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Introduction

Inviscid Shocks
@ Dynamics of a Conservation Law
Orv + Oxf(v) =0

generate shock singularities in finite time from a large class of smooth
data and for smooth f(v).
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Introduction

Viscous Shocks

o Diffusive regularization is modeled by a viscous Burgers equation

Orv + O f(v) = 202v.
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Introduction

Dispersive Shocks

@ Dispersive regularization is modeled by the KdV equation

Orv + Oxf(v) 4+ 393y = 0.
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Introduction

Granular chains
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@ Granular chains contain densely packed, elastically interacting
particles with Hertzian contact forces.

V. Nesterenko, C. Daraio, P.G. Kevrekidis, G. Theocharis, and many more.
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Introduction

Logarithmic models

Granular chains are modeled with Newton's equations of motion:
xp(t) = V'(xo41 — xn) — V'(Xn — Xn—1), n€Z,

where x, is the displacement of the nth particle and V is the interaction
potential for spherical beads (H. Hertz, 1882):

3
27
where H is the step (Heaviside) function. For hollow materials, o — 1.

V(x) = [x|'*T*H(-x), a=

@ The conservative model yields the logarithmic KdV equation
Orv + Ox(viog |v|) + A3v =0
@ The dissipative model yields the logarthmic Burgers equation

Orv + Ox(vlog |v|) = d2v
G. James & D. P., 2014; G. James, 2021
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Introduction

Modular nonlinearity
In a similar context of dynamics of particles with piecewise interaction
potentials, models with modular nonlinearities have been derived:
@ The modular KdV equation
Orv = Dy|v| + D3v
@ The modular Burgers equation
Orv = Oy|v| + D2v

C. M. Hedberg, O. V. Rudenko, 2016-2018

The models are linear for sign-definite solutions. Nonlinear waves
correspond to the sign-changing solutions, for which the modeling problem
becomes a moving interface problem between solutions of linear equations.
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Traveling waves

Traveling waves in the modular Burgers equation

Starting with
Orv = Oy|v| + D2v

we can think of the traveling wave solutions v(t, x) = W(x — ct), where

W”(x) + sign(W)W'(x) + cW'(x) =0, x€R.
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Traveling waves

Traveling waves in the modular Burgers equation

Starting with
Orv = O|v| + D2v,

we can think of the traveling wave solutions v(t, x) = W(x — ct), where
W’ (x) + sign(W)W'(x) + cW/(x) =0, xeR.

Q What is the function space for solutions?

A Space of piecewise C? functions satisfying the interface conditiion
W% (%) = —2|W'(x0)|
at each interface located at xg, where [f]T(xo) = f(x;") — f(xy ) is

the jump of a piecewise continuous function f across xg.
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Traveling waves

Traveling waves in the modular Burgers equation

Integrating once yields
W (x) + [W(x)|+ cW(x)=d, x€eR,

where the constant of integration is identical for all pieces of piecewise C?
function W(x) : R — R.
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Traveling waves

Traveling waves in the modular Burgers equation

Integrating once yields
W (x) + [W(x)|+ cW(x)=d, x€eR,
where the constant of integration is identical for all pieces of piecewise C?
function W(x) : R — R.
If Wi = lim W(x), then bounded solutions only exist if and only if
X—F00
W_ < 0 < W4 with uniquely selected speed
o Wy + W_
W - Wo
and uniquely defined profile W up to spatial translations:

W, (1—e 0t x>0,
W) = { W_(1 — el=c)x), x < 0.

If Wy =—W_, then ¢ =0 and W(—x) = —W(x) is odd.
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Traveling waves

Motivations

@ Is the viscous shock W stable in the time evolution of the modular
Burgers equation?

@ How does the interface moves in the time evolution depending on the
initial conditions?

© s there the finite-time extinction of the area between two consequent
interfaces?

@ How can we model the moving interface problems numerically?
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L AEeETy |
Interface equation

It is natural to look for solutions of the modular Burgers equation

Orv = Ox|v| +d2v, t>0, x€ER,
v(0,)) =w

in class of piecewise C? functions of x € R for every t > 0.

If v(t,&(t)) = 0 defines the interface at x = £(t), then

[ve]T(€(t)) =0 and  [w]T(&(t)) =0,

whereas
[V T(E(1)) = —2|wx(t, £(2))]

determines the interface equation for £(t), t > 0.
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Asymptotic stability

Simple case: odd data

It follows from
Drv = Oy|v| + D2v

that if v(0, —x) = —v(0, x) is odd at t = 0, then v(t, —x) = —v(t, x)
remains odd for all t > 0. One interface is located at {(t) =0, t > 0.

Adding an odd perturbation w(t, x) to the odd viscous shock
W(x) = (1 — e ¥)sgn(x) with ¢ = 0 as v(t,x) = W(x) + w(t, x), we
get the linear initial-boundary-value problem

Wi = Wy + Wy, x>0, t>0,
W(tO)—O t>0,
w(t,x) — as X — +00, t>0,
w(0, )—Wo() x>0,
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Asymptotic stability

Asymptotic stability: odd data

Theorem (Le, P., Poullet, 2021)
For every € > 0 there is § > 0 such that for every odd vy satisfying

o = Wlip <6,
there exists a unique odd solution v(t, x) with v(0,x) = vp(x) satisfying

lv(t,) = W|p<e, t>0

and

lv(t,") — W= —0 as t— +oo.

@ Since W(0

) =0, W/(0) = 1, and H? is embedded into C!, we have
v(t,x) = W(x)

+ w(t,x) > 0 for every x > 0 and t > 0.
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Asymptotic stability

General case: single interface

Consider the viscous shock W(x) = (1 — e *)sgn(x) with ¢ = 0 but make
no assumption on the symmetry of perturbations. With the decomposition

v(t,x) = W(x = &(t)) + w(t, x = £(1)),

t) £ 1wy + wyy + ()W (y),

The two equations on half-lines are coupled by the interface conditions

(€(t) £ D)wy (t,0%) + wyy (£,05) +£'(t) =0

y =x—§(t),

we have now the linear initial-boundary-value problem

as y — Foo,
= wo(y), y €R,

t>0,
t>0,
t>0,

which are consistent due to the conditions [wx T (£(t)) = —2|wx(t, £(t))).
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Asymptotic stability: general data

Theorem (Le, P., Poullet, 2021)
Fix o € (0,1). For every e > 0 there is § > 0 s.t. for every v s.t.
Ivo = Wiike + [ (vo = W) [waee <6
there exists a unique solution v(t, x) with v(0, x) = vy(x) satisfying
v (t,- +&(8) = Wlike + [ (v(t, - + (1) = W)lwee <&, £>0

and
|v(t, - +&(t)) — W= =0 as t— +oo,

with ¢ € LY(R;) N L®(R,).
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Asymptotic stability: general data

e First step: for a given class of ¢’ € L}(R,) U L>®(R,), solve the two
boundary-value problems for w=(t,-) with £y > 0. The two
solutions are uncoupled.

@ Second step: impose the condition w;f(t,0) = w, (t,0) as an integral
equation on & € LY(R ) U L>®(R,). This equation can be uniquely

solved by using Abel’s integral equations.

o Since ¢’ € LY(R,), there exists &y i= tim &(t), which is defined by
the initial data ug.
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Numerical approximations

Reformulation for numerical approximations

The original problem for general perturbation w(t,y) with y = x — £(t):

we = (£'(t) £ Dwy +wy, +&(t)eY, Ly >0, t >0,
W(t,O):O, t>07
w(t,x) — 0 as y — oo, t>0,
W(an) = WO(y)7 y € R,

By using variables v*(t,y) := w(t,y) F w(t, —y) with y > 0 we obtain
the coupled system

i = v v+ (0)y y >0,
ve =V, tv. +§ (t)v"’ +2§’(t)e‘y, y >0,

i v, (t,0
subject to v¥(t,0) =0, v, (¢,0) =0, and £'(t) = 2+y§yg't(t,2))'
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Numerical approximations

Remarks on the numerical method

o Central-difference approximation of spatial derivatives.

e Neumann condition for v, (t,0) = 0 is modelled with an extra grid

point v_(t) = vy (t).

@ The smoothness condition for v;f (t,0) + v,/ (t,0) = 0 is modelled

with an extra grid point
2+ h
v (t) = —mer(t)-

_ vy (t0)
2+v; (t,0)

__@=hmv (1)
hv(t) + h2(2 — h)’

@ The interface condition &'(t) = is resolved as

¢'(t) =

@ Time steps are performed with the implicit Crank-Nicholson_method
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Initial data with Gaussian decay

v(0,y) = 0.1(y — O.5y2)e_y2, v (0,y) = 0.5y%e "
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Numerical approximations

Initial data with exponential decay

vF(0,y) = 0.1(y +0.5y%)e™”, v (0,y) =05y%e™”,
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Numerical approximations

Convergence in time for [2-norm of perturbation
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Shocks in the modular Burgers equation
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Multiple shocks

Initial data with multiple interfaces

Main question: Is there the finite-time extinction of the area between two
consequent interfaces for uy = (|u|)x + Uxx?

-10 -5 o 5 X 10

Interface at x = 0 persists for odd data. Interfaces at x = ££(t) move.
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Multiple shocks

A simple argument suggesting the finite-time coalescence
[P., de Rijk, 2023]

Let z(t,x) :=1 — u(t,x). If z(0,-) : (0,00) — R is positive and
integrable, then z(t,-) : (0,00) — R is positive and integrable for t > 0 by
comparison principle.

We have for some time ¢t € [0, 79)

£(t) 00
0<g(t) < /0 z(t,x)dx < /0 z(t,x)dx =: M(t),

because z(t,x) > 1 for x € [0,£(t)] and z(t,x) > 0 for x € [{(t), 00).
On the other hand,

am

=-1- Xt70 S_
T z(t,0)

Hence, M(t) < M(0) — t and we have finite-time coalescence: £(7p) = 0.
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Reformulation for numerical approximations

The original problem is

Up = —Uy + Uy, u(t,x) <0, 0 < x < (1),

Ur = Uy + Uy, u(t,x) >0, &(t) < x < o0,

u(t,0) =0, u(t,&(t)) =0, lim wu(t,x) =1,
X—r+00

By using y := x/&(t), the boundary-value problem is mapped to the
time-independent regions:

utzf_l(f’y—l)uy+§_2uyy, u(t,y) <0, O<y<l,

ut:§71(§'y+1)uy+£*2uyy, u(t,y) >0, 1<y < oo,
u(t,0) =0, u(t,1) =0, (t,y)=1,

lim o
y—r+oo

closed with the interface condition:

(t)uy (t,1) §(t)uy (t,1)°
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Multiple shocks

Remarks on the numerical method

o Central-difference approximation of spatial derivatives.

@ The grid on [0, 1] is complemented with the extra grid point
yn+1 =1+ h and the approximation vy ;. The grid on [1, L] with
L =10 is complemented with the extra grid point yy_1 =1 — h and
the approximation uy,_;. Note that up,; # un+1.

@ The additional variables u;‘VJrl and ujp,_; are found from the interface
conditions: [u,]T(1) = 0 and [uy,]T(1) = —2£(t)|uy(t,1)|. This
yields the relation between linear advection-diffusion equation and

(2= h8)(ung1 + un-1)
hé(unt1 — un—1)

€)=~

@ Time steps are performed with the implicit Crank-Nicholson method
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Multiple shocks

Initial data and evolution: a = 1.5

1— e—al*-1) 1< x < oo,

9

x(1 — x)(ax® + bx + c), 0<x<1,
uOM:{( ) )

with &'(0) = 2(av — 1), where a, b, ¢ are uniquely defined by «.

u(t,x/&(t))
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Multiple shocks

Initial data and evolution: a = 0.5

(x) = x(1=x)(ax®?+bx+c), 0<x<lI,
tolx) = 1-— e_o‘(x2_1), 1< x < oo,

with &'(0) = 2(av — 1), where a, b, ¢ are uniquely defined by «.
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Conjecture based on numerical data [P., de Rijk, 2023]

There exists ty € (0,00) such that

E(t) ~ Vo —t, ux(t,&(t)) ~ (to —t), wux(t,&(t)7) ~tg—t.

This scaling law is in agreement with

Usx(t, f(t)_)

fl(t):—i-l— Ux(t,l)
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The method of data extraction, e.g. for £(t) ~ \/ty — t

For a fixed value of ty (past the termination time of our computations) ,

we compute c¢; (left) and ¢ in the linear regression

log(&

as well as the approximation error (right). The minimal error of 109 is
attained at tg = 0.17 with ¢; = 0.492.

(t)) versus

0.6

0.15 0.16
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Regularization of the modular nonlinearity
Instead of

Oru = sgn(u)dxu + 02u,
we can consider a regularized Burgers equation

ue 2
Drut: = ——E— b, + O2u,
&

Ve +u

for very small values of €.

We considered the initial data among the odd functions:

(x) = tanh(x) (1 _ M)

cosh?(ax)
and
¢(x) = tanh(x) (1 — e“(l_x2)> ,

where o > 0 is the slope parameter.
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Dynamics for a = 1

We have confirmed independently of e:

£(t) ~ Vo — t,

where ty ~ 0.2538 and power ~ 0.5068.
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Regularized Burgers equation

Dynamics for a = 4

e

We have confirmed independently of e:
g(t) ~V to — ta

where ty ~ 1.3853 and power ~ 0.5127.
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Regularized Burgers equation

A simple argument suggesting the scaling law
Assume that there exists (tp, &) € RT x R such that
ux(to,fo) =0, UXX(t'o,fo) =0, and UXXX(to,fo) #0.

For smooth nonlinearity, the smooth solution v € C®°(R, x R) satisfies

0= u(t.£()
= u(to, &) +(t — to) ur(to, &o) +(&(t) — o) ux(to, &)
=0 =0 =0
30— 10 uielto, €0) + (£~ )(E(E) — o) ilto, ) +5 (E(8) — &0)2 {0 )
—_———— ———

#0 =0
2 (8~ t0) (0, ) + 5 (¢ — 0)2(E(1) — o)t 10,60)

+ %(t - to)(f(t) - 60)2utxx(t0750) + %(5(1’) - 50)3 uxxx(t07£0) +O(4)
—_———
#0
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Regularized Burgers equation

A simple argument suggesting the scaling law

It follows from the Newton's polygon that there exists a pitchfork
bifurcation with two sets of roots of u(t,-) near x = & for t # to.

(€)™

One pair of roots disappears at t = ty:

E12(t) — & = £/6(to — t) + O(to — t).
The third root continus past t = ty:

~ ug(to, &o)
§(t) =& = 2 (t0, 0)

For odd data, {o = 0 and £(t) =0 for all t > 0.
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Summary and open questions

Summary

@ Evolution of the modular Burgers equation is considered.

@ Asymptotic stability of a traveling viscous shock is proven and
illustrated numerically.

@ It is shown that shock waves with multiple interfaces extinct in a
finite time due to finite-time coalesence of interfaces

@ A precise scaling law of the finite-time coalescence is suggested based
on the numerical data and proved for smooth nonlinearity.
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Summary and open questions
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