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The problem

The discrete nonlinear Schrodinger (DNLS) equation
iUy + AgUn + olup[®uny =0, neZzZd

Localized modes (time-periodic space-localized solutions) are of the form
Un(t) = gne~'“!, where w € R and {¢n }nezo Satisfies

(w+ Ag) ¢n + 0lén|?dn =0, neZd

Main Question: If a localized mode is orbitally stable, is it also asymptotically
stable due to dispersive radiation?

@ P. Kevrekidis, D. Pelinovsky, and A. Stefanov, arXiv:0810.1778
@ S. Cuccagna, M. Tarulli, arXiv:0808.2024
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Physical contexts

The DNLS equation arises in the modeling of density waves in Bose—Einstein
condensates as the Gross—Pitaevskii equation

iUy = —V2u + V(x)u + o|ul?u

with a bounded periodic potential V (x) = V(x 4 27) reduces asymptotically to
the DNLS equation in a tight-binding approximation.

Another context of the DNLS equation is the coupled waveguide arrays in
nonlinear optics and photorefractive crystals.
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Numerical simulations

P. Kevrekidis et al., Physics Letters A 372, 2237 (2008)
(1D) |Un + Un+1 - ZUn + Un71 + |Un|ZUn == 0

Un(0) = Adn,o With A = 1 (left), A = 2 (middle), and A = 2.5 (right).
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Asymptotic stability of localized modes

Given a time-periodic space-localized solution ¢,e~'“! of the DNLS equation,
the stability can be considered in the following three senses:

@ Linearized (or spectral) stability
@ Nonlinear orbital stability
@ Asymptotic stability

Stability depends on ¢,. In what follows, we consider single-humped on-site
discrete solitons, which are known to be spectrally stable.
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Left: on-site soliton. Right: inter-site soliton.

D.Pelinovsky (McMaster University) Asymptotic stability of discrete solitons 5/16



More general formulation

Let us consider the 1D DNLS equation in the form
iUn = (—A + Vp)un + o|un|?®®un, nez,

where ¢ = £1, p > 1 (an integer), and V € I*°.

Assumption: V supports exactly one negative eigenvalue wo < 0 of
H = —A + V with an eigenvector v, € 12 (normalized by ||1,]];2 = 1).

For instance, if V, = —én o, the assumption is satisfied with
(¢O)n = e_K‘n|7 ne Z7

where x = arcsinh(27) and wg = 2 — /5 < 0.
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Global well-posedness

Global well-posedness: For any ug € 12, ¢ > 0, there exists a unique
solution u(t) € C(R,,12) s.t. u(0) = up and u(t) depends continuously on uo.

Local existence follows from the Picard iterations applied to

t
Un(t) = Un(0) — i / [(—2 + Va)un(t’) + o]un(t') 2 un(t’)] dt’
0
in space C([0,T],12). To show that T = oo, we can use the balance equation

.d _ _ _
|a|un|2 = Un(Unt1 + Un_1) — Un(Uns+1 + Un_1),

so that .
lu®)l < Ilu(0) +C/0 Ju(t’)|[Edt".

By Gronwall's inequality,

u(t)||2 is bounded and continuous for any t € R...
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Local bifurcation of localized modes

Local bifurcation: Let e :=w — wp and o = +1. For any € € (0, &), where
€0 > 0 is small, there exists a solution ¢(w) € C([wo,wo + €o),12) of

(=D + Vi)gn(w) + 0a” (W) = wen(w), nez,
satisfying
671”/’0
ol |

Moreover, ¢(w) decays exponentially to zero as |n| — cc.
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Orbital stability

Theorem [Weinstein, 1999]: Let o = —1 and V = 0. There exists a global
minimizer of energy

1
E= Z |Uni1 — Un]? — m|un|2er2
nez

under a fixed N = |[u||2 for any p > 1. If p < 2, it exists for any N > 0,
whereas for p > 2, there is a threshold Ng > 0 so that it exists for N > No.

If u(0) = ¢(w(0)), then u(t) remains near ¢(w(t)) for all t € R,. However, the
question is if there exists wq, S0 that u(t) — ¢(we) ast — cc.
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Main result

Theorem [Kevrekidis, P., Stefanov, 2008]: Letc = +1andp > 3. Fixe >0
and ¢ > 0 be small and assume that w(0) = wo + € and

1u(0) — p(wo + €)12 < bez.

Under some assumptions on V, there exist w., € (wo,wo + €o),

(w.0) € CH(R.), and y(t) = u(t) — e “Op(w(t)) € CH(R+,1%) NLE(R, 1)
such that u(t) solves the DNLS equation and

lm w(t) = wee,  lim Ju(t) - e O p(w(t))|i~ = 0.

t—oo
Remark: A similar result applies in the focusing case o = —1 with the local
bifurcation to w < wp.

Pioneer works on continuous NLS equations are by Soffer,Weinstein
(1990,1992,2004), Pillet,Wayne (1997), Yao, Tsai (2002), Mizumachi (2008).
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Decomposition of the solution

Let
u(t) = e (o(w(t)) +2(1)),

for some (w, ) € R?. Then, z(t) € C}(R,I2) solves

i2=(H - w)z— (6 - w)(d(w) + 2) — 1w, d(w) + N((w) +2) = N(¢(w)),
where H = —A +V and [N(¥)]n = o|tn|?Ptn.

uft)

2
Phi(w)

Question: How to ensure that the decomposition is unique?
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Double null space

Linearized time evolution for z(t) = v(t) + iw(t) is defined by the
non-self-adjoint eigenvalue problem

Liv=-\w, L_w=)v,

where
L=H-w+W, Li=H-w+(2p+1)W,
where W, = 0¢3° (w).
There exists a double zero eigenvalue with a one-dimensional kernel, isolated

from the rest of the spectrum. The generalized kernel is spanned by vectors
(0, p(w)), (D¢ (w), 0) € 12 satisfying

L_p(w) =0,  Liduop(w) = d(w).
(v,w) € 12 is symplectically orthogonal to the double subspace of the

generalized kernel under the conditions

<Va ¢(w)> = 07 <Wa awd)(w» = O,
where (u,v) := >, UnWp.
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Symplectic orthogonality

Let us require that

<Rez(t)7¢l> = <|mZ(t),’l,b2> =0

_Pw)
l¢(w)ll="

where

Y=

_Ouo(w)
2 =1

19 p(w)iz”

Unique decomposition: Fix e € (0, ¢). There exists 6 > 0and T > 0 such
that any u(t) € C*([0, T],12) satisfying
Ju(t) = ¢wo + )i < 6%, t [0, T],
can be uniquely decomposed by
u(t) = e (o(w(t)) +2(1)),

where (w,8) € C1([0,T],R?) and z(t) € C([0, T],12) satisfies the symplectic
orthogonality conditions. Moreover, there exists C > 0 such that

w(t) —wo — e| < Cde, |0(t)] < C3, ||z(t)]l. < Coe, te[0,T].
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The time-evolution of (w, #) satisfies the system

A, 2) { o ] ~ f(w,2),
where
<8w¢>(w),1,b >_ <Rez,8w’l/) > <Imz,¢ >
Alw2) = { Imz, 0.y () +Rezaby) }
and

o) [ (IMN( +2) — Wz, 1by) }
DE T | (ReN(¢p+2) = N(¢) — (2p + L)Wz, 1) |~

In addition, we recall the time evolution of z(t) from

iz=(H—-w)z— (0 —w)(P(w)+2) — iwd,d(w) + N(¢p(w) + 2) — N(¢(w)).
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Dispersive decay estimates

Assumption:LetV € 1} _for afixed o > 2 and let V is generic in the sense
that no solution v, of equation Hyp, = 0 exists in 12 for 1 <o < 3.

Pointwise dispersive decay estimates: There exists a constant C > 0
depending on V such that

H<n>*ffe*itH Pac. (H)f

< CL+) 7))z,

12

le™Pac(H)| . < @+t 2y,

oo

forallt € R,.

Discrete Strichartz estimates: There exists a constant C > 0 such that
e ™ Pac.(H)f < Clflg,

LIg°NLe12

A

t
/ e~ I(-Hp,  (H)g(s)ds

< Clgllue-
0

6
LeIg°NLe12
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Numerical results

Forany p = 1,2, 3, it was found that ||y(t)|[j~ = O(t~%/?) ast — oo.
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Further results:
@ Cuccagna’ 09: periodic oscillations of discrete solitons with V supporting
two eigenvalues
@ Stefanov’ 09: pushing analysisto p = 2
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