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The problem

The discrete nonlinear Schrödinger (DNLS) equation

iu̇n = (−∆ + Vn)un + γ|un|2p
un = 0, n ∈ Z,

where γ = ±1, p ≥ 1, V ∈ l∞(Z,R), and

(∆u)n := un+1 − 2un + un−1.

Localized modes (time-periodic space-localized solutions) are of the form
un(t) = φne

−iωt, where ω ∈ R and {φn}n∈Z satisfies

ωφn = (−∆ + Vn)φn + γ|φn|2φn = 0, n ∈ Z.

Main Question: If a localized mode φ is orbitally stable, is it also
asymptotically stable due to dispersive radiation?



Physical contexts

The DNLS equation arises in the modeling of density waves in Bose–Einstein
condensates in the framework of the Gross–Pitaevskii equation

iut = −∇2
u+ V (x)u+ γ|u|2u

with a bounded 2π-periodic potential V (x) = V (x+ 2π).

Another context of the DNLS equation is the coupled waveguide arrays in
nonlinear optics and photorefractive crystals.



Existence of gap solitons

Localized modes of the Gross–Pitaevskii equation satisfy the stationary
equation with a periodic potential

ωφ = −∇2
φ+ V (x)φ+ γ|φ|2φ, x ∈ R

d
.

Spectrum of L = −∇2 + V (x) for V (x) = V0 sin2(x), d = 1:

Theorem (Pankov, 2005)

Let V be a real-valued bounded periodic potential. Let ω be in a finite gap of
the spectrum of L = −∇2 + V (x). There exists a non-trivial weak solution
U ∈ H1(Rd), which is continuous on x ∈ R

d and decays to 0 exponentially.



Numerical approximation of gap solitons

P., Sukhorukov, Kivshar (2004): V (x) = sin2(x), γ = +1



Asymptotic reductions of the GP equation

The Gross–Pitaevskii equation can be reduced asymptotically with a multiple
scale expansion method to one of the three models.

Nonlinear Dirac equations for small-amplitude potentials


i(at + ax) + b = γ(|a|2 + 2|b|2)a
i(bt − bx) + a = γ(2|a|2 + |b|2)b

Goodman, Holmes, & Weinstein (2001); Schneider & Uecker (2001);
P., Schneider (2007).

Nonlinear Schrödinger equations near band edges

iat + axx + γ|a|2a = 0

Busch (2006); Dohnal, P., Schneider (2009); Ilan & Weinstein (2010)

Discrete nonlinear Schrödinger equations for large-amplitude potentials

iȧn + α(an+1 + an−1) + γ|an|2an = 0.

P., Schneider, MacKay (2008); P., Schneider (2010)



Back to the problem of asymptotic stability

Kevrekidis et al. (2008)

iu̇n + un+1 − 2un + un−1 + |un|2un = 0

un(0) = Aδn,0 with A = 1 (left), A = 2 (middle), and A = 2.5 (right).



Stability of localized modes

Given a time-periodic space-localized solution φne
−iωt of the DNLS equation,

the stability can be considered in the following three senses:
(a) spectral, (b) orbital, and (c) asymptotic.

Spectral stability: We say that the localized mode φ is spectrally unstable if
the spectral problem for the linearized evolution in l2(Z) has at least one
eigenvalue λ with Reλ > 0. Otherwise, it is (weakly) spectrally stable.

Linearized evolution is found after the substitution

un(t) = e
−iωt

“

φn + vne
λt + iwne

λt
”

,

and neglection of the terms ‖v‖2
l2 and ‖w‖2

l2 . Then, (v,w) satisfy the linear
eigenvalue problem

L+v = −λw, L−w = λv,

where L± are discrete Schrödinger operators with decaying potentials on Z.



Stability of localized modes

The 2-parameter orbit of the localized mode

e
−iωt−iθ

φ,

where θ ∈ R is an arbitrary parameter due to the phase rotation.

Orbital stability: The localized mode φ is said to be orbitally stable if for any
ǫ > 0 there is a δ(ǫ) > 0, such that if ‖u(0) − φ‖l2 ≤ δ(ǫ) then

inf
θ∈R

‖u(t) − e
−iθ
φ‖l2 ≤ ǫ,

for all t > 0.

Asymptotic stability: The localized mode φ is said to be asymptotically stable
if it is orbitally stable and for any u(0) near φ, there is φ∞ near φ such that

lim
t→∞

inf
θ∈R

‖u(t) − e
−iθ
φ∞‖l2 = 0.



Spectral stability

Stability depends on φ. Consider, for example, two single-humped localized
modes, existence of which can be proved for many DNLS equations:
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For the cubic DNLS equation, the solution on the left is spectrally stable,
whereas the solution on the right is spectrally unstable.

Note that both solitons are stable for the continuous NLS equation

iut + uxx + |u|2u = 0,

where the localized mode is φ(x) =
√

2ωsech(
√
ω(x− s)), s ∈ R.



More general formulation

Let us consider the DNLS equation in the form

iu̇n = (−∆ + Vn)un + |un|2p
un, n ∈ Z,

where p ≥ 1 (an integer) and V ∈ l∞(Z).

Assumptions on V :

Vn → 0 as n→ ∞ sufficiently fast, so that V ∈ l1s(Z) with s ≥ 1;

V supports no resonances near the band edges of σ(−∆) = [0, 4];

V supports exactly one negative eigenvalue ω0 < 0 of H = −∆ + V with
an eigenvector ψ0 ∈ l2 (normalized by ‖ψ0‖l2 = 1).

For instance, if Vn = −δn,0, the assumption is satisfied with

(ψ0)n = e
−κ|n|

, n ∈ Z,

where κ = arcsinh(2−1) and ω0 = 2 −
√

5 < 0.



Global well-posedness

Lemma

Fix σ ≥ 0. For any u0 ∈ l2σ, there exists a unique solution u(t) ∈ C1(R+, l
2
σ)

s.t. u(0) = u0 and u(t) depends continuously on u0.

Local existence follows from the Picard iterations applied to

un(t) = un(0) − i

Z t

0

ˆ

(−∆ + Vn)un(t′) + |un(t′)|2p
un(t′)

˜

dt
′

in space C([0, T ], l2σ). To show that T = ∞, we can use the balance equation

i
d

dt
|un|2 = un(ūn+1 + ūn−1) − ūn(un+1 + un−1),

so that

‖u(t)‖2
l2σ

≤ ‖u(0)‖2
l2σ

+ C

Z t

0

‖u(t′)‖2
l2σ
dt

′
.

By Gronwall’s inequality, ‖u(t)‖2
l2σ

is bounded and continuous for any t > 0.



Local bifurcation of localized modes

Lemma

Let ǫ := ω − ω0. For any ǫ ∈ (0, ǫ0), where ǫ0 > 0 is small, there exists a
solution φ(ω) ∈ C([ω0, ω0 + ǫ0), l

2) of

(−∆ + Vn)φn + φ
2p+1
n = ωφn, n ∈ Z,

satisfying
‚
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Moreover, {φn}n∈Z decays exponentially to zero as |n| → ∞.
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Orbital stability

Lemma

There exists an orbitally stable minimizer of energy

E(u) =
X

n∈Z

|un+1 − un|2 + Vn|un|2 +
1

p+ 1
γ|un|2p+2

under a fixed N(u) = ‖u‖2
l2 > 0 for any p ≥ 1.

If p ≥ 2 and V ≡ 0, then the minimizer only exists for N(u) ≥ N0 > 0.

Grillakis, Shatah, Strauss (1987,1990); Weinstein (1999);
Pankov (2006,2007).

If u(0) ≈ φ(ω(0)), then u(t) remains near φ(ω(t)) for all t > 0 and
|ω(t) − ω(0)| remains small. However, the question is if there exists ω∞ so
that u(t) → φ(ω∞) and ω(t) → ω∞ as t→ ∞.



Main result

Theorem

Let p ≥ 3. Fix ǫ > 0 and δ > 0 be small and assume that ω(0) = ω0 + ǫ and

‖u(0) − φ(ω0 + ǫ)‖l2 ≤ δǫ
1
2p .

Under the three assumptions on V , there exist ω∞ ∈ (ω0, ω0 + ǫ0),
(ω, θ) ∈ C1(R+), and

y(t) = u(t) − e
−iθ(t)

φ(ω(t)) ∈ C
1(R+, l

2) ∩ L6(R+, l
∞)

such that u(t) solves the DNLS equation and

lim
t→∞

ω(t) = ω∞, lim
t→∞

‖u(t) − e
−iθ(t)

φ(ω(t))‖l∞ = 0.

Remark: A similar result applies in the focusing case γ = −1 with the local
bifurcation to ω < ω0.

Earlier works on continuous NLS equations are by Soffer,Weinstein (1992),
Pillet,Wayne (1997), Yao,Tsai (2002), Mizumachi (2008), Cuccagna (2008).
Discrete setting: Cuccagna & Tarulli (2009), Kevrekidis, P., Stefanov (2009).



Decomposition of the solution

Let
u(t) = e

−iθ(t) (φ(ω(t)) + z(t)) .

If (ω, θ) ∈ C1(R+,R
2), then z(t) ∈ C1(R+, l

2
σ) solves

iż = (H − ω)z− (θ̇ − ω)(φ(ω) + z) − iω̇∂ωφ(ω) + N(φ(ω) + z) −N(φ(ω)),

where H = −∆ + V and [N(ψ)]n = |ψn|2pψn.

Question: How to ensure that the decomposition is unique?



Double null space

Linearized time evolution for z(t) = v(t) + iw(t) is defined by the
non-self-adjoint eigenvalue problem

L+v = −λw, L−w = λv,

where
L− = H − ω + φ

2p
n , L+ = H − ω + (2p+ 1)φ2p

n .

If 〈φ(ω), ∂ωφ(ω)〉l2 6= 0, there exists a double zero eigenvalue with a
one-dimensional kernel, isolated from the rest of the spectrum. The
generalized kernel is spanned by vectors

[0,φ(ω)]T , [−∂ωφ(ω),0]T .

(v,w) ∈ l2 is symplectically orthogonal to the double subspace of the
generalized kernel under the conditions

〈v,φ(ω)〉l2 = 0, 〈w, ∂ωφ(ω)〉l2 = 0.



Symplectic orthogonality

Lemma

Fix ǫ ∈ (0, ǫ0). There exists δ > 0 and T > 0 such that any u ∈ l2 satisfying

‖u − φ(ω0 + ǫ))‖l2 ≤ δǫ
1
2p

can be uniquely decomposed by

u = e
−iθ (φ(ω) + z)

and
〈Rez,φ(ω)〉l2 = 〈Imz, ∂ωφ(ω)〉l2 = 0,

with (ω, θ) ∈ R
2 and z ∈ l2. Moreover, there exists C > 0 such that

|ω − ω0 − ǫ| ≤ Cδǫ, |θ| ≤ Cδ, ‖z‖l2 ≤ Cδǫ
1
2p .

The mapping u 7→ (ω, θ, z) is a C1 diffeomorphism.



Projections

The time-evolution of (ω, θ) satisfies the system

A(ω,z)

»

ω̇

θ̇ − ω

–

= f(ω, z),

where
A(ω,z) = 〈φ(ω), ∂ωφ(ω)〉l2I + O(‖z‖l2 ),

and
‖f(ω, z)‖ ≤ C

`

〈φ2p−1
, z

2〉l2 + 〈φ, z2p+1〉l2
´

.

The time evolution of z(t) is governed by

iż = (H − ω)z− (θ̇ − ω)(φ(ω) + z) − iω̇∂ωφ(ω) + N(φ(ω) + z) −N(φ(ω)),

where
‖N(φ + z) − N(φ)‖l∞ ≤ C

`

‖φ2p
z‖l∞ + ‖z2p+1‖l∞

´

.



Estimates on the discrete part

We need to show that ω̇, θ̇ − ω ∈ L1
t ∩ L∞

t from the estimates like
Z T

0

|ω̇|dt ≤ Cǫ
2− 1

p ‖ < n >
−2σ |z|2‖L1

t
l∞n

‖ < n >
2σ
φ‖L∞

t
l1n

≤ Cǫ
2− 1

p ‖ < n >
−σ

z‖2
l∞n L2

t
,

for some fixed σ > 0.

If ‖ < n >−σ z‖l∞n L2
t
≤ Cδǫ

1
2p , then

‖ω − ω0 − ǫ‖L∞ ≤ Cδ
2
ǫ
2
,

and there exists ω∞ := limt→∞ ω(t) such that ω∞ ∈ (ω0, ω0 + ǫ0).

Moreover, we establish that (ω, θ) ∈ C1(R+,R
2) such that z(t) ∈ C1(R+, l

2)
by the global well-posedness. It remains to prove that

‖ < n >
−σ

z‖l∞n L2
t
≤ C‖z(0)‖l2n

≤ Cδǫ
1
2p .



Dispersive decay estimates

Discrete pointwise estimates: There exists a constant C > 0 depending on
V such that for all t > 0,

‚

‚

‚〈n〉−σ
e
−itH

Pcf

‚

‚

‚

l2n

≤ C(1 + t)−3/2‖〈n〉σf‖l2n
,

‚

‚

‚
e
−itH

Pcf

‚

‚

‚

l∞n

≤ C(1 + t)−1/3‖f‖l1n
.

By the theory of Keel-Tao (1998), the pointwise estimates are transferred to
the time averaged estimates.

Discrete Strichartz estimates: There exists a constant C > 0 such that
‚

‚

‚
e
−itH

Pcf

‚

‚

‚

L6
t
l∞n ∩L∞

t
l2n

≤ C‖f‖l2n
,

‚

‚

‚

‚

Z t

0

e
−i(t−s)H

Pcg(s)ds

‚

‚

‚

‚

L6
t
l∞n ∩L∞

t
l2n

≤ C‖g‖L1
t

l2n
,

where

‖f‖L
p

t
l
q
n

=

„
Z T

0

‖f(t)‖p

l
q
n
dt

«1/p

, ‖f‖l
q
nL

p

t
=

 

X

n∈Z

‖fn‖q

L
p

t

!1/q

.



Estimates on the continuous part

Strichartz estimates provide a sufficient tool to treat the free solution and the
nonlinear term in the integral equation for z(t),

z(t) = e
−itH

Pcz(0) − i

Z t

0

e
−i(t−s)H

Pc(g1(s) + g2(s) + g3(s))ds,

where

g1 = N(φ + ye
iθ) −N(φ), g2 = −(θ̇ − ω)φ, g3 = −iω̇∂ωφ(ω).

We have
‖e−itH

Pcz(0)‖L6
t

l∞n ∩L∞
t

l2n
≤ C‖z(0)‖l2n

and
‚

‚

‚

‚

Z t

0

e
−i(t−s)H

Pc|z(s)|2p+1
ds

‚

‚

‚

‚

L6
t
l∞n ∩L∞

t
l2n

≤ C‖|z|2p+1‖L1
t
l2n

≤ C‖z‖2p+1

L
2p+1
t

l
2(2p+1)
n

.

For any p ≥ 3, the pair (r,w) = ((2p+ 1), 2(2p+ 1)) is the admissible
Strichartz pair in the sense

6

r
+

2

w
≤ 1,

so that
‖z‖

L
2p+1
t

l
2(2p+1)
n

≤ ‖z‖L6
t
l∞n

+ ‖z‖L∞
t

l2n
.



Estimates on the continuous part

However, to deal with terms |φ|2p|z(s)| as well as with ‖ω̇‖L1
t
, we also need

the estimates on ‖ < n >−σ z‖l∞n L2
t
. These estimates are obtained by

Mizumachi (2008).

Discrete Mizumachi estimates: There exists a constant C > 0 such that

‖ < n >
−3/2

e
−itH

Pcf‖l∞n L2
t

≤ C‖f‖l2n
‚

‚

‚

‚

< n >
−σ

Z t

0

e
−i(t−s)H

PcF(s)ds

‚

‚

‚

‚

l∞n L2
t

≤ C‖ < n >
σ

F‖l1nL2
t

‚

‚

‚

‚

< n >
−σ

Z t

0

e
−i(t−s)H

PcF(s)ds

‚

‚

‚

‚

l∞n L2
t

≤ C‖F‖L1
t
l2n

‚

‚

‚

‚

Z t

0

e
−i(t−s)H

PcF(s)ds

‚

‚

‚

‚

L6
t
l∞n ∩L∞

t
l2n

≤ C‖ < n >
3
F‖L2

t
l2n
.

As a result, we obtain
‚

‚

‚

‚

Z t

0

e
−i(t−s)H

Pc|φ|2p|z(s)|ds
‚

‚

‚

‚

L6
t
l∞n ∩L∞

t
l2n

≤ C‖ < n >
3 |φ|2p|z|‖L2

t
l2n

≤ ‖ < n >
3+σ |φ|2p‖L∞

t
l2n
‖ < n >

−σ
z‖l∞n L2

t
.



Numerical results

Pointwise estimates imply that ‖z(t)‖l∞ = O(t−1/3) as t→ ∞.

Strichartz estimates imply that ‖z(t)‖l∞ = O(t−1/6+ν), ν > 0 as t→ ∞.

For any p = 1, 2, 3, it was found that ‖z(t)‖l∞ = O(t−3/2) as t→ ∞.
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Further directions

Cuccagna (2009): long-term oscillations of discrete solitons with V
supporting two eigenvalues - no proof of existence of the time-periodic
space-localized breathers

Mielke & Patz (2010): better pointwise dispersive decay estimates.

Lemma

For any q ∈ [2, 4) ∪ (4,∞], there is Cq > 0 such that
‚

‚

‚
e
−itH

Pcf

‚

‚

‚

l
q
n

≤ Cq(1 + t)−αq‖f‖l1n
,

where
αq =

q − 2

2q
, 2 ≤ q < 4, αq =

q − 1

3q
, 4 < q ≤ ∞.

Scattering to zero solution is proved via standard arguments for

iu̇n = −∆un + γ|un|2p
un = 0, n ∈ Z,

with p ≥ 2.



Further directions

P, Sakovich (2010): the proof of the spectral conjecture in the
linearization of the discrete soliton for

iu̇n = −ǫ∆un + γ|un|2p
un = 0, n ∈ Z,

in the anti-continuum limit ǫ→ 0.

Ablowitz & Ladik (1975): an integrable version of the cubic DNLS
equation

iu̇n + un+1 − 2un + un−1 + |un|2(un+1 + un−1) = 0, n ∈ Z.

This equation is related to the Lax operator (the discrete version of the
Zakharov–Shabat scattering problem).


	Introduction
	Formalism
	Proofs
	Numerical results
	Further directions

