Moving gap solitons in periodic potentials

Dmitry Pelinovsky

Institute of Analysis and Dynamics, University of Stuttgart, Germany Department of Mathematics, McMaster University, Canada Joint work with Guido Schneider (University of Stuttgart)

Reference: Mathematical Methods for Physical Sciences, Submitted

Dynamics Days, Loughborough, July 9-13, 2007

Motivations

Gap solitons are localized stationary solutions of nonlinear PDEs with space-periodic coefficients which reside in the spectral gaps of associated linear operators.

Examples: Complex-valued Maxwell equation

$$
\nabla^{2} E-E_{t t}+\left(V(x)+\sigma|E|^{2}\right) E_{t t}=0
$$

and the Gross-Pitaevskii equation

$$
i E_{t}=-\nabla^{2} E+V(x) E+\sigma|E|^{2} E,
$$

where $E(x, t): \mathbb{R}^{N} \times \mathbb{R} \mapsto \mathbb{C}, V(x)=V\left(x+2 \pi e_{j}\right): \mathbb{R}^{N} \mapsto \mathbb{R}$, and $\sigma= \pm 1$.

Existence of stationary solutions

Stationary solutions $E(x, t)=U(x) e^{-i \omega t}$ with $\omega \in \mathbb{R}$ satisfy a nonlinear elliptic problem with a periodic potential

$$
\nabla^{2} U+\omega U=V(x) U+\sigma|U|^{2} U
$$

Theorem:[Pankov, 2005] Let $V(x)$ be a real-valued bounded periodic potential. Let ω be in a finite gap of the spectrum of $L=-\nabla^{2}+V(x)$. There exists a non-trivial weak solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$, which is (i) real-valued, (ii) continuous on $x \in \mathbb{R}^{N}$ and (iii) decays exponentially as $|x| \rightarrow \infty$.

Remark: Additionally, there exists a localized solution $U(x) \in H^{1}\left(\mathbb{R}^{N}\right)$ in the semi-infinite gap for $\sigma=-1$ (NLS soliton).

Coupled-mode theory for gap solitons

Stationary gap solitons can be approximated asymptotically by the coupled-mode theory in one dimension ($N=1$) in the limit of small-amplitude potentials: $V(x)=\epsilon(1-\cos x)$ for small ϵ. The finite-band spectrum of $L=-\partial_{x}^{2}+V(x)$ is shown here:

Coupled-mode equations are derived with asymptotic multi-scale expansions:

$$
E(x, t)=\sqrt{\epsilon}\left[a(\epsilon x, \epsilon t) e^{\frac{i x}{2}}+b(\epsilon x, \epsilon t) e^{-\frac{i x}{2}}+\mathrm{O}(\epsilon)\right] e^{-\frac{i t}{4}} .
$$

Gap solitons in coupled-mode equations

The vector $(a, b): \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}^{2}$ satisfies asymptotically the coupled-mode system:

$$
\left\{\begin{array}{l}
i\left(a_{T}+a_{X}\right)+V_{2} b=\sigma\left(|a|^{2}+2|b|^{2}\right) a, \\
i\left(b_{T}-b_{X}\right)+V_{-2} a=\sigma\left(2|a|^{2}+|b|^{2}\right) b,
\end{array}\right.
$$

where $X=\epsilon x, T=\epsilon t$, and $V_{2}=\bar{V}_{-2}$ are Fourier coefficients of $V(x)$. Stationary gap solitons are obtained in the analytic form

$$
a(X, T)=a(X) e^{-i \Omega T}, \quad b(X, T)=b(X) e^{-i \Omega T},
$$

$a(X)=\bar{b}(X)=\frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{\left|V_{2}\right|^{2}-\Omega^{2}}}{\sqrt{\left|V_{2}\right|-\Omega} \cosh (\kappa X)+i \sqrt{\left|V_{2}\right|+\Omega} \sinh (\kappa X)}$,
where $\kappa=\sqrt{\left|V_{2}\right|^{2}-\Omega^{2}}$ and $|\Omega|<\left|V_{2}\right|$.

Moving gap solitons

Moving gap solitons are obtained in the analytic form
$a=\left(\frac{1+c}{1-c}\right)^{1 / 4} A(\xi) e^{-i \mu \tau}, b=\left(\frac{1-c}{1+c}\right)^{1 / 4} B(\xi) e^{-i \mu \tau},|c|<1$,
where

$$
\xi=\frac{X-c T}{\sqrt{1-c^{2}}}, \quad \tau=\frac{T-c X}{\sqrt{1-c^{2}}}
$$

and, since $|A|^{2}-|B|^{2}$ is constant in $\xi \in \mathbb{R}$, then

$$
A=\phi(\xi) e^{i \varphi(\xi)}, \quad B=\bar{\phi}(\xi) e^{i \varphi(\xi)}
$$

with ϕ and φ being solutions of the system

$$
\varphi^{\prime}=\frac{-2 c \sigma|\phi|^{2}}{\left(1-c^{2}\right)}, \quad i \phi^{\prime}=V_{2} \bar{\phi}-\mu \phi+\sigma \frac{\left(3-c^{2}\right)}{\left(1-c^{2}\right)}|\phi|^{2} \phi
$$

Questions and Answers

(a) Can we justify the use of the coupled-mode theory to approximate stationary gap solitons?

YES: D.P., G.Schneider, Asymptotic Analysis (2007)
(b) Can we justify the use of the coupled-mode theory to approximate moving gap solitons?

NO: this work
Theorem:[Goodman, Weinstein,Holmes, 2001; Schneider,Uecker, 2001:] Let $(a, b) \in C\left(\left[0, T_{0}\right], H^{3}\left(\mathbb{R}, \mathbb{C}^{2}\right)\right)$ be solutions of the time-dependent coupled-mode system for a fixed $T_{0}>0$. There exists $\epsilon_{0}, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the Gross-Pitaevskii equation has a local solution $E(x, t)$ and
$\left\|E(x, t)-\sqrt{\epsilon}\left[a(\epsilon x, \epsilon t) e^{i(k x-\omega t)}+b(\epsilon x, \epsilon t) e^{i(-k x-\omega t)}\right]\right\|_{H^{1}(\mathbb{R})} \leq C \epsilon$
for some (k, ω) and any $t \in\left[0, T_{0} / \epsilon\right]$.

Assumptions of the main theorem

Let $V(x)$ be a smooth 2π-periodic real-valued function with zero mean and symmetry $V(x)=V(-x)$ on $x \in \mathbb{R}$, such that

$$
V(x)=\sum_{m \in \mathbb{Z}} V_{2 m} e^{i m x}: \quad \sum_{m \in \mathbb{Z}}\left(1+m^{2}\right)^{s}\left|V_{2 m}\right|^{2}<\infty,
$$

for some $s \geq 0$, where $V_{0}=0$ and $V_{2 m}=V_{-2 m}=\bar{V}_{-2 m}$.
Definition: The moving gap soliton of the coupled-mode system is said to be a reversible homoclinic orbit if (A, B) decays to zero at infinity and $A(\xi)=\bar{A}(-\xi), B(\xi)=\bar{B}(-\xi)$ in the parametrization above.

Remark: If $V(x)=V(-x)$ and $U(x)$ is a solution of $\nabla^{2} U+\omega U=V(x) U+\sigma|U|^{2} U$, then $\bar{U}(-x)$ is also a solution.

Main Theorem

Let $V(x)$ satisfy the assumption and $V_{2 n} \neq 0$ for a $n \in \mathbb{N}$.
Let $\omega=\frac{n^{2}}{4}+\epsilon \Omega$ with $|\Omega|<\Omega_{0}=\left|V_{2 n}\right| \frac{\sqrt{n^{2}-c^{2}}}{n}$.
Let $0<c<n$, such that $\frac{n^{2}+c^{2}}{2 c} \notin \mathbb{Z}$. Fix $N \in \mathbb{N}$.
Then, there exists $\epsilon_{0}, L, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the
Gross-Pitaevskii equation has a solution in the form $E(x, t)=e^{-i \omega t} \psi(x, y)$, where $y=x-c t$ and the function $\psi(x, y)$ is a periodic (anti-periodic) function of x for even (odd) n, satisfying the reversibility constraint $\psi(x, y)=\bar{\psi}(x,-y)$, and

$$
\left|\psi(x, y)-\epsilon^{1 / 2}\left(a_{\epsilon}(\epsilon y) e^{\frac{i n x}{2}}+b_{\epsilon}(\epsilon y) e^{-\frac{i n x x}{2}}\right)\right| \leq C_{0} \epsilon^{N+1 / 2},
$$

for all $x \in \mathbb{R}$ and $y \in\left[-L / \epsilon^{N+1}, L / \epsilon^{N+1}\right]$. Here $a_{\epsilon}(Y)=a(Y)+\mathrm{O}(\epsilon)$ on $Y=\epsilon y \in \mathbb{R}$ is an exponentially decaying reversible solution, while $a(Y)$ is a solution of the coupled-mode system with $Y=X-c T$.

Remarks on the Main Theorem

1. The solution $\psi(x, y)$ is a bounded non-decaying function on a large finite interval

$$
y \in\left[-L / \epsilon^{N+1}, L / \epsilon^{N+1}\right] \subset \mathbb{R}
$$

and we do not claim that the solution $\psi(x, y)$ can be extended to a global bounded function on $y \in \mathbb{R}$.
2. Since the homoclinic orbit (a, b) of the coupled-mode system is single-humped, the traveling solution $\psi(x, y)$ is represented by a single bump surrounded by bounded oscillatory tails.
3. The solution $\left(a_{\epsilon}, b_{\epsilon}\right)$ is defined up to the terms of $\mathrm{O}\left(\epsilon^{N}\right)$ and it satisfies an extended coupled-mode system, which is a perturbation of the coupled-mode system with $Y=X-c T$.

Spatial dynamics formulation

Set $E(x, t)=e^{-i \omega t} \psi(x, y)$ with $y=x-c t$ and a parameter ω. For traveling solutions, $c \neq 0$ and we set $c>0$. Then,

$$
\left(\omega-i c \partial_{y}+\partial_{x}^{2}+2 \partial_{x} \partial_{y}+\partial_{y}^{2}\right) \psi=V(x) \psi+\sigma|\psi|^{2} \psi .
$$

We consider functions $\psi(x, y)$ being 2π-periodic or 2π-antiperiodic in x and bounded in y. Therefore,

$$
\psi(x, y)=\sum_{m \in \mathbb{Z}^{\prime}} \psi_{m}(y) e^{\frac{i}{2} m x},
$$

such that $\psi_{m}(y)$ satisfy the nonlinear system of coupled ODEs:

$$
\psi_{m}^{\prime \prime}+i(m-c) \psi_{m}^{\prime}+\left(\omega-\frac{m^{2}}{4}\right) \psi_{m}=\sum_{m_{1} \in \mathbb{Z}^{\prime}} V_{m-m_{1}} \psi_{m_{1}}+\text { N.T. }
$$

Eigenvalues of the spatial dynamics

Linearization of the system with $\psi_{m}(y)=e^{k y} \delta_{m, m_{0}}$ gives roots $\kappa=\kappa_{m}$ in the quadratic equation with $\omega=\frac{n^{2}}{4}$:

$$
\kappa^{2}+i(m-c) \kappa+\omega-\frac{m^{2}}{4}=0, \quad \forall m \in \mathbb{Z}^{\prime} .
$$

- For $m>m_{0}=\left[\frac{n^{2}+c^{2}}{2 c}\right]$, all roots are complex-valued.
- For $m \leq m_{0}$, all roots are purely imaginary. The zero root is semi-simple of multiplicity two. All other roots are semi-simple of maximal multiplicity three.
- If c is irrational, all non-zero roots are simple but may approach to each other arbitrarily closer.

Hamiltonian formulation

Let $\phi_{m}(y)=\psi_{m}^{\prime}(y)-\frac{i}{2}(c-m) \psi_{m}(y)$ and rewrite the system of ODEs:

$$
\left\{\begin{aligned}
\frac{d \psi_{m}}{d y} & =\phi_{m}+\frac{i}{2}(c-m) \psi_{m} \\
\frac{d \phi_{m}}{d y} & =-\frac{1}{4}\left(n^{2}+c^{2}-2 c m\right) \psi_{m}+\frac{i}{2}(c-m) \phi_{m}-\epsilon \Omega \psi_{m}+\text { N.T. }
\end{aligned}\right.
$$

The system is Hamiltonian in canonical variables $(\boldsymbol{\psi}, \boldsymbol{\phi}, \bar{\psi}, \bar{\phi})$. The vector field maps a domain in D to a range in X, where

$$
D=\left\{(\boldsymbol{\psi}, \boldsymbol{\phi}, \overline{\boldsymbol{\psi}}, \overline{\boldsymbol{\phi}}) \in l_{s+1}^{2}\left(\mathbb{Z}, \mathbb{C}^{4}\right)\right\}, X=\left\{(\boldsymbol{\psi}, \boldsymbol{\phi}, \overline{\boldsymbol{\psi}}, \overline{\boldsymbol{\phi}}) \in l_{s}^{2}\left(\mathbb{Z}, \mathbb{C}^{4}\right)\right\}
$$ and $l_{s}^{2}(\mathbb{Z})$ is a Banach algebra for any $s>\frac{1}{2}$. The phase space is X.

Symmetries

Solutions are invariant under the reversibility transformation

$$
\psi(y) \mapsto \bar{\psi}(-y), \quad \phi(y) \mapsto-\bar{\phi}(-y), \quad \forall y \in \mathbb{R} .
$$

and the gauge transformation

$$
\psi(y) \mapsto e^{i \alpha} \psi(y), \quad \phi(y) \mapsto e^{i \alpha} \phi(y), \quad \forall \alpha \in \mathbb{R} .
$$

Reversible solutions satisfy the constraints:

$$
\psi(-y)=\bar{\psi}(y), \quad \phi(-y)=-\bar{\phi}(y), \quad \forall y \in \mathbb{R}
$$

which means that the trajectory intersects the reversibility surface

$$
\Sigma_{r}=\{(\psi, \phi, \bar{\psi}, \bar{\phi}) \in D: \quad \operatorname{Im} \psi=0, \quad \operatorname{Re} \phi=0\}
$$

Canonical transformations

Let $\mathbb{Z}_{-}=\left\{m \in \mathbb{Z}^{\prime}: m \leq m_{0}\right\}, \mathbb{Z}_{+}=\left\{m \in \mathbb{Z}^{\prime}: m>m_{0}\right\}$ and $\mathbb{Z}_{-}: \psi_{m}=\frac{c_{m}^{+}+c_{m}^{-}}{\sqrt[4]{n^{2}+c^{2}-2 c m}}, \phi_{m}=\frac{i}{2} \sqrt[4]{n^{2}+c^{2}-2 c m}\left(c_{m}^{+}-c_{m}^{-}\right)$,
$\mathbb{Z}_{+}: \psi_{m}=\frac{c_{m}^{+}+c_{m}^{-}}{\sqrt[4]{2 c m-n^{2}-c^{2}}}, \phi_{m}=\frac{1}{2} \sqrt[4]{2 c m-n^{2}-c^{2}}\left(c_{m}^{+}-c_{m}^{-}\right)$.
The new Hamiltonian system is rewritten in new canonical variables

$$
\begin{aligned}
& \forall m \in \mathbb{Z}_{-}: \quad \frac{d c_{m}^{+}}{d y}=i \frac{\partial H}{\partial \bar{c}_{m}^{+}}, \quad \frac{d c_{m}^{-}}{d y}=-i \frac{\partial H}{\partial \bar{c}_{m}^{-}}, \\
& \forall m \in \mathbb{Z}_{+}: \quad \frac{d c_{m}^{+}}{d y}=-\frac{\partial H}{\partial \bar{c}_{m}^{-}}, \quad \frac{d c_{m}^{-}}{d y}=\frac{\partial H}{\partial \bar{c}_{m}^{+}},
\end{aligned}
$$

where H is a new Hamiltonian functions in variables \mathbf{c}^{+}and \mathbf{c}^{-}.

Truncated coupled-mode system

The new Hamiltonian function is

$$
H=\sum_{m \in \mathbb{Z}_{-}}\left(k_{m}^{+}\left|c_{m}^{+}\right|^{2}-k_{m}^{-}\left|c_{m}^{-}\right|^{2}\right)+\sum_{m \in \mathbb{Z}_{+}}\left(\kappa_{m}^{-} c_{m}^{-} \bar{c}_{m}^{+}-\kappa_{m}^{+} c_{m}^{+} \bar{c}_{m}^{-}\right)+\mathrm{N} . \mathrm{T} .
$$

Consider the subspace

$$
S=\left\{c_{m}^{+}=0, \forall m \in \mathbb{Z} \backslash\{n\}, \quad c_{m}^{-}=0, \forall m \in \mathbb{Z} \backslash\{-n\}\right\}
$$

and truncate H on the subspace S :
$\left.H\right|_{S}=\epsilon\left[\frac{\Omega\left|c_{n}^{+}\right|^{2}}{n-c}+\frac{\Omega\left|c_{-n}^{-}\right|^{2}}{n+c}-\frac{V_{2 n}\left(\bar{c}_{n}^{+} c_{-n}^{-}+c_{n}^{+} \bar{c}_{-n}^{-}\right)}{\sqrt{n^{2}-c^{2}}}+\mathrm{N} . \mathrm{T}.\right]$.

The Hamiltonian system for $\left(c_{n}^{+}, c_{n}^{-}\right)$is nothing but the coupled-mode system for $a=\frac{c_{n}^{+}}{\sqrt{n-c}}$ and $b=\frac{c_{-n}^{-}}{\sqrt{n+c}}$ in $Y=\epsilon y$.

Extended coupled-mode system

How to avoid formal truncation and to separate the coupled-mode system from the remainder? Use near-identity canonical transformations to obtain the new Hamiltonian function in the form

$$
\begin{array}{r}
H=\sum_{m \in \mathbb{Z}_{-}}\left(k_{m}^{+}\left|c_{m}^{+}\right|^{2}-k_{m}^{-}\left|c_{m}^{-}\right|^{2}\right)+\sum_{m \in \mathbb{Z}_{+}}\left(\kappa_{m}^{-} c_{m}^{-} \bar{c}_{m}^{+}-\kappa_{m}^{+} c_{m}^{+} \bar{c}_{m}^{-}\right) \\
+\epsilon H_{S}\left(c_{n}^{+}, c_{-n}^{-}\right)+\epsilon H_{T}\left(c_{n}^{+}, c_{-n}^{-}, \mathbf{c}^{+}, \mathbf{c}^{-}\right)+\epsilon^{N+1} H_{R}\left(c_{n}^{+}, c_{-n}^{-}, \mathbf{c}^{+}, \mathbf{c}^{-}\right) .
\end{array}
$$

If $H_{R} \equiv 0$, the subspace S is invariant subspace of the Hamiltonian system and dynamics on S is given by a four-dimensional ODE system

$$
\frac{d c_{n}^{+}}{d Y}=i \frac{\partial H_{S}}{\partial \bar{c}_{n}^{+}}, \quad \frac{d c_{-n}^{-}}{d Y}=-i \frac{\partial H_{S}}{\partial \bar{c}_{-n}^{+}},
$$

where $Y=\epsilon y$.

Persistence results

There exists a reversible homoclinic orbit of the extended coupled-mode system which satisfies

$$
\left|c_{n}^{+}(y)\right| \leq C_{+} e^{-\epsilon \gamma|y|}, \quad\left|c_{-n}^{-}(y)\right| \leq C_{-} e^{-\epsilon \gamma|y|}, \quad \forall y \in \mathbb{R},
$$

for some $\gamma, C_{+}, C_{-}>0$ and sufficiently small ϵ.
Lemma: The linearized system at the zero solution is topologically equivalent for sufficiently small ϵ, except that the double zero eigenvalue at $\epsilon=0$ split into a pair of complex eigenvalues to the left and right half-planes for $\epsilon>0$.

Divide the phase space near the zero solution into

$$
X=X_{h} \oplus X_{c} \oplus X_{u} \oplus X_{s}
$$

and rewrite the system for $\mathbf{c}_{0}+\mathbf{c}_{h} \in X_{h}$ and $\mathbf{c} \in X_{c} \oplus X_{u} \oplus X_{s}$.

Final system of equations

The system of equations

$$
\begin{aligned}
\frac{d \mathbf{c}_{h}}{d y} & =\epsilon \Lambda_{h}\left(\mathbf{c}_{0}\right) \mathbf{c}_{h}+\epsilon \mathbf{G}_{T}\left(\mathbf{c}_{0}\right)\left(\mathbf{c}_{h}, \mathbf{c}\right)+\epsilon^{N+1} \mathbf{G}_{R}\left(\mathbf{c}_{0}+\mathbf{c}_{h}, \mathbf{c}\right) \\
\frac{d \mathbf{c}}{d y} & =\Lambda_{\epsilon} \mathbf{c}+\epsilon \mathbf{F}_{T}\left(\mathbf{c}_{0}+\mathbf{c}_{h}, \mathbf{c}\right)+\epsilon^{N+1} \mathbf{F}_{R}\left(\mathbf{c}_{0}+\mathbf{c}_{h}, \mathbf{c}\right)
\end{aligned}
$$

where the linearization operator $\Lambda_{h}\left(\mathbf{c}_{0}\right)$ has a two-dimensional kernel spanned by $\mathbf{c}_{0}^{\prime}(y)$ and $\sigma_{1} \mathbf{c}_{0}(y)$ and the remainder terms satisfy the bounds

$$
\begin{aligned}
\left\|\mathbf{G}_{R}\right\|_{X_{h}} & \leq N_{R}\left(\left\|\mathbf{c}_{0}+\mathbf{c}_{h}\right\|_{X_{h}}+\|\mathbf{c}\|_{X_{h}^{\perp}}\right) \\
\left\|\mathbf{G}_{T}\right\|_{X_{h}} & \leq N_{T}\left(\left\|\mathbf{c}_{h}\right\|_{X_{h}}^{2}+\|\mathbf{c}\|_{X_{h}^{\perp}}^{2}\right) \\
\left\|\mathbf{F}_{T}\right\|_{X^{\prime}} & \leq M_{T}\left(\left\|\mathbf{c}_{0}+\mathbf{c}_{h}\right\|_{X_{h}}+\|\mathbf{c}\|_{X_{h}^{\perp}}\right)\|\mathbf{c}\|_{X_{h}^{\perp}} .
\end{aligned}
$$

Local center-stable manifold

Let $\mathrm{a} \in X_{c}, \mathrm{~b} \in X_{s}$ and $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{C}^{2}$ be small:

$$
\|\mathrm{a}\|_{X_{c}} \leq C_{a} \epsilon^{N}, \quad\|\mathrm{~b}\|_{X_{s}} \leq C_{b} \epsilon^{N}, \quad\left|\alpha_{1}\right|+\left|\alpha_{2}\right| \leq C_{\alpha} \epsilon^{N} .
$$

There exists a family of local solutions $\mathbf{c}_{h}=\mathbf{c}_{h}\left(y ; \mathbf{a}, \mathbf{b}, \alpha_{1}, \alpha_{2}\right)$ and $\mathbf{c}=\mathbf{c}\left(y ; \mathbf{a}, \mathbf{b}, \alpha_{1}, \alpha_{2}\right)$ such that
$\mathbf{c}_{c}(0)=\mathbf{a}, \quad \mathbf{c}_{s}=e^{y \Lambda_{s}} \mathbf{b}+\tilde{\mathbf{c}}_{s}(y), \quad \mathbf{c}_{h}=\alpha_{1} \mathbf{S}_{1}(y)+\alpha_{2} \mathbf{S}_{2}(y)+\tilde{\mathbf{c}}_{h}(y)$,
where $\tilde{\mathbf{c}}_{s}(y)$ and $\tilde{\mathbf{c}}_{h}(y)$ are uniquely defined and the family of local solutions satisfies the bound
$\sup _{\forall y \in\left[0, L / \epsilon^{N+1}\right]}\left\|\mathbf{c}_{h}(y)\right\|_{X_{h}} \leq C_{h} \epsilon^{N}, \quad \sup _{\forall y \in\left[0, L / \epsilon^{N+1}\right]}\|\mathbf{c}(y)\|_{X_{h}^{\perp}} \leq C \epsilon^{N}$,
for some constants $C_{h}, C>0$.

Ideas of the proof

1. Use the cut-off function on $y \in\left[0, y_{0}\right]$ and use the Implicit Function Theorem for components $\mathbf{c}_{s}, \mathbf{c}_{u}$ resulting in

$$
\left\|\mathbf{c}_{s, u}\right\|_{C_{b}^{0}} \leq C\left\|\mathbf{F}_{s, u}\right\|_{C_{b}^{0}} .
$$

2. Use the cut-off functions on $y \in\left[0, y_{0}\right]$ and the reversible continuation of solutions on $y \in\left[-y_{0}, 0\right]$. Then, use the Implicit Function Theorem for component c_{h} resulting in

$$
\left\|\mathbf{c}_{h}\right\|_{C_{b}^{0}} \leq \frac{C}{\epsilon}\left\|\mathbf{F}_{h}\right\|_{C_{b}^{0}} .
$$

3. Use variation of constant formula and the Gronwall inequality for component \mathbf{c}_{c}. The bounds are consistent for $y_{0}=L / \epsilon^{N+1}$.

Proof of the main theorem

The local center-stable manifold is extended to a local solution on $y \in\left[-y_{0}, y_{0}\right]$ if it intersects the reversibility surface Σ_{r}.
Since $\mathbf{c}_{c}(0)=\mathbf{a}$ is arbitrary, we can set immediately

$$
\operatorname{Im}(\mathbf{a})_{m}^{+}=0, \forall m \in \mathbb{Z}_{-} \backslash\{n\}, \quad \operatorname{Im}(\mathbf{a})_{m}^{-}=0, \forall m \in \mathbb{Z}_{-} \backslash\{-n\} .
$$

The other parameters \mathbf{b} and $\left(\alpha_{1}, \alpha_{2}\right)$ are not however the initial conditions. They satisfy the set of reversibility constraints

$$
\operatorname{Re} b_{m}+\operatorname{Re}\left(\tilde{\mathbf{c}}_{s}\right)_{m}(0)=\operatorname{Re}\left(\mathbf{c}_{u}\right)_{m}(0), \operatorname{Im} b_{m}+\operatorname{Im}\left(\tilde{\mathbf{c}}_{s}\right)_{m}(0)=-\operatorname{Im}\left(\mathbf{c}_{u}\right)_{m}(0
$$

and

$$
\operatorname{Im} c_{n}^{+}(0)=0, \quad \operatorname{Im} c_{-n}^{-}(0)=0
$$

The first set is solved by the Implicit Function Theorem. The second set is satisfied if $\alpha_{1}=\alpha_{2}=0$, since the kernel does not satisfy the reversibility but the inhomogeneous solution for c_{h} does.

Extensions

We have checked that modified Gross-Pitaevskii equations still possess infinitely many eigenvalues on the imaginary axis:

$$
\begin{aligned}
E_{t t} & =E_{x x}+V(x) E+\sigma|E|^{2} E \\
i E_{t} & =-E_{x x}+i E_{x x t}+V(x) E+\sigma|E|^{2} E \\
i \dot{E}_{n} & =-E_{n+1}-E_{n-1}+V_{n} E_{n}+\sigma\left|E_{n}\right|^{2} E_{n}
\end{aligned}
$$

In all these equations, there is no hope to construct true homoclinic solution (moving gap soliton) but one can construct a local reversible center-stable manifold, which resembles a single bump surrounded by oscillatory tails.

It is an open problem how to extend this local solution to a global solution defined on the entire line.

