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Introduction

Model

e Discrete nonlinear Schrodinger equation (DNLS) in 1-D

Un+1(t) — 2Un(t) + Un_l(t)
h2

Iun(t) + + f(un+17 ul’l7 Un—l) - 0

e General nonlinear term f:
e Cubic DNLS, f = |un|?up.
e Ablowitz-Ladik f = |un|?(Uny1 + Un_1).
e Salerno model

f = 2a|Un|ZUn + (1 — Oé)|Un|2(Un+1 + Unfl).
e Translationally invariant model

f = a1un?un + a2|un|?(Uns1 + Un_1) + azu2(Tnes + On_1)
v+ 0(|UntaPUn_1 + [Un_1]?Uny1).
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More on translationally invariant model

e Stationary solutions un(t) = pne'“t satisfy the
second-order difference map

Ont1 — 20n + dn—1
h2

e Two solutions: on-site and inter-site discrete solitons

%

—Won +

+f(éni1, ¢n, on-1) = 0.

rrrrrrrrrrrrrrrrrrrrrrrr

e When a1 = a4 + ag, as = ag, @7 = a4 — ag and
a19 = ag — ag, the difference map admits a continuous
family of localized solutions ¢ = ¢(n —s), where s € R
(D.P., Nonlinearity 19, 2695 (2006)).
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Traveling waves in lattices

e Discrete nonlinear Schrodinger equation

Un+1(t) — 2Un(t) + Un_l(t)
h2

Iun(t) + + f(un+17 ul’l7 Un—l) - 0

 Moving into the travelling frame z = hn — 2ct gives a
differential advance-delay equation. If up(t) = ¢(z)e'“t,

gl (z) 2+ =200) 60z ) _

+f(¢(z +h), ¢(z)é(z — h)).

e Traveling waves satisfy the constraints:

we(2)

up(t) = up(t —7)e'?,  un(t) = up(t — 27)e??, etc.
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Radiationless Solitons

e Localised solutions to a differential difference equation.

e Waves travel across a lattice without shedding any
radiation.

e Homoclinic orbit to the zero state in a travelling frame.
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Difficulties

In general, traveling wave solutions are weakly non-local.

Eigenvalues on the imaginary axis in the linear spectrum
give rise to radiation modes.

Number of eigenvalues is finite for ¢ ## 0 but increases as
c— 0.

In general there is at least one resonance.

Amplitude of radiation modes are generally exponentially
small in terms of a bifurcation parameter.



Linear analysis

Reformulation of existence problem

e Introduce parameters xk € Ry, § € [0, 7]
2 2
w :Hﬂc + p(cos(ﬂ) cosh(k) — 1),
c :hi sin(3) sinh(k),

K

e Scale out h using ¢(z) = t®(2)e'¥%,z = ¢
o New differential advance-delay equation

i sin(g) <2Si”:(”) dziéz) —O(Z 1)+ O(Z - 1))

+cos(f3) (2cosh(k)P(Z) — d(Z +1) — d(Z — 1))
—f(d(Z + 1), 0(2),0(z —1)e"P) =0,

where x > 0and g € [0, 7].



Linear analysis

Linear Spectrum

Dispersion relation for the linear equation is obtained using
d(Z2) =eP?

D(p; , B) =2 cos(5)(cosh(p) — cosh(k))
+2i sin(3) <sinh(p) — %(H)O =0.

there are finitely many imaginary roots p = ik, n =1,...,m
forany x > 0and g3 € (0, )

if kK = 0, there exists a double root k = 0 of D(ik; 0, 3)

if x =0and g = 7/2, the zero root k = 0 is a triple root of
D(ik; 0, 3)

if k =0and 3 € (B, ) with 5o =~ 75, there exists only one
imaginary root besides the double zero root.
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Linear Spectrum

e Dispersion relation for the linear equation is obtained using
(Z) =eP?

D(ik,0,B)
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Methods
¢ Normal forms and Melnikov integrals
e Analysis of the normal form near x =0 and 8 = 7/2
(D.P,V.Rothos, Physica D 202, 16 (2005)).
¢ Analysis of persistence of homoclinic orbits near the line

k> 0and g = /2 (D.P.,T.Melvin, A. Champneys, Physica
D 236, 22 (2007)).

Pseudo-Spectral method Conclusion
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Melnikov Integrals

Pseudo-Spectral method
Methods
e Stokes constant computation

¢ Analysis of Stokes phenomena in a beyond all orders

expansion for k = 0 and 8 # 7/2 (O. Oxtoby, |
Barashenkov, nlin/0610059 (2006)).

Conclusion
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Linear analysis Methods Melnikov Integrals Pseudo-Spectral method Conclusion
Methods
¢ Pseudo-spectral decomposition

e Numerical solutions of the differential advance-delay
equation for x > 0 and any 5.

DA
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Reduction of the differential advance-delay equation

e Write the main equation as

i sin(3) <¢+ o zs'”:( ) o (Z)>

+cos(f3) (¢4 + ¢_ — 2cosh(x)®P) +f; +ifi =0,

where &4 = &(Z +1) and (¢, €4, &, &_e15) =, +if,.
e If =7 and

a1 = 07 Qg = g, Q7= 20[5,
the equation reduces to a scalar real-valued equation

2sinh(/s) de
Kk dzZ

_ [1 + (a2 — a3)®? + ag(P2 + O, b_ + $2)
—(ag + a10) PP (¢4 — ).



Melnikov Integrals

Assumption on existence of solutions

e Assumption: There exists a single-humped solution do(2)
for any x > 0 and some parameters (a(zo), a3 ,...) Sit.

®o € HY(R) : do(—2) = do(2), | lim e"Zldg(Z) = co.

Z|—o0

e Any even solution is extended into a continuous family
do(Z —s), Vs € R.
e When ag = ag = a19 = 0 and a > ag, the assumption is
satisfied with the explicit solution
sinh k

CDO(Z):\/ﬁSGCh(mZ), k> 0.
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Persistence of solutions |

Theorem: Under some assumptions on the linearized operator,
the single-humped localized solution persists with respect to
parameter continuations, such that ||® — ®g||1 < Ce, where

C >0and e = max; |oj — aj(o)\.

To the proof:

° Let(D:<Do+U,aj:aj(O)

equation as

+ €q;, and write the scalar

L U =N(U) + eF (o + U),
where L, is a differential advance-delay operator and

IN(U)[lg2 < C1[lUI[Z, [IF (®o + U)llus < Cal|®o + U3s.



Melnikov Integrals

To the proof:
¢ Notice that

Ly :HY — L2, N,F:Hl —H,

and

099 2(kcoshk —sinhk
L+ 8[1 - ( HZ )q)/O(Z)

L+¢6(Z) = 07

e Assume that L, has no eigenvalues near Re(\) = 0 except
for A = 0 and that the zero eigenvalue is double. Then,
invert Ly on L2, and use the Implicit Function Theorem.

e Although the continuous spectrum of L extends on the
imaginary axis Re(\) = 0, the entire spectrum is shifted off
the imaginary axis in the exponentially weighted H® space.
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Persistence of solutions |l
Theorem: Under additional assumptions on the linearized
operator, the single-humped localized solution persists along
the curve on (k, 5)-plane with respect to parameter
continuations, such that ||® — ®g||,;1 < C(e + w) if and only if
A(e, ) = 0, where p = cot 3, aj = aj(o) +ea; and A(e, 1) is a
Melnikov integral

N, :/RWO(Z;O)[N_(U,V) FE (94U, V:e w)]dz,

where
e Wy is an eigenfunction of the adjoint operator for the zero
eigenvalue,
e N_ is the unperturbed vector field with quadratic and cubic
termsin ®(Z) — ¢o(Z) =U(Z) +iV(Z), and
e F_ contain linear and nonlinear terms in &g + U and V
related to the perturbations in ;. = cot 3 and e.
It is clear that A(0,0) = 0.
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Example | : Salerno model
The model is

h2
—i—2a|un|2un +(1 - a)|un‘2(un+l +Un_1) =0.

iun(t) +

If o = 0, the family of solutions with 3 = 7 is a part of a
two-parameter family. =— A(O, x) = 0 for any p € R.

If A(e,0) # O for € # 0, the family can not be continued in e.
Explicit computation shows that

2.A(0,0) /w020)¢3( )dZN——/ <0,

cosh®¢

for small k > 0.

Therefore, the family of exact solutions of the AL lattice
does not persist in the Salerno model near 3 = 7.
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Example Il : Translationally invariant model
The model is
Un+1(t) - ZUn(t) + Un_]_(t)
h2
+  01[Un/?Un + @2|Un|*(Uns1 + Un—1) + g (Tns1 + Tn_1)
et a10(|un+1|2Un—1 + |un—1|2Un+1) =0.

itn(t) -+

The exact solution exists for a; = a4 = ... = 0and ay > as.

 If 9,A(0,0) # 0 for any « > 0, there exists a unique
continuation of the solution ®q near the line 3 = 7.

e Explicit computation shows that

9,4(0,0) = 2a3/W0(Z;0)¢2(¢++¢_)dZ
R

N 4/@2043
~ (ap — a3)3/2

for small k > 0.

/]R (1 - 25ech2¢) sech®¢d ¢ # 0,
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Example Il : Translationally invariant model

In addition,
0.800.0) = [ Wo(Z;0) [018° + (s — ag)0(07 + o)
R
+(Oé7 - 2a5)¢¢+¢_] dz,

which is zero for a1 = 0, oy = ag, and a7 = 2as.

The localized solution persists on the line g = 7 if

a1 =0, ag=ag, «a7=~20s.



Pseudo-Spectral method

Pseudo-Spectral method

Use a pseudo-spectral method to transform differential
advance-delay equation — system of algebraic equations

N . .
27 .. (27
®(Z) = jE_l a; cos (szi> + ibj sin <szi> .

Solutions are defined on a large finite domain L at the

collocation points Z; = W

Solutions have generally a non-zero radiation tail near the
end points Z = +L /2. To measure the tail, we use the
signhed amplitude

A = 1m(d(L/2)).



Pseudo-Spectral method

Example | : Salerno model
The model is
h2
+2alunPun + (1 — @)|un[*(Ung1 + Up-1) = O.

iin(t) +

Localised solutions do not exist for « = 0.9, 1.1,
8 = 0.357,0.657 (left) but do exist for « = 0.7, 8 = 0.8757
(right).
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Example | : Salerno model

Profiles of solutions for real part of ®(Z) versus tail amplitude A
(left). Solution branches for a fixed x > 0: one-humped for
B > % and two-humped for 3 < /2 (right).
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Example Il : Translationally invariant model
The model is
Un+1(t) - ZUn(t) + Un_]_(t)
h2
+ OZ]_|Un|ZUn + a2|Un|2(Un+1 + Un_]_) + Oé3ur%(l]n+1 + Gn_l)
et 0‘10(|Un+1|2Un—1 + |un—1|2Un+1) =0.

itn(t) -+

If y = 0, ag = ag, a7 = 2as, the solution persists for 3 = 7.
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Example Il : Translationally invariant model

The solution persists generally as a one-parameter curve on
the parameter plane
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Example Il : Translationally invariant model

Branches of single-humped solutions connect to branches of
double-humped solutions.

(b)
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Conclusion

Conclusion

Traveling localized waves are still generic in many discrete
NLS equations in spite of the presence of resonances.

One-parameter curves in non-integrable lattices are more
structurally stable with respect to perturbations than
two-parameter curves in near-integrable lattices.

Traveling localized waves in the translationally invariant
model are stable with respect to time-dependent
perturbations.

Salerno model also has traveling localized wave solutions
(away from the integrable Ablowitz—Ladik limit).
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