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The problem

The nonlinear Dirac equations in one spatial dimension,
{

i(ut + ux) + v = ∂ūW (u, v),
i(vt − vx) + u = ∂v̄W (u, v),

where W (u, v) : C2 → R satisfies the following three conditions:

I symmetry W (u, v) =W (v, u);
I gauge invariance W (eiθu, eiθv) =W (u, v) for any θ ∈ R;
I polynomial in (u, v) and (ū, v̄).
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i(vt − vx) + u = ∂v̄W (u, v),

where W (u, v) : C2 → R satisfies the following three conditions:

I symmetry W (u, v) =W (v, u);
I gauge invariance W (eiθu, eiθv) =W (u, v) for any θ ∈ R;
I polynomial in (u, v) and (ū, v̄).

Examples of nonlinear potentials:

I Bragg resonance: W = |u|4 + 4|u|2|v|2 + |v|4.
I Gross–Neveu model: W = (ūv + uv̄)2.
I Massive Thirring model: W = |u|2|v|2



Massive Thirring Model (MTM)

The MTM in laboratory coordinates
{

i(ut + ux) + v = 2|v|2u,
i(vt − vx) + u = 2|u|2v,

First three conserved quantities are

Q =

∫

R

(

|u|2 + |v|2
)

dx,

P =
i

2

∫

R

(uūx − uxū+ vv̄x − vxv̄) dx,

H =
i

2

∫

R

(uūx − uxū− vv̄x + vxv̄) dx+

∫

R

(

−vū− uv̄ + 2|u|2|v|2
)

dx.

An infinite set of conserved quantities is available thanks to the
integrability of the MTM.



Local and global existence

Theorem
Assume u0 ∈ Hs(R) for any fixed s > 1

2 . There exists T > 0
such that the nonlinear Dirac equations admit a unique solution

u(t) ∈ C([0, T ],Hs(R)) ∩C1([0, T ],Hs−1(R)) : u(0) = u0,

which depends continuously on the initial data.

Theorem
Assume that W is a polynomial in variables |u|2 and |v|2. A local
solution in H [s] is extended globally as u(t) ∈ C(R+,H

[s](R)).

References: Delgado (1978); Goodman-Weinstein-Holmes
(2001); Selberg-Tesfahun (2010); Huh (2011); Zhang (2013).



Quick proof of global well-posedness in H
1(R)

I L2 conservation gives ‖u(t)‖L2 = ‖u(0)‖L2
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Quick proof of global well-posedness in H
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I L2 conservation gives ‖u(t)‖L2 = ‖u(0)‖L2

I To obtain apriori energy estimates, W is canceled in

∂t
(

|u|2p+2 + |v|2p+2
)

+ ∂x
(

|u|2p+2 − |v|2p+2
)

= i(p+ 1)(vū − v̄u)(|u|2p − |v|2p).

I By Gronwall’s inequality, we have

‖u(t)‖L2p+2 ≤ e2|t|‖u(0)‖L2p+2 , t ∈ [0, T ],

which holds for any p ≥ 0 including p→ ∞.
I This allows to control

d

dt
‖∂xu(t)‖2L2 ≤ CW e

4(N−1)|t|‖∂xu(t)‖2L2 ,

where N is the degree of W in variables |u|2 and |v|2.



Existence of solitary waves

Time-periodic space-localized solutions

u(x, t) = Uω(x)e
−iωt, v(x, t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known
in the closed analytic form

{

u(x, t) = i sin(γ) sech
[

x sin γ − iγ2
]

e−it cos γ ,
v(x, t) = −i sin(γ) sech

[

x sin γ + iγ2
]

e−it cos γ .
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Time-periodic space-localized solutions
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−iωt, v(x, t) = Vω(x)e

−iωt

satisfy a system of stationary Dirac equations. They are known
in the closed analytic form

{

u(x, t) = i sin(γ) sech
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x sin γ − iγ2
]

e−it cos γ ,
v(x, t) = −i sin(γ) sech

[

x sin γ + iγ2
]

e−it cos γ .

I Translations in x and t can be added as free parameters.

I Constraint ω = cos γ ∈ (−1, 1) exists because spectrum of
linear waves is located for (−∞,−1] ∪ [1,∞).

I Moving solitons can be obtained from the stationary
solitons with the Lorentz transformation.



Orbital stability of solitary waves

Definition
We say that the solitary wave e−iωtUω(x) is orbitally stable if for
any ε > 0 there is a δ(ε) > 0, such that if

‖u(·, 0) −Uω(·)‖H1 ≤ δ(ε)

then
inf
θ,a∈R

‖u(·, t)− e−iθUω(·+ a)‖H1 ≤ ε,

for all t > 0.

I Spectral stability of Dirac solitons was mainly studied
numerically, with the exception of recent results by A.
Comech and his coauthors (N. Boussaid, S. Gustafson).

I Asymptotic stability of Dirac solitons was proved for quintic
nonlinearities in 1D by Pelinovsky–Stefanov (2012) and in
3D by Boussaid–Cuccagna (2012).



Orbital stability of MTM solitons in H
1

Theorem
There is ω0 ∈ (0, 1] such that for any fixed ω = cos γ ∈ (−ω0, ω0),
the MTM soliton is a local non-degenerate minimizer of R in
H1(R,C2) under the constraints of fixed values of Q and P .

The higher-order Hamiltonian R is

R =

∫

R

[
|ux|2 + |vx|2 − i

2
(uxu− uxu)(|u|2 + 2|v|2) + i

2
(vxv − vxv)(2|u|2 + |v|2)

−(uv + uv)(|u|2 + |v|2) + 2|u|2|v|2(|u|2 + |v|2)
]
dx.

R is a conserved quantity of the MTM in addition to the
standard Hamiltonian H, the charge Q, and the momentum P .



Similar works

I Sachs and Maddocks (1993) used higher-order conserved
quantities of the KdV equation to prove orbital stability of
n-solitons in Hn(R).

I Kapitula (2006) used higher-order conserved quantities of
the NLS equation to prove spectral and orbital stability of
n-solitons in Hn(R).

I Deconinck and Kapitula (2010) proved orbital stability of
periodic waves in the KdV equation by adding lower-order
Hamiltonians to the higher-order Hamiltonian, which has
no minimum property at the periodic waves.

I Alejo and Munoz (2013) proved orbital stability of breathers
in the modified KdV equation in H2(R) by using an
additional conserved quantity.



The energy functionals

I Critical points of H + ωQ for a fixed ω ∈ (−1, 1) satisfy the
stationary MTM equations. After the reduction
(u, v) = (U,U), we obtain the first-order equation

i
dU

dx
− ωU + U = 2|U |2U,

which is satisfied by the MTM soliton U = Uω.
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I Critical points of H + ωQ for a fixed ω ∈ (−1, 1) satisfy the
stationary MTM equations. After the reduction
(u, v) = (U,U), we obtain the first-order equation

i
dU

dx
− ωU + U = 2|U |2U,

which is satisfied by the MTM soliton U = Uω.

I Critical points of R+ΩQ for some fixed Ω ∈ R satisfy
another system of equations. After the reduction
(u, v) = (U,U), we obtain the second-order equation

d2U

dx2
+ 6i|U |2 dU

dx
− 6|U |4U + 3|U |2Ū + U3 = ΩU.

Nice surprise is that U = Uω satisfies this second-order
equation if Ω = 1− ω2.



The Lyapunov functional for MTM solitons

We define the energy functional in H1(R,C2)

Λω := R+ (1− ω2)Q, ω ∈ (−1, 1),

where Q = ‖u‖2L2 + ‖v‖2L2 .

I Uω is a critical point of Λω.

I The second variation of Λω is determined by the 4× 4
matrix differential operator, which can be
block-diagonalized (Chugunova and Pelinovsky, 2006):

STLS =

[

L+ 0
0 L−

]

,

where L+ and L− are 2× 2 matrix Schrödinger operators.



The Linearized Operators
We want strict positivity of L in

STLS =

[

L+ 0
0 L−

]

.

Unfortunately, operators L+ and L− have negative and zero
eigenvalues. At least, the continuous spectrum of L± is strictly
positive if ω2 < 1: σc(L±) = [1− ω2,∞).

L+ =

[

L+ −6ωU2
ω

−6ωU
2
ω L+

]

, L− =

[

L− 2ωU2
ω

2ωU
2
ω L−

]

,

where

L+ = − d2

dx2
− 6i|Uω|2

d

dx
Uω + 6|Uω|4 − 3U2

ω + 3U
2
ω − 6ω|Uω |2 + 1− ω2,

L− = − d2

dx2
− 2i|Uω|2

d

dx
Uω − 2|Uω|4 − U2

ω + U
2
ω − 2ω|Uω |2 + 1− ω2.



The spectral problem of the operator L−
Lemma
For any ω ∈ (−1, 1), L− has exactly two eigenvalues below the
continuous spectrum. One eigenvalue is zero for any ω. The
other eigenvalue is positive for ω ∈ (0, 1), negative for
ω ∈ (−1, 0), and zero for ω = 0.



The spectral problem of the operator L−
Lemma
For any ω ∈ (−1, 1), L− has exactly two eigenvalues below the
continuous spectrum. One eigenvalue is zero for any ω. The
other eigenvalue is positive for ω ∈ (0, 1), negative for
ω ∈ (−1, 0), and zero for ω = 0.

By setting u(x) = ϕ(x)e−i
∫
x

0
|Uω(x′)|2dx′

in the spectral problem L−u = µu, we
obtain an equivalent spectral problem L̃~φ = µ~φ with

L̃ =

[
−∂2x + 1− ω2 − 2ω|Uω |2 − 3|Uω|4 2ω|Uω|2

2ω|Uω |2 −∂2x + 1− ω2 − 2ω|Uω|2 − 3|Uω|4
]
.

Furthermore, if we set ψ± := ϕ(x)± ϕ̄(x), z :=
√
1− ω2x, and µ := (1 − ω2)λ, we

obtain two uncoupled spectral problems

−d
2ψ+

dz2
+

[
1− 3(1 − ω2)

(ω + cosh(2z))2

]
ψ+ = λψ+ (1)

and

−d
2ψ−

dz2
+

[
1− 3(1 − ω2)

(ω + cosh(2z))2
− 4ω

ω + cosh(2z)

]
ψ− = λψ−. (2)



I The eigenfunction of Eq (2) for λ = 0 for any ω ∈ (−1, 1) is

ψ0(z) =
1

(ω + cosh(2z))1/2
> 0.

By Sturm’s theory, there is no negative eigenvalue.

I For the problem with a deeper potential well

−d
2ψ−
dz2

+

[

1− 8(1− ω2)

(ω + cosh(2z))2
− 4ω

ω + cosh(2z)

]

ψ− = λψ−,

there is the end-point resonance at λ = 1:

ψc(z) =
sinh(2z)

ω + cosh(2z)

By Sturm’s theory, λ = 0 is the only isolated eigenvalue.



I The difference of potentials between Eq (1) and Eq (2) is

∆V (z) :=
4ω

ω + cosh(2z)
.

The zero eigenvalue for ω = 0 is a positive eigenvalue for
ω > 0 and a negative eigenvalue for ω < 0.

I For the problem with a deeper potential well

−d
2ψ

dz2
+

[

1− 3(1− ω2)

(ω + 1 + 2z2)2

]

ψ = λψ,

there is the end-point resonance at λ = 1:

ψ̃c(y) =
z√

ω + 1 + 2z2
.

By Sturm’s theory, the eigenvalue above is the only
isolated eigenvalue.



The spectral problem of the operator L+

Lemma
There is ω0 ∈ (0, 1] such that for any fixed ω ∈ (−ω0, ω0),
operator L+ has exactly two eigenvalues below the continuous
spectrum. One eigenvalue is zero for any ω. The other
eigenvalue is positive for ω ∈ (−ω0, 0), negative for ω ∈ (0, ω0),
and zero for ω = 0.



The spectral problem of the operator L+

Lemma
There is ω0 ∈ (0, 1] such that for any fixed ω ∈ (−ω0, ω0),
operator L+ has exactly two eigenvalues below the continuous
spectrum. One eigenvalue is zero for any ω. The other
eigenvalue is positive for ω ∈ (−ω0, 0), negative for ω ∈ (0, ω0),
and zero for ω = 0.

By setting u(x) = ϕ(x)e−3i
∫
x

0
|Uω(x′)|2dx′

in the spectral problem L+u = µu, where
u = (u, u)t and setting z :=

√
1− ω2x and µ := (1 − ω2)λ, we obtain an equivalent

spectral problem

[
−∂2z + 1 + V1(z) V2(z)

V 2(z) −∂2z + 1 + V1(z)

] [
ϕ
ϕ̄

]
= λ

[
ϕ
ϕ̄

]
,

where

V1(z) := − 3(1 − ω2)

(ω + cosh(2z))2
− 6ω

ω + cosh(2z)

and

V2(z) := −6ω

(
1 + ω cosh(2z) + i

√
1− ω2 sinh(2z)

)2

(ω + cosh(2z))3
.



I λ = 0 is an eigenvalue for all ω ∈ (−1, 1) with the
eigenvector (ϕ0, ϕ̄0),

ϕ0(z) =
ω sinh(2z) + i

√
1− ω2 cosh(2z)

(ω + cosh(2z))3/2
.

I For ω = 0, the zero eigenvalue is double, the end-points
have no resonances, and no other eigenvalues exist.

I The assertion is proved by the perturbation theory:

〈
[

ϕ0

−ϕ̄0

]

, L+

[

ϕ0

−ϕ̄0

]

〉 = −12ω

∫

R

3− cosh(4z)

cosh(2z)4
dz

= −16ω +O(ω2).



Conjecture on eigenvalues of the operator L+

Conjecture
Operator L+ has exactly two isolated eigenvalues and no
end-point resonances for all ω ∈ (−1, 1). The non-zero
eigenvalue is positive for all ω ∈ (−1, 0) and negative for all
ω ∈ (0, 1).
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Convexity of the energy functional

Consider again the energy functional in H1(R,C2)

Λω := R+ (1− ω2)Q, ω ∈ (−1, 1),

where Q = ‖u‖2L2 + ‖v‖2L2 .

I Uω is a critical point of Λω.

I The second variation of Λω at Uω is associated with the
matrix operator

STLS =

[

L+ 0
0 L−

]

,

which has exactly one negative eigenvalue for ω < 0 and
ω > 0 and a quadripole zero eigenvalue for ω = 0.



Constrained Hilbert spaces
Let us assume that (u, v) ∈ L2(R;C2) satisfies the
complex-valued constraints:

∫

R

(

Ūωu+ Uωv
)

dx = 0, (1)

∫

R

(

Ū ′
ωu+ U ′

ωv
)

dx = 0, (2)

I Real part of Eq (1) corresponds to fixed Q (charge).
I Imaginary part of Eq. (2) corresponds to fixed P

(momentum).
I Imaginary part of Eq. (1) corresponds to orthogonality to

the gauge translation mode u 7→ ueiα, v 7→ veiα.
I Real part of Eq. (2) corresponds to orthogonality to the

space translation mode u(x) 7→ u(x+ x0),
v(x) 7→ v(x+ x0).



Convexity of the energy functional

Theorem
There is ω0 ∈ (0, 1] such that for any fixed ω ∈ (−ω0, ω0), the
Lyapunov functional Λω is strictly convex at (u, v) = (Uω, Ūω) in
the orthogonal complement of the complex-valued constraints
(1) and (2).

The second variation of Λω at Uω is associated with the matrix
operator

STLS =

[

L+ 0
0 L−

]

,

The constraints remove the negative eigenvalue of L+ and L−
for ω > 0 and ω < 0 and the zero eigenvalue for all ω.



Orbital stability result

I R, Q, and P are conserved in time t.
I Strict positivity of L implies

〈Lu,u〉L2 ≥ C‖u‖H1

for all u ∈ H1(R;C2) in the constrained space.
I Then, we obtain the lower bound via standard arguments:

Λω(u)− Λω(Uω) ≥ inf
θ,x0

‖u(·, t) − eiθUω(·+ x0)‖H1

I This yields orbital stability of Uω for ω ∈ (−ω0, ω0).



Orbital stability of MTM solitons in L
2

Well-posedness (Candy, 2011): For any (u0, v0) ∈ L2(R),
there exists a unique solution of the MTM (u, v) ∈ C(R, L2(R)):

‖u(·, t)‖2L2 + ‖v(·, t)‖2L2 = ‖u0‖2L2 + ‖v0‖2L2 .

Theorem
Let (u, v) ∈ C(R;L2(R)) be a solution of the MTM system and
λ0 be a complex non-zero number. There exist a real positive
constant ε such that if the initial value (u0, v0) ∈ L2(R) satisfies

‖u0 − uλ0(·, 0)‖L2 + ‖v0 − vλ0(·, 0)‖L2 ≤ ε,

then for every t ∈ R, there exists λ ∈ C such that |λ− λ0| ≤ Cε,

inf
a,θ∈R

(‖u(·+a, t)−e−iθuλ(·, t)‖L2+‖v(·+a, t)−e−iθvλ(·, t)‖L2) ≤ Cε,

where the constant C is independent of ε and t.



Lax operators for the MTM

The MTM is obtained from the compatibility condition of the
linear system

~φx = L~φ and ~φt = A~φ,

where

L =
i

2
(|v|2−|u|2)σ3−

iλ√
2

(

0 v

v 0

)

− i√
2λ

(

0 u

u 0

)

+
i

4

(

1

λ2
− λ2

)

σ3

and

A = − i

4
(|u|2+|v|2)σ3−

iλ

2

(

0 v

v 0

)

− i

2λ

(

0 u

u 0

)

+
i

4

(

λ2 +
1

λ2

)

σ3

References:
Kaup–Newell (1977); Kuznetsov–Mikhailov (1977).



Bäcklund transformation for the MTM
I Let (u, v) be a C1 solution of the MTM system.
I Let ~φ = (φ1, φ2)

t be a C2 nonzero solution of the linear
system associated with (u, v) and λ = δeiγ/2.

A new C1 solution of the MTM system is given by

u = −ue
−iγ/2|φ1|2 + eiγ/2|φ2|2
eiγ/2|φ1|2 + e−iγ/2|φ2|2

+
2iδ−1 sin γφ1φ2

eiγ/2|φ1|2 + e−iγ/2|φ2|2

v = −v e
iγ/2|φ1|2 + e−iγ/2|φ2|2
e−iγ/2|φ1|2 + eiγ/2|φ2|2

− 2iδ sin γφ1φ2
e−iγ/2|φ1|2 + eiγ/2|φ2|2

,

A new C2 nonzero solution ~ψ = (ψ1, ψ2)
t of the linear system

associated with (u,v) and same λ is given by

ψ1 =
φ2

|eiγ/2|φ1|2 + e−iγ/2|φ2|2|
, ψ2 =

φ1
|eiγ/2|φ1|2 + e−iγ/2|φ2|2|

.



Bäcklund transformation 0 ↔ 1 soliton

Let (u, v) = (0, 0) and define
{

φ1 = e
i
4
(λ2−λ−2)x+ i

4
(λ2+λ−2)t,

φ2 = e−
i
4
(λ2−λ−2)x− i

4
(λ2+λ−2)t.

Then, (u,v) = (uλ, vλ).

If λ = eiγ/2 (stationary case), the vector ~ψ is given by
{

ψ1 = e
1
2
x sin γ+ i

2
t cos γ

∣

∣sech
(

x sin γ − iγ2
)∣

∣ ,

ψ2 = e−
1
2
x sinγ− i

2
t cos γ

∣

∣sech
(

x sin γ − iγ2
)
∣

∣ .

It decays exponentially as |x| → ∞.

Note that if (u, v) = (uλ, vλ) and ~φ = ~ψ, then (u,v) = (0, 0).



Similar works

I Merle and Vega (2003) used the Miura transformation to
prove asymptotic stability of KdV solitons in L2.

I Mizumachi and Tzvetkov (2011) applied the same
transformation to prove L2-stability of line solitons in the
KP-II equation under periodic transverse perturbations.

I Mizumachi and Pego (2008); Hoffman and Wayne (2009)
used Bäcklund transformation to prove asymptotic stability
of Toda lattice one-soliton and multi-solitons.

I Mizumachi and Pelinovsky (2012); Contreras and
Pelinovsky (2013) used Bäcklund transformation to prove
orbital stability of NLS one-soliton and multi-solitons in L2.



Steps in the proof of the main result

I Step 1: From a perturbed one-soliton to a small solution at
the initial time t = 0.

I Step 2: Time evolution of the small solution for t ∈ R.

I Step 3: From the small solution to the perturbed
one-soliton for every t ∈ R.

I Step 4: Approximation arguments in H2(R) to control the
compatibility condition of the linear system for every t ∈ R.



Asymptotic stability of MTM solitons ?
To prove asymptotic stability of MTM solitons, one needs first to
establish the space where small initial data (u0, v0) produce no
eigenvalues in the spectral problem

~φx = L(u0, v0, λ)~φ,

where

L =
i

2
(|v|2−|u|2)σ3−

iλ√
2

(

0 v

v 0

)

− i√
2λ

(

0 u

u 0

)

+
i

4

(

1

λ2
− λ2

)

σ3

For NLS-type problems, it is well known that ‖u0‖L1 has to be
small, e.g. if ‖

√
1 + x2u0‖L2 is small. Asymptotic stability of

NLS solitons follows from an application of the auto–Backlund
transformation (Deift–Park, 2011; Cuccagna–Pelinovsky, 2013).

For MTM systems, the precise conditions when the spectral
problem has no eigenvalues are unknown...
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