Moving gap solitons in periodic potentials

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Guido Schneider (Institute of Analysis, Modeling and
Dynamics, University of Stuttgart, Germany)

References:

Applicable Analysis, 86, 1017-1036 (2007)
Mathematical Methods in the Applied Sciences, 31, 1739-1760 (2008)

Motivations

Complex-valued Maxwell equation

$$
E_{x x}-\left(1+V(x)+\sigma|E|^{2}\right) E_{t t}=0
$$

and the Gross-Pitaevskii equation

$$
i E_{t}=-E_{x x}+V(x) E+\sigma|E|^{2} E,
$$

where $E(x, t): \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}, V(x)=V(x+2 \pi)$, and $\sigma= \pm 1$.
Gap solitons are localized stationary solutions of nonlinear PDEs with space-periodic coefficients which reside in a spectral gap of the associated linear Schrödinger operator.

Existence of stationary solutions

Time-periodic solutions $E(x, t)=U(x) e^{-i \omega t}$ with $\omega \in \mathbb{R}$ satisfy the stationary nonlinear equation with a periodic potential

$$
\omega U(x)=-U^{\prime \prime}(x)+V(x) U(x)+\sigma|U|^{2} U(x)
$$

The associated Schrödinger equation is

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+V(x) u(x)=\omega u(x), \\
u(2 \pi)=e^{i 2 \pi k} u(0),
\end{array}\right.
$$

Existence results

- Construction of multi-humped gap solitons in Alama-Li (1992)
- Bifurcations of gap solitons from band edges in Kupper-Stuart (1990) and Heinz-Stuart (1992)
- Multiplicity of branches of gap solitons in Heinz (1995)
- Existence of critical points of energy with L^{2}-normalization in Buffoni-Esteban-Sere (2006)

Theorem:[Stuart, 1995; Pankov, 2005] Let $V(x)$ be a real-valued bounded periodic potential. Let ω be in a finite gap of the spectrum of $L=-\nabla^{2}+V(x)$. There exists a non-trivial weak solution $U(x) \in H^{1}(\mathbb{R})$, which decays exponentially as $|x| \rightarrow \infty$.

Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE 70, 036618 (2004)
$V(x)=V_{0} \sin ^{2}(x)$ with $V_{0}=1$ and $\sigma=-1$:

Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE 70, 036618 (2004) $V(x)=V_{0} \sin ^{2}(x)$ with $V_{0}=1$ and $\sigma=+1$:

Asymptotic reductions

The nonlinear elliptic problem with a periodic potential can be reduced asymptotically to the following problems:

- Coupled-mode (Dirac) equations for small potentials

$$
\left\{\begin{aligned}
i\left(a_{t}+a_{x}\right)+\alpha b & =\sigma\left(|a|^{2}+2|b|^{2}\right) a \\
i\left(b_{t}-b_{x}\right)+\alpha a & =\sigma\left(2|a|^{2}+|b|^{2}\right) b
\end{aligned}\right.
$$

- Envelope (NLS) equations for finite potentials near band edges

$$
i a_{t}+a_{x x}+\sigma|a|^{2} a=0
$$

- Lattice (dNLS) equations for large or long-period potentials

$$
i \dot{a}_{n}+\alpha\left(a_{n+1}+a_{n-1}\right)+\sigma\left|a_{n}\right|^{2} a_{n}=0 .
$$

Localized solutions of reduced equations exist in the analytic form.

Formal coupled-mode theory

If $V(x) \equiv 0$, then 2π-periodic or 2π-antiperiodic Bloch functions exist for $\omega=\omega_{n}=\frac{n^{2}}{4}$, where $n \in \mathbb{Z}$. Let $\omega=\omega_{1}$ and consider the asymptotic multi-scale expansion

$$
E(x, t)=\sqrt{\epsilon}\left[a(\epsilon x, \epsilon t) e^{\frac{i x}{2}}+b(\epsilon x, \epsilon t) e^{-\frac{i x}{2}}+\mathrm{O}(\epsilon)\right] e^{-\frac{i t}{4}}
$$

Coupled-mode equations

The vector $(a, b): \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}^{2}$ satisfies asymptotically the coupled-mode system:

$$
\left\{\begin{array}{l}
i\left(a_{T}+a_{X}\right)+V_{1} b=\sigma\left(|a|^{2}+2|b|^{2}\right) a, \\
i\left(b_{T}-b_{X}\right)+V_{-1} a=\sigma\left(2|a|^{2}+|b|^{2}\right) b,
\end{array}\right.
$$

where $X=\epsilon x, T=\epsilon t$, and $V_{1}=\bar{V}_{-1}$ are Fourier coefficients of $V(x)$ at $e^{ \pm i x}$.

The dispersion relation of the linearized coupled-mode equation is

$$
\left(\omega-\omega_{1}\right)^{2}=\epsilon^{2}\left|V_{1}\right|^{2}+k^{2} .
$$

Stationary gap solitons

Stationary gap solitons are obtained in the analytic form

$$
a(X, T)=a(X) e^{-i \Omega T}, \quad b(X, T)=b(X) e^{-i \Omega T}
$$

where $\kappa=\sqrt{\left|V_{1}\right|^{2}-\Omega^{2}}$ and $|\Omega|<\left|V_{1}\right|$, and

$$
a(X)=\bar{b}(X)=\frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{\left|V_{1}\right|^{2}-\Omega^{2}}}{\sqrt{\left|V_{1}\right|-\Omega} \cosh (\kappa X)+i \sqrt{\left|V_{1}\right|+\Omega} \sinh (\kappa X)} .
$$

Moving gap solitons

Moving gap solitons are obtained in the analytic form
$a=\left(\frac{1+c}{1-c}\right)^{1 / 4} A(\xi) e^{-i \mu \tau}, b=\left(\frac{1-c}{1+c}\right)^{1 / 4} B(\xi) e^{-i \mu \tau},|c|<1$,
where

$$
\xi=\frac{X-c T}{\sqrt{1-c^{2}}}, \quad \tau=\frac{T-c X}{\sqrt{1-c^{2}}}
$$

and, since $|A|^{2}-|B|^{2}$ is constant in $\xi \in \mathbb{R}$, then

$$
A=\phi(\xi) e^{i \varphi(\xi)}, \quad B=\bar{\phi}(\xi) e^{i \varphi(\xi)}
$$

with ϕ and φ being solutions of the system

$$
\varphi^{\prime}=\frac{-2 c \sigma|\phi|^{2}}{\left(1-c^{2}\right)}, \quad i \phi^{\prime}=V_{1} \bar{\phi}-\mu \phi+\sigma \frac{\left(3-c^{2}\right)}{\left(1-c^{2}\right)}|\phi|^{2} \phi
$$

Questions and Answers

Can we justify the use of the coupled-mode theory to approximate stationary gap solitons?

YES: we can measure a small approximation error of stationary solutions in $H^{1}(\mathbb{R})$.

Question 2: Can we justify the use of the coupled-mode theory to approximate moving gap solitons?

Answer 2: NO: the small approximation error of traveling solutions is controlled on a large but finite interval and the gap soliton is surrounded by a train of small-amplitude almost-periodic waves.

Time-dependent coupled-mode system

[Goodman-Weinstein-Holmes, 2001; Schneider-Uecker, 2001:] Let $(a, b) \in C\left(\left[0, T_{0}\right], H^{3}\left(\mathbb{R}, \mathbb{C}^{2}\right)\right)$ be solutions of the time-dependent coupled-mode system for a fixed $T_{0}>0$. There exists $\epsilon_{0}, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the Gross-Pitaevskii equation has a local solution $E(x, t)$ and

$$
\left\|E(x, t)-\sqrt{\epsilon}\left[a(\epsilon x, \epsilon t) e^{i(k x-\omega t)}+b(\epsilon x, \epsilon t) e^{i(-k x-\omega t)}\right]\right\|_{H^{1}(\mathbb{R})} \leq C \epsilon
$$

for some (k, ω) and any $t \in\left[0, T_{0} / \epsilon\right]$.
Remark: We would like to consider stationary and moving gap solitons in $H^{1}(\mathbb{R})$ for all $t \in \mathbb{R}$.

Spatial dynamics formulation

Set $E(x, t)=e^{-i \omega t} \psi(x, y)$ with $y=x-c t$ and a parameter ω. For traveling solutions, $c \neq 0$ and we set $c>0$. Then,

$$
\left(\omega-i c \partial_{y}+\partial_{x}^{2}+2 \partial_{x} \partial_{y}+\partial_{y}^{2}\right) \psi=\epsilon V(x) \psi+\epsilon \sigma|\psi|^{2} \psi .
$$

We consider functions $\psi(x, y)$ being 2π-periodic or 2π-antiperiodic in x and bounded in y. Therefore,

$$
\psi(x, y)=\sum_{m \in \mathbb{Z}^{\prime}} \psi_{m}(y) e^{\frac{i}{2} m x},
$$

such that $\psi_{m}(y)$ satisfy the nonlinear system of coupled ODEs:

$$
\psi_{m}^{\prime \prime}+i(m-c) \psi_{m}^{\prime}+\left(\omega-\frac{m^{2}}{4}\right) \psi_{m}=\epsilon \sum_{m_{1} \in \mathbb{Z}^{\prime}} V_{m-m_{1}} \psi_{m_{1}}+\epsilon \mathrm{N} . \mathrm{T} .
$$

Eigenvalues of the spatial dynamics

Linearization of the system with $\psi_{m}(y)=e^{k y} \delta_{m, m_{0}}$ gives roots $\kappa=\kappa_{m}$ in the quadratic equation

$$
\kappa^{2}+i(m-c) \kappa+\omega-\frac{m^{2}}{4}=0, \quad \forall m \in \mathbb{Z}^{\prime} .
$$

- If $\omega=\frac{n^{2}}{4}$, there is a double zero root $\kappa=0$ with modes $m=\{n,-n\}$.
- For $m>m_{0}=\left[\frac{n^{2}+c^{2}}{2 c}\right]$, all roots κ are complex-valued.
- For $m \leq m_{0}$, all roots κ are purely imaginary and semi-simple of maximal multiplicity three.
M. Groves, G. Schneider, Comm. Math. Phys. 219, 489 (2001)

Assumptions of the main theorem

Let $V(x)$ be a smooth 2π-periodic real-valued function with zero mean and symmetry $V(x)=V(-x)$ on $x \in \mathbb{R}$, such that

$$
V(x)=\sum_{m \in \mathbb{Z}} V_{2 m} e^{i m x}: \quad \sum_{m \in \mathbb{Z}}\left(1+m^{2}\right)^{s}\left|V_{2 m}\right|^{2}<\infty
$$

for some $s \geq 0$, where $V_{0}=0$ and $V_{2 m}=V_{-2 m}=\bar{V}_{-2 m}$.
Definition: The moving gap soliton of the coupled-mode system is said to be a reversible homoclinic orbit if (A, B) decays to zero at infinity and $A(\xi)=\bar{A}(-\xi), B(\xi)=\bar{B}(-\xi)$.

Main theorem for traveling solutions

There exists $\epsilon_{0}, L, C>0$ such that for all $\epsilon \in\left(0, \epsilon_{0}\right)$ the Gross-Pitaevskii equation has a solution in the form $E(x, t)=e^{-i \omega t} \psi(x, y)$, where $y=x-c t$ and the function $\psi(x, y)$ is a periodic (anti-periodic) function of x for even (odd) n, satisfying the reversibility constraint $\psi(x, y)=\bar{\psi}(x,-y)$, and

$$
\left|\psi(x, y)-\epsilon^{1 / 2}\left(a_{\epsilon}(\epsilon y) e^{\frac{i n x}{2}}+b_{\epsilon}(\epsilon y) e^{-\frac{i n x}{2}}\right)\right| \leq C_{0} \epsilon^{N+1 / 2}
$$

for all $x \in \mathbb{R}$ and $y \in\left[-L / \epsilon^{N+1}, L / \epsilon^{N+1}\right]$.
Here $a_{\epsilon}(Y)=a(Y)+\mathrm{O}(\epsilon), Y=\epsilon y$ is an exponentially decaying reversible solution, where $a(Y)$ is a solution of the coupled-mode system with $Y=X-c T$.

Hamiltonian formulation

Let $\phi_{m}(y)=\psi_{m}^{\prime}(y)-\frac{i}{2}(c-m) \psi_{m}(y)$ and rewrite the system

$$
\left\{\begin{aligned}
\frac{d \psi_{m}}{d y} & =\phi_{m}+\frac{i}{2}(c-m) \psi_{m} \\
\frac{d \phi_{m}}{d y} & =-\frac{1}{4}\left(n^{2}+c^{2}-2 c m\right) \psi_{m}+\frac{i}{2}(c-m) \phi_{m}-\epsilon \Omega \psi_{m}+\mathrm{N} . \mathrm{T}
\end{aligned}\right.
$$

The system is Hamiltonian in canonical variables $(\psi, \phi, \bar{\psi}, \bar{\phi})$ on the phase space

$$
X=\left\{(\boldsymbol{\psi}, \phi, \bar{\psi}, \bar{\phi}) \in l_{s}^{2}\left(\mathbb{Z}, \mathbb{C}^{4}\right)\right\}
$$

where $l_{s}^{2}(\mathbb{Z})$ is a Banach algebra for any $s>\frac{1}{2}$.

Symmetries

Solutions are invariant under the reversibility transformation

$$
\psi(y) \mapsto \bar{\psi}(-y), \quad \phi(y) \mapsto-\bar{\phi}(-y), \quad \forall y \in \mathbb{R} .
$$

and the gauge transformation

$$
\psi(y) \mapsto e^{i \alpha} \psi(y), \quad \phi(y) \mapsto e^{i \alpha} \phi(y), \quad \forall \alpha \in \mathbb{R} .
$$

Reversible solutions satisfy the constraints:

$$
\psi(-y)=\bar{\psi}(y), \quad \phi(-y)=-\bar{\phi}(y), \quad \forall y \in \mathbb{R}
$$

which means that the trajectory intersects the reversibility surface

$$
\Sigma_{r}=\{(\psi, \phi, \bar{\psi}, \bar{\phi}) \in D: \quad \operatorname{Im} \psi=0, \quad \operatorname{Re} \phi=0\}
$$

Canonical transformations

Let $\mathbb{Z}_{-}=\left\{m \in \mathbb{Z}^{\prime}: m \leq m_{0}\right\}, \mathbb{Z}_{+}=\left\{m \in \mathbb{Z}^{\prime}: m>m_{0}\right\}$ and $\mathbb{Z}_{-}: \psi_{m}=\frac{c_{m}^{+}+c_{m}^{-}}{\sqrt[4]{n^{2}+c^{2}-2 c m}}, \phi_{m}=\frac{i}{2} \sqrt[4]{n^{2}+c^{2}-2 c m}\left(c_{m}^{+}-c_{m}^{-}\right)$,
$\mathbb{Z}_{+}: \psi_{m}=\frac{c_{m}^{+}+c_{m}^{-}}{\sqrt[4]{2 c m-n^{2}-c^{2}}}, \phi_{m}=\frac{1}{2} \sqrt[4]{2 c m-n^{2}-c^{2}}\left(c_{m}^{+}-c_{m}^{-}\right)$.
The new Hamiltonian system is rewritten in new canonical variables

$$
\begin{aligned}
& \forall m \in \mathbb{Z}_{-}: \quad \frac{d c_{m}^{+}}{d y}=i \frac{\partial H}{\partial \bar{c}_{m}^{+}}, \quad \frac{d c_{m}^{-}}{d y}=-i \frac{\partial H}{\partial \bar{c}_{m}^{-}}, \\
& \forall m \in \mathbb{Z}_{+}: \quad \frac{d c_{m}^{+}}{d y}=-\frac{\partial H}{\partial \bar{c}_{m}^{-}}, \quad \frac{d c_{m}^{-}}{d y}=\frac{\partial H}{\partial \bar{c}_{m}^{+}},
\end{aligned}
$$

where H is a new Hamiltonian functions in variables \mathbf{c}^{+}and \mathbf{c}^{-}.

Truncated coupled-mode system

The new Hamiltonian function is

$$
H=\sum_{m \in \mathbb{Z}_{-}}\left(k_{m}^{+}\left|c_{m}^{+}\right|^{2}-k_{m}^{-}\left|c_{m}^{-}\right|^{2}\right)+\sum_{m \in \mathbb{Z}_{+}}\left(\kappa_{m}^{-} c_{m}^{-} \bar{c}_{m}^{+}-\kappa_{m}^{+} c_{m}^{+} \bar{c}_{m}^{-}\right)+\mathrm{N} . \mathrm{T} .
$$

Consider the subspace

$$
S=\left\{c_{m}^{+}=0, \forall m \in \mathbb{Z} \backslash\{n\}, \quad c_{m}^{-}=0, \forall m \in \mathbb{Z} \backslash\{-n\}\right\}
$$

and truncate H on the subspace S :
$\left.H\right|_{S}=\epsilon\left[\frac{\Omega\left|c_{n}^{+}\right|^{2}}{n-c}+\frac{\Omega\left|c_{-n}^{-}\right|^{2}}{n+c}-\frac{V_{2 n}\left(\bar{c}_{n}^{+} c_{-n}^{-}+c_{n}^{+} \bar{c}_{-n}^{-}\right)}{\sqrt{n^{2}-c^{2}}}+\mathrm{N} . \mathrm{T}.\right]$.

The Hamiltonian system for $\left(c_{n}^{+}, c_{n}^{-}\right)$is nothing but the coupled-mode system for $a=\frac{c_{n}^{+}}{\sqrt{n-c}}$ and $b=\frac{c_{-n}^{-}}{\sqrt{n+c}}$ in $Y=\epsilon y$.

Extended coupled-mode system

Using near-identity canonical transformations, we can obtain the new Hamiltonian function in the form

$$
\begin{array}{r}
H=\sum_{m \in \mathbb{Z}_{-}}\left(k_{m}^{+}\left|c_{m}^{+}\right|^{2}-k_{m}^{-}\left|c_{m}^{-}\right|^{2}\right)+\sum_{m \in \mathbb{Z}_{+}}\left(\kappa_{m}^{-} c_{m}^{-} \bar{c}_{m}^{+}-\kappa_{m}^{+} c_{m}^{+} \bar{c}_{m}^{-}\right) \\
+\epsilon H_{S}\left(c_{n}^{+}, c_{-n}^{-}\right)+\epsilon H_{T}\left(c_{n}^{+}, c_{-n}^{-}, \mathbf{c}^{+}, \mathbf{c}^{-}\right)+\epsilon^{N+1} H_{R}\left(c_{n}^{+}, c_{-n}^{-}, \mathbf{c}^{+}, \mathbf{c}^{-}\right)
\end{array}
$$

where H_{T} is quadratic with respect to $\left(\mathbf{c}^{+}, \mathbf{c}^{-}\right)$.
If $H_{R} \equiv 0$, the subspace S is invariant subspace of the Hamiltonian system and dynamics on S is given by

$$
\frac{d c_{n}^{+}}{d Y}=i \frac{\partial H_{S}}{\partial \bar{c}_{n}^{+}}, \quad \frac{d c_{-n}^{-}}{d Y}=-i \frac{\partial H_{S}}{\partial \bar{c}_{-n}^{+}},
$$

where $Y=\epsilon y$.

Persistence results

There exists a reversible homoclinic orbit of the extended coupled-mode system which satisfies

$$
\left|c_{n}^{+}(y)\right| \leq C_{+} e^{-\epsilon \gamma|y|}, \quad\left|c_{-n}^{-}(y)\right| \leq C_{-} e^{-\epsilon \gamma|y|}, \quad \forall y \in \mathbb{R},
$$

for some $\gamma, C_{+}, C_{-}>0$ and sufficiently small ϵ.
Lemma: The linearized system at the zero solution is topologically equivalent for sufficiently small ϵ, except that the double zero eigenvalue at $\epsilon=0$ split into a pair of complex eigenvalues to the left and right half-planes for $\epsilon>0$.

Divide the phase space near the zero solution into

$$
X=X_{h} \oplus X_{c} \oplus X_{u} \oplus X_{s}
$$

and rewrite the system for $\mathbf{c}_{0}+\mathbf{c}_{h} \in X_{h}$ and $\mathbf{c} \in X_{c} \oplus X_{u} \oplus X_{s}$.

Local center-stable manifold

Let $\mathrm{a} \in X_{c}, \mathrm{~b} \in X_{s}$ and $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{C}^{2}$ be small:

$$
\|\mathrm{a}\|_{X_{c}} \leq C_{a} \epsilon^{N}, \quad\|\mathrm{~b}\|_{X_{s}} \leq C_{b} \epsilon^{N}, \quad\left|\alpha_{1}\right|+\left|\alpha_{2}\right| \leq C_{\alpha} \epsilon^{N} .
$$

There exists a family of local solutions $\mathbf{c}_{h}=\mathbf{c}_{h}\left(y ; \mathbf{a}, \mathbf{b}, \alpha_{1}, \alpha_{2}\right)$ and $\mathbf{c}=\mathbf{c}\left(y ; \mathbf{a}, \mathbf{b}, \alpha_{1}, \alpha_{2}\right)$ such that
$\mathbf{c}_{c}(0)=\mathbf{a}, \quad \mathbf{c}_{s}=e^{y \Lambda_{s}} \mathbf{b}+\tilde{\mathbf{c}}_{s}(y), \quad \mathbf{c}_{h}=\alpha_{1} \mathbf{S}_{1}(y)+\alpha_{2} \mathbf{S}_{2}(y)+\tilde{\mathbf{c}}_{h}(y)$,
where $\tilde{\mathbf{c}}_{s}(y)$ and $\tilde{\mathbf{c}}_{h}(y)$ are uniquely defined and the family of local solutions satisfies the bound
$\sup _{\forall y \in\left[0, L / \epsilon^{N+1}\right]}\left\|\mathbf{c}_{h}(y)\right\|_{X_{h}} \leq C_{h} \epsilon^{N}, \quad \sup _{\forall y \in\left[0, L / \epsilon^{N+1}\right]}\|\mathbf{c}(y)\|_{X_{h}^{\perp}} \leq C \epsilon^{N}$,
for some constants $C_{h}, C>0$.

Proof of the main theorem

The local center-stable manifold is extended to a local solution on $y \in\left[-y_{0}, y_{0}\right]$ if it intersects the reversibility surface Σ_{r}.
Since $\mathbf{c}_{c}(0)=\mathbf{a}$ is arbitrary, we can set immediately

$$
\operatorname{Im}(\mathbf{a})_{m}^{+}=0, \forall m \in \mathbb{Z}_{-} \backslash\{n\}, \quad \operatorname{Im}(\mathbf{a})_{m}^{-}=0, \forall m \in \mathbb{Z}_{-} \backslash\{-n\} .
$$

The other parameters \mathbf{b} and $\left(\alpha_{1}, \alpha_{2}\right)$ are not however the initial conditions. They satisfy the set of reversibility constraints

$$
\operatorname{Re} b_{m}+\operatorname{Re}\left(\tilde{\mathbf{c}}_{s}\right)_{m}(0)=\operatorname{Re}\left(\mathbf{c}_{u}\right)_{m}(0), \operatorname{Im} b_{m}+\operatorname{Im}\left(\tilde{\mathbf{c}}_{s}\right)_{m}(0)=-\operatorname{Im}\left(\mathbf{c}_{u}\right)_{m}(0
$$

and

$$
\operatorname{Im} c_{n}^{+}(0)=0, \quad \operatorname{Im} c_{-n}^{-}(0)=0
$$

The first set is solved by the Implicit Function Theorem. The second set is satisfied if $\alpha_{1}=\alpha_{2}=0$, since the kernel does not satisfy the reversibility but the inhomogeneous solution for c_{h} does.

