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Model

• Discrete nonlinear Schrödinger equation (DNLS) in 1-D

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2 + f (un+1, un, un−1) = 0.

• General nonlinear term f :
• Cubic DNLS, f = |un|2un.
• Ablowitz-Ladik f = |un|2(un+1 + un−1).
• Salerno model

f = 2α|un|2un + (1 − α)|un|2(un+1 + un−1).

• Translationally invariant model

f = α1|un|2un + α2|un|2(un+1 + un−1) + α3u2
n(ūn+1 + ūn−1)

... + α10(|un+1|2un−1 + |un−1|2un+1).
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More on translationally invariant model
• Stationary solutions un(t) = φneiωt satisfy the

second-order difference map

−ωφn +
φn+1 − 2φn + φn−1

h2 + f (φn+1, φn, φn−1) = 0.

• Two solutions: on-site and inter-site discrete solitons
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• When α1 = α4 + α6, α5 = α6, α7 = α4 − α6 and
α10 = α8 − α9, the difference map admits a continuous
family of localized solutions φn = φ(n − s), where s ∈ R

(D.P., Nonlinearity 19, 2695 (2006)).
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Traveling waves in lattices

• Discrete nonlinear Schrödinger equation

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2 + f (un+1, un, un−1) = 0.

• Moving into the travelling frame z = hn − 2ct gives a
differential advance-delay equation. If un(t) = φ(z)eiωt ,

2icφ′(z) =
φ(z + h) − 2φ(z) + φ(z − h)

h2 − ωφ(z)

+ f (φ(z + h), φ(z)φ(z − h)).

• Traveling waves satisfy the constraints:

u1(t) = u0(t − τ)eiθ, u2(t) = u0(t − 2τ)e2iθ, etc.
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Radiationless Solitons

• Localised solutions to a differential difference equation.

• Waves travel across a lattice without shedding any
radiation.

• Homoclinic orbit to the zero state in a travelling frame.
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Difficulties

• In general, traveling wave solutions are weakly non-local.

• Eigenvalues on the imaginary axis in the linear spectrum
give rise to radiation modes.

• Number of eigenvalues is finite for c 6= 0 but increases as
c → 0.

• In general there is at least one resonance.

• Amplitude of radiation modes are generally exponentially
small in terms of a bifurcation parameter.
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Reformulation of existence problem

• Introduce parameters κ ∈ R+, β ∈ [0, π]

ω =
2
h

βc +
2
h2 (cos(β) cosh(κ) − 1),

c =
1

hκ
sin(β) sinh(κ),

• Scale out h using φ(z) = 1
hΦ(Z )eiβZ , Z = z

h

• New differential advance-delay equation

i sin(β)

(

2
sinh(κ)

κ

dΦ(Z )

dZ
− Φ(Z + 1) + Φ(Z − 1)

)

+ cos(β) (2 cosh(κ)Φ(Z ) − Φ(Z + 1) − Φ(Z − 1))

−f (Φ(Z + 1)eiβ,Φ(Z ),Φ(Z − 1)e−iβ) = 0,

where κ > 0 and β ∈ [0, π].
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Linear Spectrum

• Dispersion relation for the linear equation is obtained using
Φ(Z ) = epZ

D(p;κ, β) ≡2 cos(β)(cosh(p) − cosh(κ))

+2i sin(β)

(

sinh(p) − sinh(κ)

κ
p
)

= 0.

• there are finitely many imaginary roots p = ikn, n = 1, ..., m
for any κ > 0 and β ∈ (0, π)

• if κ = 0, there exists a double root k = 0 of D(ik ; 0, β)

• if κ = 0 and β = π/2, the zero root k = 0 is a triple root of
D(ik ; 0, β)

• if κ = 0 and β ∈
(

β0,
π
2

)

with β0 ≈ π
13 , there exists only one

imaginary root besides the double zero root.
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Linear Spectrum

• Dispersion relation for the linear equation is obtained using
Φ(Z ) = epZ
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Methods
• Normal forms and Melnikov integrals

• Analysis of the normal form near κ = 0 and β = π/2
(D.P.,V.Rothos, Physica D 202, 16 (2005)).

• Analysis of persistence of homoclinic orbits near the line
κ > 0 and β = π/2 (D.P.,T.Melvin, A. Champneys, Physica
D 236, 22 (2007)).
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Methods

• Stokes constant computation
• Analysis of Stokes phenomena in a beyond all orders

expansion for κ = 0 and β 6= π/2 (O. Oxtoby, I.
Barashenkov, nlin/0610059 (2006)).
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Methods

• Pseudo-spectral decomposition
• Numerical solutions of the differential advance-delay

equation for κ > 0 and any β.
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Reduction of the differential advance-delay equation

• Write the main equation as

i sin(β)

(

Φ+ − Φ− − 2
sinh(κ)

κ
Φ′(Z )

)

+ cos(β) (Φ+ + Φ− − 2 cosh(κ)Φ) + fr + ifi = 0,

where Φ± = Φ(Z ± 1) and f (Φ+eiβ,Φ,Φ−e−iβ) = fr + ifi .

• If β = π
2 and

α1 = 0, α4 = α6, α7 = 2α5,

the equation reduces to a scalar real-valued equation

2
sinh(κ)

κ

dΦ

dZ
=

[

1 + (α2 − α3)Φ
2 + α8(Φ

2
+ + Φ+Φ− + Φ2

−)

−(α9 + α10)Φ+Φ−] (Φ+ − Φ−) .
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Assumption on existence of solutions

• Assumption: There exists a single-humped solution Φ0(Z )

for any κ > 0 and some parameters (α
(0)
2 , α

(0)
3 , ...) s.t.

Φ0 ∈ H1(R) : Φ0(−Z ) = Φ0(Z ), lim
|Z |→∞

eκ|Z |Φ0(Z ) = c0.

• Any even solution is extended into a continuous family
Φ0(Z − s), ∀s ∈ R.

• When α8 = α9 = α10 = 0 and α2 > α3, the assumption is
satisfied with the explicit solution

Φ0(Z ) =
sinh κ√
α2 − α3

sech (κZ ) , κ > 0.
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Persistence of solutions I

Theorem: Under some assumptions on the linearized operator,
the single-humped localized solution persists with respect to
parameter continuations, such that ‖Φ − Φ0‖H1 ≤ Cǫ, where
C > 0 and ǫ = maxj |αj − α

(0)
j |.

To the proof:

• Let Φ = Φ0 + U, αj = α
(0)
j + ǫaj , and write the scalar

equation as

L+U = N(U) + ǫF (Φ0 + U),

where L+ is a differential advance-delay operator and

‖N(U)‖H1 ≤ C1‖U‖2
H1 , ‖F (Φ0 + U)‖H1 ≤ C2‖Φ0 + U‖3

H1 .
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To the proof:

• Notice that

L+ : H1
ev 7→ L2

odd, N, F : H1
ev 7→ H1

odd

and

L+Φ′
0(Z ) = 0, L+

∂Φ0

∂κ
=

2(κ cosh κ − sinh κ)

κ2 Φ′
0(Z ).

• Assume that L+ has no eigenvalues near Re(λ) = 0 except
for λ = 0 and that the zero eigenvalue is double. Then,
invert L+ on L2

odd and use the Implicit Function Theorem.

• Although the continuous spectrum of L+ extends on the
imaginary axis Re(λ) = 0, the entire spectrum is shifted off
the imaginary axis in the exponentially weighted H1 space.
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Persistence of solutions II
Theorem: Under additional assumptions on the linearized
operator, the single-humped localized solution persists along
the curve on (κ, β)-plane with respect to parameter
continuations, such that ‖Φ − Φ0‖H1 ≤ C(ǫ + µ) if and only if
∆(ǫ, µ) = 0, where µ = cot β, αj = α

(0)
j + ǫaj and ∆(ǫ, µ) is a

Melnikov integral

∆(ǫ, µ) =

∫

R

W0(Z ; 0)[N−(U, V ) + F−(Φ0 + U, V ; ǫ, µ)]dZ ,

where
• W0 is an eigenfunction of the adjoint operator for the zero

eigenvalue,
• N− is the unperturbed vector field with quadratic and cubic

terms in Φ(Z ) − Φ0(Z ) = U(Z ) + iV (Z ), and
• F− contain linear and nonlinear terms in Φ0 + U and V

related to the perturbations in µ = cot β and ǫ.
It is clear that ∆(0, 0) = 0.
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Example I : Salerno model
The model is

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2

+2α|un|2un + (1 − α)|un|2(un+1 + un−1) = 0.

• If α = 0, the family of solutions with β = π
2 is a part of a

two-parameter family. =⇒ ∆(0, µ) = 0 for any µ ∈ R.
• If ∆(ǫ, 0) 6= 0 for ǫ 6= 0, the family can not be continued in ǫ.
• Explicit computation shows that

∂ǫ∆(0, 0) =

∫

R

W0(Z ; 0)Φ3
0(Z )dZ ≈ −κ2

2

∫

R

dζ

cosh3 ζ
< 0,

for small κ > 0.
• Therefore, the family of exact solutions of the AL lattice

does not persist in the Salerno model near β = π
2 .
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Example II : Translationally invariant model
The model is

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2

+ α1|un|2un + α2|un|2(un+1 + un−1) + α3u2
n(ūn+1 + ūn−1)

... + α10(|un+1|2un−1 + |un−1|2un+1) = 0.

The exact solution exists for α1 = α4 = ... = 0 and α2 > α3.

• If ∂µ∆(0, 0) 6= 0 for any κ > 0, there exists a unique
continuation of the solution Φ0 near the line β = π

2 .
• Explicit computation shows that

∂µ∆(0, 0) = 2α3

∫

R

W0(Z ; 0)Φ2(Φ+ + Φ−)dZ

≈ 4κ2α3

(α2 − α3)3/2

∫

R

(

1 − 2sech2ζ
)

sech3ζdζ 6= 0,

for small κ > 0.
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Example II : Translationally invariant model

In addition,

∂ǫ∆(0, 0) =

∫

R

W0(Z ; 0)
[

α1Φ
3 + (α4 − α6)Φ(Φ2

+ + Φ2
−)

+(α7 − 2α5)ΦΦ+Φ−] dZ ,

which is zero for α1 = 0, α4 = α6, and α7 = 2α5.

The localized solution persists on the line β = π
2 if

α1 = 0, α4 = α6, α7 = 2α5.
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Pseudo-Spectral method

• Use a pseudo-spectral method to transform differential
advance-delay equation → system of algebraic equations

Φ(Zi) =
N

∑

j=1

aj cos
(

2πj
L

Zi

)

+ ibj sin
(

2πj
L

Zi

)

.

• Solutions are defined on a large finite domain L at the
collocation points Zi = Li

2(N+1) .

• Solutions have generally a non-zero radiation tail near the
end points Z = ±L/2. To measure the tail, we use the
signed amplitude

∆ = Im(Φ(L/2)).



Introduction Linear analysis Methods Melnikov Integrals Pseudo-Spectral method Conclusion

Example I : Salerno model
The model is

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2

+2α|un|2un + (1 − α)|un|2(un+1 + un−1) = 0.

Localised solutions do not exist for α = 0.9, 1.1,
β = 0.35π, 0.65π (left) but do exist for α = 0.7, β = 0.875π
(right).
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Example I : Salerno model

Profiles of solutions for real part of Φ(Z ) versus tail amplitude ∆
(left). Solution branches for a fixed κ > 0: one-humped for
β > π

2 and two-humped for β < π/2 (right).
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Example II : Translationally invariant model
The model is

i u̇n(t) +
un+1(t) − 2un(t) + un−1(t)

h2

+ α1|un|2un + α2|un|2(un+1 + un−1) + α3u2
n(ūn+1 + ūn−1)

... + α10(|un+1|2un−1 + |un−1|2un+1) = 0.

If α1 = 0, α4 = α6, α7 = 2α5, the solution persists for β = π
2 .
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Example II : Translationally invariant model

The solution persists generally as a one-parameter curve on
the parameter plane
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Example II : Translationally invariant model

Branches of single-humped solutions connect to branches of
double-humped solutions.
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Conclusion

• Traveling localized waves are still generic in many discrete
NLS equations in spite of the presence of resonances.

• One-parameter curves in non-integrable lattices are more
structurally stable with respect to perturbations than
two-parameter curves in near-integrable lattices.

• Traveling localized waves in the translationally invariant
model are stable with respect to time-dependent
perturbations.

• Salerno model also has traveling localized wave solutions
(away from the integrable Ablowitz–Ladik limit).
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