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Shocks and Spatial Periodicity

Spatially Homogeneous System of Conservation Laws

8tv + axf(V) =0 J

Smooth data generates a shock in finite time (Lax 64)

Periodically Varying System of Conservation Laws

Orv + Oxf(x,v) =0
f(x+2m,v) = f(x,v)

Can spatial periodicity stabilize shock formation?

o F
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Regularizing Shocks

@ Diffusive regularization:
Vi + Wy = UVxx
@ Dispersive regularization:
Ve + Wy + avex =0
@ Dispersion from Spatial Periodicity (Maxwell Model):

07 (n*(z)E + xE?) = 02E,
n?(z +2r) = n?(2).

@ Does this model display wave breaking (shocks)?
@ Does this model admit stable localized states (solitons)?
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Maxwell & Coupled Mode Equations

Periodic Nonlinear Maxwell Equation

97 (n(2)E + xE?) = O2E

n(z) =1+ EZ NyeP?, e < 1.
pEZ
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Maxwell & Coupled Mode Equations

Periodic Nonlinear Maxwell Equation

97 (n(2)E + xE?) = O2E

n(z) =1+ EZ NyeP?, e < 1.
pEZ

Two-wave approximation of small-amplitude resonant waves
E ~€'f? <5+(ez, et)el@t) 4 5_(ez,et)e_i(z+t)>

yields the Nonlinear Coupled Mode Equations (NLCME) for ££(Z, T) in
slow variables Z = ez and T = et.
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Properties of the NLCME

The Nonlinear Coupled Mode Equations (NLCME)
OrEt + 026% = iNoE™ + 1T (|E7 2 4207 ) £,
OrE™ — 076~ = iNpe" +iT (|7 +2|e*?) &
o Dispersive, 02 = K2+ |N,|?,

@ Possess explicit solitary wave solutions (Aceves—Wabnitz 89),
@ Globally well-posed in H!(R) (Goodman et al. 01), but
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Properties of the NLCME

The Nonlinear Coupled Mode Equations (NLCME)
+ + o INAE— +12 -2\ o+
OTEY + 026% = iNoE™ + T (€72 42067 ) £,

OrE™ — 076~ = iNpe" +iT (|7 +2|e*?) &

@ Dispersive, Q% = K2 + |N2\2,

@ Possess explicit solitary wave solutions (Aceves—Wabnitz 89),

@ Globally well-posed in H!(R) (Goodman et al. 01), but
@ Mathematically inconsistent, because the correction term &,

(02 = ?) & = (7)) 4 (£7) 730 4

grow secularly in t.
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NLCME Soliton Data and Numerics

Seed NLCME Soliton (£1,£7) into Maxwell equations,
E(z,t) = €2 <5+(ez, et)e'@D 4 £ (ez, et)e—"<z+f>) .
@ No periodic potential:
07 (E+xE®) = 02E
@ Small cos-periodic potential:
d? (E + ecos(z)E + XE3) = 0’E

Side pulses are absent in the NLCME.
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Revised Asymptotic Expansion
Hunter—Keller 83, Majda—Rosales 84, ...

Generalized Ansatz

E = él2 (E(O)(z, t,Z,T)+ eED(z,t,2, T) + .. ) :

Leading Order

EO = Et(z—t,Z,T)+E (z+1t,2Z,T)

Constraint on the Sublinear Growth of the Correction Term

o1
lim —

L
1
HE( )H (t)dt = 0.
L—oo L 0
=] 5 = = DAy
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Integro-Differential equations for EX(¢, Z, T)

OTEY + 07E™ = 0, (N(¢ + S)E~ (¢ + 25)),
+ 10, [% (EY)*+ET <(E_)2>s] ’
OTE™ — 97E~ = ~0, (N(¢ — s)E* (¢ — 25)),
—T0, [<(E+)2>S E-+ % (E‘)3]
where

= lim —/ f(s)ds.

Ll—oo L
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Extended Nonlinear Coupled Mode Equations (xNLCMEs)

Periodically Varying Index of Refraction

N(z)=N(z+2r) = N@z)=> Ny No=0
Harmonic Decomposition

EX(¢,Z,T)=> EX(Z,T)eP.

=] 5 = E DAy
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Extended Coupled Mode Equations

Extended Nonlinear Coupled Mode Equations (xNLCMEs)

Periodically Varying Index of Refraction

N(z)=N(z+2r) = N@z)=> Ny No=0

Harmonic Decomposition

EX(¢,Z,T)=> EX(Z,T)eP.

xNLCMEs

ores + o0k — iy + 2 [ ErEE 43 (TIET) ]
p
: 3

e e 3 (L IET)E
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Inclusion of third harmonic (ES;), resolves side pulses

Questions:
@ Do the xNLCMEs admit localized stationary states (solitons)?

@ If they do, are localized states robust in the time-dependent dynamics
of the xNLCMEs?

Simplifications:
© We reduce the system of xNLCMEs near band edges to a system of
nonlinear Schrodinger equations.
© We use the Gaussian trial functions and variational approximations.

© We truncate the system of equations and perform parameter
continuations.
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Localized states

Band Edge Approximation

Localized stationary states

—i — 202
EX(Z,T) = AX(2)e T, AX(Z)~e 1p11Z |/ TN2p P—22

Assume Np, =1 for all p and Q € (—1,1).

Localized states near a band edge

A, (2) = £uUp(pZ) + O(1?)

Q=+v1—p?, 0<puxl.

This expansion allows us to derive coupled nonlinear
Schrodinger equations.

=
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Localized states

Justification of the coupled NLS equations

Coupled Stationary Nonlinear Schrodinger Equation
UF/’/(C) o p2UP + %pz (3UPZ |UQ|2 + Z UquUp—q—r> =0.

U,0) = Up(¢)e®

Theorem

Assume the existence of a localized state U € X® of the NLS equations,
X ={U(¢.9) e SR X T): U(C,9)=U(C9).}, s>1,

satisfying the symmetry U,(C) = Uy(—(). There exists jg > 0 such that

for any |u| < uo, the xNLCMEs with Q = /1 — p? admit a unique
localized state A* € X* satisfying the bound

3C>0:  [|A* F uU(p,)llxs < Cp®.
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Existence of localized stationary states
Coupled NLS equations

Up(¢) = P*Up + 3P <3UP Z |Uqg|* + Z UquUp—q—’> =0
Energy

1 2 1 _ _
H= /RZ (FIU{,I2 + |Up|2> - (Z |Up|2) = 5 2 UpUgUr U pdlG.

=] 5 = E DAy
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Localized states

Existence of localized stationary states

Coupled NLS equations

Us(C) = P2Up + 297 (3Up D 1Ug2 4+ 3" UgUUpg-r) = 0

Energy

1 2 1 _ _
H:/RZ (;lu,’)m |Up|2) _ (Zlupp) _ §Zupuqu,uq+,_pdg;

Constrained variational problem

minimize H subject to fixed N = / Z |Up|2dC.
R

However, H is unbounded from below, even under the constraint.
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Rayleigh—Ritz Approximation

Gaussian Ansatz

_ 2
Up(C) = ape™™C,  p € Zoaa,
Reduced Energy

2
9

b 2

B agag B V28pag3rdp g
Vbp  \/bp+bg 3\/by+bg+b+byq
Euler—Lagrange Equations

VaH(;(a, b) = 0, VbH(;(a, b) =0.

=] 5 = E DAy
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Rayleigh—Ritz Approximations

Rayleigh—Ritz Approximation, Results

Truncated Solutions of Euler—Lagrange Equations:

No. of Modes a by a3 b3 as bs

1 0.56060 0.33333 - - -

2 0.56321 0.33148 -0.13918 3. 9413 -

3 0.56329 0.33189 -0.14585 3.6287 0.062822 8.5577
Questions:

@ Does the solution converge to a localized state with finite N or H?

@ Is the alternating sign between the modes important?

@ Does the alternating sign persist with the number of modes?
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Reduced Rayleigh—Ritz Approximation
Simplified Gaussian Ansatz

Up(C) = ape_bpC P € Zodd,
with ,
ap = AC1)P2 7 by =
Two Parameter Energy

Ha = he(v,A) = A*f(7) — A'g(7)
At a critical point, this expression simplifies to

2
he(r. Al)) = )

=] 5 = E DAy
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Reduced Rayleigh—Ritz Approximation, Results

L

Z ||Up||i2 ~ Zp_l_h

1 Vi ~ 1.26
| UeX®, 1<s5<1.26

[m] = =
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Ansatz without Alternating Signs

P
Up(Q) =Alp| " e 3%, p € Zoaa,

No Extrema
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Stable localized states

Direct Numerical Solution of Truncated NLS System
NLS System
Up(€) = P*Up + 3P (3Up 3 1Ugl” + 3 UglUrUp 1) =0
u,¢) =Y Up(¢)e™

Alternating Signs & # of Nodes, |p| < 12

)

! ‘\\ S,
2 4
0
_r
'# ! # $ %o &
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Persistence of Coupled NLS Solitons in xNLCMEs
Resolves odd |p| < 8
OrE] + 07} = ipNapEy + {Z ELEE - +3 (216 ) ]

OrE; — 0265 = iplo,EF + P g 3 IET) &
EF(Z,0) = £pUp(nZ), p=1

n=0.1
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Stable localized states

Persistence of Coupled NLS Solitons in xNLCMEs

Resolves odd |p| < 8

OrEF +07EF = ipNopE; + 2 [ZE+E+ ra 3 (X IEP) &

0TE;—8ZE;:ipN2pE++I3 > EEE 3 IE)E ]

EF(Z,0) = iuUp(uZ), p=3

n=0.1
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Open question

Prove the existence of localized solutions in the nonlocal nonlinear elliptic
problem:

(02 + 05)U = 305 {U3+3 (%/\U!2d0> U] .

where

U0,0) = >  Up(¢Q)e?”, U:TxR—-R

Summary:

Our results suggest that the localized states are robust for the nonlinear
periodic Maxwell model. Existence of such states do not eliminate a
possibility of shocks for large amplitudes.
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