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The problem

The discrete nonlinear Schrödinger (DNLS) equation

i u̇n + ∆dun + σ|un|2un = 0, n ∈ Z
d .

Localized modes (time-periodic space-localized solutions) are of the form
un(t) = φne−iωt , where ω ∈ R and {φn}n∈Zd satisfies

(ω + ∆d)φn + σ|φn|2φn = 0, n ∈ Z
d .

Main Question: If a localized mode is orbitally stable, is it also asymptotically
stable due to dispersive radiation?

P. Kevrekidis, D. Pelinovsky, and A. Stefanov, arXiv:0810.1778

S. Cuccagna, M. Tarulli, arXiv:0808.2024
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Physical contexts

The DNLS equation arises in the modeling of density waves in Bose–Einstein
condensates as the Gross–Pitaevskii equation

iut = −∇2u + V (x)u + σ|u|2u

with a bounded periodic potential V (x) = V (x + 2π) reduces asymptotically to
the DNLS equation in a tight-binding approximation.

Another context of the DNLS equation is the coupled waveguide arrays in
nonlinear optics and photorefractive crystals.
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Numerical simulations

P. Kevrekidis et al., Physics Letters A 372, 2237 (2008)

(1D) i u̇n + un+1 − 2un + un−1 + |un|2un = 0

un(0) = Aδn,0 with A = 1 (left), A = 2 (middle), and A = 2.5 (right).
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Asymptotic stability of localized modes

Given a time-periodic space-localized solution φne−iωt of the DNLS equation,
the stability can be considered in the following three senses:

Linearized (or spectral) stability

Nonlinear orbital stability

Asymptotic stability

Stability depends on φn. In what follows, we consider single-humped on-site
discrete solitons, which are known to be spectrally stable.
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Left: on-site soliton. Right: inter-site soliton.
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More general formulation

Let us consider the 1D DNLS equation in the form

i u̇n = (−∆ + Vn)un + σ|un|2pun, n ∈ Z,

where σ = ±1, p ≥ 1 (an integer), and V ∈ l∞.

Assumption: V supports exactly one negative eigenvalue ω0 < 0 of
H = −∆ + V with an eigenvector ψ0 ∈ l2 (normalized by ‖ψ0‖l2 = 1).

For instance, if Vn = −δn,0, the assumption is satisfied with

(ψ0)n = e−κ|n|, n ∈ Z,

where κ = arcsinh(2−1) and ω0 = 2 −
√

5 < 0.
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Global well-posedness

Global well-posedness: For any u0 ∈ l2σ , σ ≥ 0, there exists a unique
solution u(t) ∈ C1(R+, l2σ) s.t. u(0) = u0 and u(t) depends continuously on u0.

Local existence follows from the Picard iterations applied to

un(t) = un(0) − i
∫ t

0

[

(−∆ + Vn)un(t ′) + σ|un(t ′)|2pun(t ′)
]

dt ′

in space C([0,T ], l2σ). To show that T = ∞, we can use the balance equation

i
d
dt

|un|2 = un(ūn+1 + ūn−1) − ūn(un+1 + un−1),

so that

‖u(t)‖2
l2
σ

≤ ‖u(0)‖2
l2
σ

+ C
∫ t

0
‖u(t ′)‖2

l2
σ

dt ′.

By Gronwall’s inequality, ‖u(t)‖2
l2
σ

is bounded and continuous for any t ∈ R+.
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Local bifurcation of localized modes

Local bifurcation: Let ǫ := ω − ω0 and σ = +1. For any ǫ ∈ (0, ǫ0), where
ǫ0 > 0 is small, there exists a solution φ(ω) ∈ C([ω0, ω0 + ǫ0), l2) of

(−∆ + Vn)φn(ω) + σφ
2p+1
n (ω) = ωφn(ω), n ∈ Z,

satisfying
∥

∥

∥

∥

∥

∥

φ(ω) − ǫ
1

2pψ0

‖ψ0‖
1+ 1

p

l2p+2

∥

∥

∥

∥

∥

∥

l2

≤ Cǫ1+ 1
2p .

Moreover, φ(ω) decays exponentially to zero as |n| → ∞.
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Orbital stability

Theorem [Weinstein, 1999]: Let σ = −1 and V ≡ 0. There exists a global
minimizer of energy

E =
∑

n∈Z

|un+1 − un|2 −
1

p + 1
|un|2p+2

under a fixed N = ‖u‖2
l2 for any p ≥ 1. If p < 2, it exists for any N > 0,

whereas for p ≥ 2, there is a threshold N0 > 0 so that it exists for N ≥ N0.

If u(0) ≈ φ(ω(0)), then u(t) remains near φ(ω(t)) for all t ∈ R+. However, the
question is if there exists ω∞ so that u(t) → φ(ω∞) as t → ∞.
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Main result

Theorem [Kevrekidis, P., Stefanov, 2008]: Let σ = +1 and p ≥ 3. Fix ǫ > 0
and δ > 0 be small and assume that ω(0) = ω0 + ǫ and

‖u(0) − φ(ω0 + ǫ)‖l2 ≤ δǫ
1

2p .

Under some assumptions on V , there exist ω∞ ∈ (ω0, ω0 + ǫ0),
(ω, θ) ∈ C1(R+), and y(t) = u(t) − e−iθ(t)φ(ω(t)) ∈ C1(R+, l2) ∩ L6(R+, l∞)
such that u(t) solves the DNLS equation and

lim
t→∞

ω(t) = ω∞, lim
t→∞

‖u(t) − e−iθ(t)φ(ω(t))‖l∞ = 0.

Remark: A similar result applies in the focusing case σ = −1 with the local
bifurcation to ω < ω0.

Pioneer works on continuous NLS equations are by Soffer,Weinstein
(1990,1992,2004), Pillet,Wayne (1997), Yao,Tsai (2002), Mizumachi (2008).
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Decomposition of the solution

Let
u(t) = e−iθ(t) (φ(ω(t)) + z(t)) ,

for some (ω, θ) ∈ R
2. Then, z(t) ∈ C1(R+, l2σ) solves

i ż = (H − ω)z − (θ̇ − ω)(φ(ω) + z) − iω̇∂ωφ(ω) + N(φ(ω) + z) − N(φ(ω)),

where H = −∆ + V and [N(ψ)]n = σ|ψn|2pψn.

Question: How to ensure that the decomposition is unique?
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Double null space

Linearized time evolution for z(t) = v(t) + iw(t) is defined by the
non-self-adjoint eigenvalue problem

L+v = −λw, L−w = λv,

where
L− = H − ω + W , L+ = H − ω + (2p + 1)W ,

where Wn = σφ
2p
n (ω).

There exists a double zero eigenvalue with a one-dimensional kernel, isolated
from the rest of the spectrum. The generalized kernel is spanned by vectors
(0,φ(ω)), (−∂ωφ(ω), 0) ∈ l2 satisfying

L−φ(ω) = 0, L+∂ωφ(ω) = φ(ω).

(v,w) ∈ l2 is symplectically orthogonal to the double subspace of the
generalized kernel under the conditions

〈v,φ(ω)〉 = 0, 〈w, ∂ωφ(ω)〉 = 0,

where 〈u, v〉 :=
∑

n∈Z
unw̄n.
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Symplectic orthogonality

Let us require that
〈Rez(t),ψ1〉 = 〈Imz(t),ψ2〉 = 0,

where

ψ1 =
φ(ω)

‖φ(ω)‖l2
, ψ2 =

∂ωφ(ω)

‖∂ωφ(ω)‖l2
.

Unique decomposition: Fix ǫ ∈ (0, ǫ0). There exists δ > 0 and T > 0 such
that any u(t) ∈ C1([0,T ], l2) satisfying

‖u(t) − φ(ω0 + ǫ))‖l2 ≤ δǫ
1

2p , t ∈ [0,T ],

can be uniquely decomposed by

u(t) = e−iθ(t) (φ(ω(t)) + z(t)) ,

where (ω, θ) ∈ C1([0,T ],R2) and z(t) ∈ C1([0,T ], l2) satisfies the symplectic
orthogonality conditions. Moreover, there exists C > 0 such that

|ω(t) − ω0 − ǫ| ≤ Cδǫ, |θ(t)| ≤ Cδ, ‖z(t)‖l2 ≤ Cδǫ
1

2p , t ∈ [0,T ].
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Projections

The time-evolution of (ω, θ) satisfies the system

A(ω, z)

[

ω̇

θ̇ − ω

]

= f(ω, z),

where

A(ω, z) =

[

〈∂ωφ(ω),ψ1〉 − 〈Rez, ∂ωψ1〉 〈Imz,ψ1〉
〈Imz, ∂ωψ2〉 〈φ(ω) + Rez,ψ2〉

]

and

f(ω, z) =

[

〈ImN(φ+ z) − Wz,ψ1〉
〈ReN(φ+ z) − N(φ) − (2p + 1)Wz,ψ2〉

]

.

In addition, we recall the time evolution of z(t) from

i ż = (H − ω)z − (θ̇ − ω)(φ(ω) + z) − iω̇∂ωφ(ω) + N(φ(ω) + z) − N(φ(ω)).
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Dispersive decay estimates

Assumption:Let V ∈ l12σ for a fixed σ > 5
2 and let V is generic in the sense

that no solution ψ0 of equation Hψ0 = 0 exists in l2−σ for 1
2 < σ ≤ 3

2 .

Pointwise dispersive decay estimates: There exists a constant C > 0
depending on V such that

∥

∥

∥
〈n〉−σe−itHPa.c.(H)f

∥

∥

∥

l2n
≤ C(1 + t)−3/2‖〈n〉σf‖l2n

,

∥

∥

∥
e−itHPa.c.(H)f

∥

∥

∥

l∞n
≤ C(1 + t)−1/3‖f‖l1n

,

for all t ∈ R+.

Discrete Strichartz estimates: There exists a constant C > 0 such that
∥

∥

∥
e−itHPa.c.(H)f

∥

∥

∥

L6
t l∞n ∩L∞t l2n

≤ C‖f‖l2n
,

∥

∥

∥

∥

∥

∫ t

0
e−i(t−s)HPa.c.(H)g(s)ds

∥

∥

∥

∥

∥

L6
t l∞n ∩L∞t l2n

≤ C‖g‖L1
t l2n
.

Pointwise estimates imply that z t O t−1 3 as t .
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Numerical results

For any p = 1, 2, 3, it was found that ‖y(t)‖l∞ = O(t−3/2) as t → ∞.
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Further results:

Cuccagna’ 09: periodic oscillations of discrete solitons with V supporting
two eigenvalues

Stefanov’ 09: pushing analysis to p = 2
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