{e^{i\gamma/2} |\phi_1|^2 + e^{-i\gamma/2} |\phi_2|^2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2} - \frac{2i\delta \sin \gamma \overline{\phi}_1 \phi_2}{e^{-i\gamma/2} |\phi_1|^2 + e^{i\gamma/2} |\phi_2|^2},$$

A new C^2 nonzero solution $\vec{\psi} = (\psi_1, \psi_2)^t$ of the linear system associated with (\mathbf{u}, \mathbf{v}) and same λ is given by

$$\psi_1 = \frac{\overline{\phi}_2}{|e^{i\gamma/2}|\phi_1|^2 + e^{-i\gamma/2}|\phi_2|^2|}, \quad \psi_2 = \frac{\overline{\phi}_1}{|e^{i\gamma/2}|\phi_1|^2 + e^{-i\gamma/2}|\phi_2|^2|}.$$

Bäcklund transformation $0 \leftrightarrow 1$ soliton

Let (u, v) = (0, 0) and define $\begin{cases} \phi_1 = e^{\frac{i}{4}(\lambda^2 - \lambda^{-2})x + \frac{i}{4}(\lambda^2 + \lambda^{-2})t}, \\ \phi_2 = e^{-\frac{i}{4}(\lambda^2 - \lambda^{-2})x - \frac{i}{4}(\lambda^2 + \lambda^{-2})t}. \end{cases}$

Then, $(\mathbf{u}, \mathbf{v}) = (u_{\lambda}, v_{\lambda}).$

If $\lambda = e^{i\gamma/2}$ (stationary case), the vector $\vec{\psi}$ is given by $\begin{cases}
\psi_1 = e^{\frac{1}{2}x\sin\gamma + \frac{i}{2}t\cos\gamma} \left|\operatorname{sech}\left(x\sin\gamma - i\frac{\gamma}{2}\right)\right|, \\
\psi_2 = e^{-\frac{1}{2}x\sin\gamma - \frac{i}{2}t\cos\gamma} \left|\operatorname{sech}\left(x\sin\gamma - i\frac{\gamma}{2}\right)\right|.
\end{cases}$

It decays exponentially as $|x| \to \infty$.

Note that if $(u, v) = (u_{\lambda}, v_{\lambda})$ and $\vec{\phi} = \vec{\psi}$, then $(\mathbf{u}, \mathbf{v}) = (0, 0)$.

Similar works

- Merle and Vega (2003) used the Miura transformation to prove asymptotic stability of KdV solitons in L².
- Mizumachi and Tzvetkov (2011) applied the same transformation to prove L²-stability of line solitons in the KP-II equation under periodic transverse perturbations.
- Mizumachi and Pego (2008); Hoffman and Wayne (2009) used Bäcklund transformation to prove asymptotic stability of Toda lattice one-soliton and multi-solitons.
- Mizumachi and Pelinovsky (2012); Contreras and Pelinovsky (2013) used Bäcklund transformation to prove orbital stability of NLS one-soliton and multi-solitons in L².

Steps in the proof of the main result

- Step 1: From a perturbed one-soliton to a small solution at the initial time t = 0.
- Step 2: Time evolution of the small solution for $t \in \mathbb{R}$.
- Step 3: From the small solution to the perturbed one-soliton for every $t \in \mathbb{R}$.
- Step 4: Approximation arguments in H²(ℝ) to control the compatibility condition of the linear system for every t ∈ ℝ.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Asymptotic stability of MTM solitons ?

To prove asymptotic stability of MTM solitons, one needs first to establish the space where small initial data (u_0, v_0) produce no eigenvalues in the spectral problem

$$\vec{\phi}_x = L(u_0, v_0, \lambda)\vec{\phi},$$

where

$$L = \frac{i}{2} (|v|^2 - |u|^2) \sigma_3 - \frac{i\lambda}{\sqrt{2}} \begin{pmatrix} 0 & \overline{v} \\ v & 0 \end{pmatrix} - \frac{i}{\sqrt{2\lambda}} \begin{pmatrix} 0 & \overline{u} \\ u & 0 \end{pmatrix} + \frac{i}{4} \left(\frac{1}{\lambda^2} - \lambda^2 \right) \sigma_3$$

For NLS-type problems, it is well known that $||u_0||_{L^1}$ has to be small, e.g. if $||\sqrt{1+x^2}u_0||_{L^2}$ is small. Asymptotic stability of NLS solitons follows from an application of the auto–Backlund transformation (Deift–Park, 2011; Cuccagna–Pelinovsky, 2013).

For MTM systems, the precise conditions when the spectral problem has no eigenvalues are unknown...