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Motivations
Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in the spectral gaps of
associated linear operators.

Examples:Complex-valued Maxwell equation

∇2E − Ett +
(

V (x) + σ|E|2
)

Ett = 0

and the Gross–Pitaevskii equation

iEt = −∇2E + V (x)E + σ|E|2E,

whereE(x, t) : R
N × R 7→ C, V (x) = V (x+ 2πej) : R

N 7→ R,
andσ = ±1.
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Existence of stationary solutions

Stationary solutionsE(x, t) = U(x)e−iωt with ω ∈ R satisfy a
nonlinear elliptic problem with a periodic potential

∇2U + ωU = V (x)U + σ|U |2U

Theorem: [Pankov, 2005] LetV (x) be a real-valued bounded
periodic potential. Letω be in a finite gap of the spectrum of
L = −∇2 + V (x). There exists a non-trivial weak solution
U(x) ∈ H1(RN ), which is (i) real-valued, (ii) continuous on
x ∈ R

N and (iii) decays exponentially as|x| → ∞.

Remark: Additionally, there exists a localized solution
U(x) ∈ H1(RN ) in the semi-infinite gap forσ = −1 (NLS soliton).
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Coupled-mode theory for gap solitons

Stationary gap solitons can be approximated asymptotically by the
coupled-mode theory in one dimension (N = 1) in the limit of
small-amplitude potentials:V (x) = ǫ(1 − cos x) for smallǫ.

The finite-band spectrum ofL = −∂2
x + V (x) is shown here:

Coupled-mode equations are derived with asymptotic multi-scale
expansions:

E(x, t) =
√
ǫ
[

a(ǫx, ǫt)e
ix

2 + b(ǫx, ǫt)e−
ix

2 + O(ǫ)
]

e−
it

4 .
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Gap solitons in coupled-mode equations

The vector(a, b) : R × R 7→ C
2 satisfies asymptotically the

coupled-mode system:
{

i(aT + aX) + V2b = σ(|a|2 + 2|b|2)a,
i(bT − bX) + V−2a = σ(2|a|2 + |b|2)b,

whereX = ǫx, T = ǫt, andV2 = V̄−2 are Fourier coefficients of
V (x). Stationary gap solitons are obtained in the analytic form

a(X,T ) = a(X)e−iΩT , b(X,T ) = b(X)e−iΩT ,

a(X) = b̄(X) =

√
2√
3

√

|V2|2 − Ω2

√

|V2| − Ω cosh(κX) + i
√

|V2| + Ω sinh(κX)
,

whereκ =
√

|V2|2 − Ω2 and|Ω| < |V2|.
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Moving gap solitons

Moving gap solitons are obtained in the analytic form

a =

(

1 + c

1 − c

)1/4

A(ξ)e−iµτ , b =

(

1 − c

1 + c

)1/4

B(ξ)e−iµτ , |c| < 1,

where

ξ =
X − cT√

1 − c2
, τ =

T − cX√
1 − c2

and, since|A|2 − |B|2 is constant inξ ∈ R, then

A = φ(ξ)eiϕ(ξ), B = φ̄(ξ)eiϕ(ξ),

with φ andϕ being solutions of the system

ϕ′ =
−2cσ|φ|2
(1 − c2)

, iφ′ = V2φ̄− µφ+ σ
(3 − c2)

(1 − c2)
|φ|2φ.
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Questions and Answers

Main Questions: (a) Can we justify the use of the coupled-mode
theory to approximate stationary gap solitons?

YES: D.P., G.Schneider, Asymptotic Analysis (2007)
(b) Can we justify the use of the coupled-mode theory to
approximate moving gap solitons?

NO: this work

Theorem: [Goodman,Weinstein,Holmes, 2001; Schneider,Uecker,
2001:] Let(a, b) ∈ C([0, T0], H

3(R,C2)) be solutions of the
time-dependent coupled-mode system for a fixedT0 > 0. There
existsǫ0, C > 0 such that for allǫ ∈ (0, ǫ0) the Gross–Pitaevskii
equation has a local solutionE(x, t) and

‖E(x, t) −
√
ǫ
[

a(ǫx, ǫt)ei(kx−ωt) + b(ǫx, ǫt)ei(−kx−ωt)
]

‖H1(R) ≤ Cǫ

for some(k, ω) and anyt ∈ [0, T0/ǫ].
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Assumptions of the main theorem

Assumption: Let V (x) be a smooth2π-periodic real-valued function
with zero mean and symmetryV (x) = V (−x) onx ∈ R, such that

V (x) =
∑

m∈Z

V2me
imx :

∑

m∈Z

(1 +m2)s|V2m|2 <∞,

for somes ≥ 0, whereV0 = 0 andV2m = V−2m = V̄−2m.

Definition: The moving gap soliton of the coupled-mode system is
said to be a reversible homoclinic orbit if(A,B) decays to zero at
infinity andA(ξ) = Ā(−ξ),B(ξ) = B̄(−ξ) in the parametrization
above.

Remark: If V (x) = V (−x) andU(x) is a solution of
∇2U + ωU = V (x)U + σ|U |2U , thenŪ(−x) is also a solution.
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Main Theorem

Theorem: Let V (x) satisfy the assumption andV2n 6= 0 for an ∈ N.

Let ω = n2

4
+ ǫΩ with |Ω| < Ω0 = |V2n|

√
n2−c2
n

.

Let 0 < c < n, such thatn
2+c2

2c
/∈ Z. FixN ∈ N.

Then, there existsǫ0, L, C > 0 such that for allǫ ∈ (0, ǫ0) the
Gross–Pitaevskii equation has a solution in the form
E(x, t) = e−iωtψ(x, y), wherey = x− ct and the functionψ(x, y)
is a periodic (anti-periodic) function ofx for even (odd)n,
satisfying the reversibility constraintψ(x, y) = ψ̄(x,−y), and

∣

∣

∣
ψ(x, y) − ǫ1/2

(

aǫ(ǫy)e
inx

2 + bǫ(ǫy)e
− inx

2

)∣

∣

∣
≤ C0ǫ

N+1/2,

for all x ∈ R andy ∈ [−L/ǫN+1, L/ǫN+1]. Here
aǫ(Y ) = a(Y ) + O(ǫ) onY = ǫy ∈ R is an exponentially decaying
reversible solution, whilea(Y ) is a solution of the coupled-mode
system withY = X − cT .
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Remarks on the Main Theorem

1. The solutionψ(x, y) is a bounded non-decaying function on a
large finite interval

y ∈ [−L/ǫN+1, L/ǫN+1] ⊂ R

and we do not claim that the solutionψ(x, y) can be extended
to a global bounded function ony ∈ R.

2. Since the homoclinic orbit(a, b) of the coupled-mode system is
single-humped, the traveling solutionψ(x, y) is represented by
a single bump surrounded by bounded oscillatory tails.

3. The solution(aǫ, bǫ) is defined up to the terms ofO(ǫN) and it
satisfies an extended coupled-mode system, which is a
perturbation of the coupled-mode system withY = X − cT .

Moving gap solitons in periodic potentials – p. 10/23



Spatial dynamics formulation

SetE(x, t) = e−iωtψ(x, y) with y = x− ct and a parameterω. For
traveling solutions,c 6= 0 and we setc > 0. Then,

(

ω − ic∂y + ∂2
x + 2∂x∂y + ∂2

y

)

ψ = V (x)ψ + σ|ψ|2ψ.

We consider functionsψ(x, y) being2π-periodic or2π-antiperiodic
in x and bounded iny. Therefore,

ψ(x, y) =
∑

m∈Z′

ψm(y)e
i

2
mx,

such thatψm(y) satisfy the nonlinear system of coupled ODEs:

ψ′′
m + i(m− c)ψ′

m +

(

ω − m2

4

)

ψm =
∑

m1∈Z′

Vm−m1
ψm1

+ N.T.
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Eigenvalues of the spatial dynamics

Linearization of the system withψm(y) = eκyδm,m0
gives roots

κ = κm in the quadratic equation withω = n2

4
:

κ2 + i(m− c)κ+ ω − m2

4
= 0, ∀m ∈ Z

′.

• Form > m0 =
[

n2+c2

2c

]

, all roots are complex-valued.

• Form ≤ m0, all roots are purely imaginary. The zero root is
semi-simple of multiplicity two. All other roots are
semi-simple of maximal multiplicity three.

• If c is irrational, all non-zero roots are simple but may approach
to each other arbitrarily closer.

Moving gap solitons in periodic potentials – p. 12/23



Hamiltonian formulation

Let φm(y) = ψ′
m(y) − i

2
(c−m)ψm(y) and rewrite the system of

ODEs:
{

dψm

dy
= φm + i

2
(c−m)ψm

dφm

dy
= −1

4
(n2 + c2 − 2cm)ψm + i

2
(c−m)φm − ǫΩψm + N.T.

The system is Hamiltonian in canonical variables(ψ,φ, ψ̄, φ̄). The
vector field maps a domain inD to a range inX, where

D =
{

(ψ,φ, ψ̄, φ̄) ∈ l2s+1(Z,C
4)

}

, X =
{

(ψ,φ, ψ̄, φ̄) ∈ l2s(Z,C
4)

}

,

andl2s(Z) is a Banach algebra for anys > 1
2
. The phase space isX.
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Symmetries

Solutions are invariant under the reversibility transformation

ψ(y) 7→ ψ̄(−y), φ(y) 7→ −φ̄(−y), ∀y ∈ R.

and the gauge transformation

ψ(y) 7→ eiαψ(y), φ(y) 7→ eiαφ(y), ∀α ∈ R.

Reversible solutions satisfy the constraints:

ψ(−y) = ψ̄(y), φ(−y) = −φ̄(y), ∀y ∈ R,

which means that the trajectory intersects the reversibility surface

Σr =
{

(ψ,φ, ψ̄, φ̄) ∈ D : Imψ = 0, Reφ = 0
}

.
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Canonical transformations

Let Z− = {m ∈ Z
′ : m ≤ m0}, Z+ = {m ∈ Z

′ : m > m0} and

Z− : ψm =
c+m + c−m

4
√
n2 + c2 − 2cm

, φm =
i

2
4
√
n2 + c2 − 2cm(c+m − c−m),

Z+ : ψm =
c+m + c−m

4
√

2cm− n2 − c2
, φm =

1

2
4
√

2cm− n2 − c2(c+m − c−m).

The new Hamiltonian system is rewritten in new canonical variables

∀m ∈ Z− :
dc+m
dy

= i
∂H

∂c̄+m
,
dc−m
dy

= −i ∂H
∂c̄−m

,

∀m ∈ Z+ :
dc+m
dy

= − ∂H

∂c̄−m
,
dc−m
dy

=
∂H

∂c̄+m
,

whereH is a new Hamiltonian functions in variablesc+ andc
−.
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Truncated coupled-mode system

The new Hamiltonian function is

H =
∑

m∈Z−

(

k+
m|c+m|2 − k−m|c−m|2

)

+
∑

m∈Z+

(

κ−mc
−
mc̄

+
m − κ+

mc
+
mc̄

−
m

)

+N.T.

Consider the subspace

S =
{

c+m = 0, ∀m ∈ Z\{n}, c−m = 0, ∀m ∈ Z\{−n}
}

and truncateH on the subspaceS:

H|S = ǫ

[

Ω|c+n |2
n− c

+
Ω|c−−n|2
n+ c

− V2n(c̄
+
n c

−
−n + c+n c̄

−
−n)√

n2 − c2
+ N.T.

]

.

The Hamiltonian system for(c+n , c
−
n ) is nothing but the

coupled-mode system fora = c+n√
n−c andb =

c−
−n√
n+c

in Y = ǫy.
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Extended coupled-mode system

How to avoid formal truncation and to separate the coupled-mode
system from the remainder? Use near-identity canonical
transformations to obtain the new Hamiltonian function in the form

H =
∑

m∈Z−

(

k+
m|c+m|2 − k−m|c−m|2

)

+
∑

m∈Z+

(

κ−mc
−
mc̄

+
m − κ+

mc
+
mc̄

−
m

)

+ǫHS(c
+
n , c

−
−n) + ǫHT (c+n , c

−
−n, c

+, c−) + ǫN+1HR(c+n , c
−
−n, c

+, c−).

If HR ≡ 0, the subspaceS is invariant subspace of the Hamiltonian
system and dynamics onS is given by a four-dimensional ODE
system

dc+n
dY

= i
∂HS

∂c̄+n
,

dc−−n
dY

= −i ∂HS

∂c̄+−n
,

whereY = ǫy.
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Persistence results
Lemma: There exists a reversible homoclinic orbit of the extended
coupled-mode system which satisfies

|c+n (y)| ≤ C+e
−ǫγ|y|, |c−−n(y)| ≤ C−e

−ǫγ|y|, ∀y ∈ R,

for someγ,C+, C− > 0 and sufficiently smallǫ.

Lemma: The linearized system at the zero solution is topologically
equivalent for sufficiently smallǫ, except that the double zero
eigenvalue atǫ = 0 split into a pair of complex eigenvalues to the
left and right half-planes forǫ > 0.

Divide the phase space near the zero solution into

X = Xh ⊕Xc ⊕Xu ⊕Xs

and rewrite the system forc0 + ch ∈ Xh andc ∈ Xc ⊕Xu ⊕Xs.
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Final system of equations

The system of equations

dch
dy

= ǫΛh(c0)ch + ǫGT (c0)(ch, c) + ǫN+1
GR(c0 + ch, c),

dc

dy
= Λǫc + ǫFT (c0 + ch, c) + ǫN+1

FR(c0 + ch, c),

where the linearization operatorΛh(c0) has a two-dimensional
kernel spanned byc′0(y) andσ1c0(y) and the remainder terms
satisfy the bounds

‖GR‖Xh
≤ NR

(

‖c0 + ch‖Xh
+ ‖c‖X⊥

h

)

,

‖GT‖Xh
≤ NT

(

‖ch‖2
Xh

+ ‖c‖2
X⊥

h

)

,

‖FT‖X′ ≤ MT

(

‖c0 + ch‖Xh
+ ‖c‖X⊥

h

)

‖c‖X⊥

h

.
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Local center-stable manifold

Theorem: Let a ∈ Xc, b ∈ Xs and(α1, α2) ∈ C
2 be small:

‖a‖Xc
≤ Caǫ

N , ‖b‖Xs
≤ Cbǫ

N , |α1| + |α2| ≤ Cαǫ
N .

There exists a family of local solutionsch = ch(y;a,b, α1, α2) and
c = c(y;a,b, α1, α2) such that

cc(0) = a, cs = eyΛsb+ c̃s(y), ch = α1s1(y)+α2s2(y)+ c̃h(y),

wherec̃s(y) andc̃h(y) are uniquely defined and the family of local
solutions satisfies the bound

sup
∀y∈[0,L/ǫN+1]

‖ch(y)‖Xh
≤ Chǫ

N , sup
∀y∈[0,L/ǫN+1]

‖c(y)‖X⊥

h

≤ CǫN ,

for some constantsCh, C > 0.
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Ideas of the proof

1. Use the cut-off function ony ∈ [0, y0] and use the Implicit
Function Theorem for componentscs, cu resulting in

‖cs,u‖C0
b

≤ C‖Fs,u‖C0
b

.

2. Use the cut-off functions ony ∈ [0, y0] and the reversible
continuation of solutions ony ∈ [−y0, 0]. Then, use the Implicit
Function Theorem for componentch resulting in

‖ch‖C0
b

≤ C

ǫ
‖Fh‖C0

b

.

3. Use variation of constant formula and the Gronwall inequality for
componentcc. The bounds are consistent fory0 = L/ǫN+1.
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Proof of the main theorem
The local center-stable manifold is extended to a local solution on
y ∈ [−y0, y0] if it intersects the reversibility surfaceΣr.

Sincecc(0) = a is arbitrary, we can set immediately

Im(a)+
m = 0, ∀m ∈ Z−\{n}, Im(a)−m = 0, ∀m ∈ Z−\{−n}.

The other parametersb and(α1, α2) are not however the initial
conditions. They satisfy the set of reversibility constraints

Rebm+Re(c̃s)m(0) = Re(cu)m(0), Imbm+Im(c̃s)m(0) = −Im(cu)m(0)

and
Imc+n (0) = 0, Imc−−n(0) = 0.

The first set is solved by the Implicit Function Theorem. The
second set is satisfied ifα1 = α2 = 0, since the kernel does not
satisfy the reversibility but the inhomogeneous solution for ch does.
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Extensions
We have checked that modified Gross–Pitaevskii equations still
possess infinitely many eigenvalues on the imaginary axis:

Ett = Exx + V (x)E + σ|E|2E,
iEt = −Exx + iExxt + V (x)E + σ|E|2E,
iĖn = −En+1 − En−1 + VnEn + σ|En|2En.

In all these equations, there is no hope to construct true homoclinic
solution (moving gap soliton) but one can construct a local
reversible center-stable manifold, which resembles a single bump
surrounded by oscillatory tails.

It is an open problem how to extend this local solution to a global
solution defined on the entire line.
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