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Background and motivations
Time-periodic NLS equation

iut = −∆u+ γ(t)|u|2u+ V (x)u,

where

• u(x, t) : Rd × R+ 7→ C is a classical solution
• γ(t+ t0) = γ(t) is a periodic coefficient
• V (x) ≥ 0 is a (decaying, parabolic, and/or periodic) potential

Applications:
• Feshbach resonance in Bose-Einstein condensates
• optical pulse propagation in layered optical media
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Physical experiments in BECs (1998)
Scattering length versus magnetic field

Feshbach resonance in 85Rb

Nonlinearity management in time-periodic NLS systems – p. 3/25



Mathematical problems
Time-periodic NLS equation

iut = −∆u+ γ(t)|u|2u+ V (x)u,

• homogenization in the limit of short and large-amplitude
variations of γ(t)
⇒ derivation of the averaged NLS equation

• arrest of blowup in dimensions d ≥ 2
⇒ local and global well-posedness of the averaged equation

• stability of gap solitons in periodic potentials
⇒ computations of eigenvalues of linearized equations

• radiative decay of small-amplitude localized solutions
⇒ decay law of the amplitude of localized solutions
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Averaging theory
Time-periodic NLS equation

iut = −uxx + γ0|u|2u+
1

ε
γ

(
t

ε

)
|u|2u,

where

• V (x) ≡ 0 for simplicity
• d = 1 without loss of generality
• ε→ 0 is the limit of short and large-amplitude variations of
γ(t), such that

γ(τ + 1) = γ(τ),

∫ 1

0

γ(τ)dτ = 0.
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Equivalent transformations
Local transformation

u(x, t) = v(x, t) exp
(
−iγ−1(τ)|v|2(x, t)

)

where γ−1(τ) is the mean-zero antiderivative of γ(τ).

Equivalent NLS equation

ivt = −vxx + γ0|v|2v + 2iγ−1(τ)
(
v2v̄xx + 2|vx|2v + v2

xv̄
)

−γ2
−1(τ)

((
|v|2x
)2

+ 2|v|2xx|v|2
)
v.

Methods of averaging:
• canonical transformations of the Hamiltonian
• near-identity transformations
• asymptotic multiscale expansions
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Asymptotic multi-scale expansions
Asymptotic expansion

v(x, t) = w(x, t) + εv1(x, t, τ) + O(ε2)

where τ is fast time and t is slow time.
The averaged NLS equation

iwt = −wxx + γ0|w|2w − σ2
((
|w|2x

)2
+ 2|w|2xx|w|2

)
w,

where σ2 is the mean value of γ2
−1(τ)

The first-order correction

v1 = 2(γ−1)−1

(
w2w̄xx + 2|wx|2w + w2

xw̄
)

−i(γ2
−1 − σ2)−1

((
|w|2x

)2
+ 2|w|2xx|w|2

)
w,
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Properties of averaged NLS equation
Hamiltonian form of the time-periodic NLS equation

H =

∫

R

(
|ux|2 +

1

2
γ0|u|4 +

1

2ε
γ

(
t

ε

)
|u|4
)
dx.

Hamiltonian form of the averaged NLS equation

H =

∫

R

(
|wx|2 +

1

2
γ0|w|4 + σ2|w|2

(
|w|2x

)2
)
dx.

Local well-posedness in H∞ = ∩n≥0H
n(R) (d = 1):

Let w(x, 0) ∈ H∞. There exists T > 0 such that the averaged NLS
equation possess a unique solution w(x, t) ∈ C1([0, T ], H∞).
M. Poppenberg, Nonlinear Anal. Theory 45, 723 (2001)
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Nonlinear bound states
ODE reductions for nonlinear bound states

w(x, t) = Φ(x)eiωt,

(
dΦ

dx

)2

=
(2ω + γ0Φ2)

2(1 + 4σ2Φ4)
Φ2

No exact solutions exist generally if V (x) 6= 0

Temporal evolution of the bound state if V (x) ∼ x2
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Arrest of blowup
Hamiltonian of the averaged NLS equation

H = H1(w) + γ0H2(w),

where d ≥ 2, γ0 < 0, and

H1 =

∫

Rd

(
|∇w|2 + σ2|w|2

(
∇|w|2

)2
)
dx, H2 =

1

2

∫

Rd
|w|4dx.

• Blowup occurs at σ = 0 (no nonlinearity management)
• Blowup may occur in the time-periodic NLS equation

V. Konotop and P. Pacciani, Phys. Rev. Lett. 94, 240405 (2005)
• We show that blowup never occurs in the averaged NLS

equation with σ 6= 0 (strong nonlinearity management)
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Local and global solutions
• Local solutions of the averaged NLS equation in H∞(Rd)

C.E. Kenig, The Cauchy problem for the Quasilinear
Schroödinger Equation (2002)

• Local solutions of the time-periodic NLS equation in H1(Rd)
T. Cazenave, Semilinear Schrödinger equations (2003)

• Difficulty: no local existence of the averaged NLS equation is
proved in H1(Rd)

• Assuming the local existence for the averaged NLS equation in
H1(Rd), we show that the solution remains globally in H1(Rd),
so that the standard blow-up mechanism for the focusing NLS
equation with d ≥ 2 does not occur.
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Proof of arrest of blow-up
Gagliardo–Nirenberg inequality

‖w‖L4 ≤ ‖w‖3/4

L6 ‖w‖1/4

L2 .

Poincare’s inequality

‖f‖L2 ≤ C (‖∇f‖L2 + ‖f‖L1) ,

results in the inequality

‖w‖6
L6 ≤ C

(
H1(w) + ‖w‖6

L3

)
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Proof of arrest of blow-up
Another Gagliardo–Nirenberg inequality

‖w‖L3 ≤ ‖w‖1/2

L6 ‖w‖1/2

L2 ,

results in the inequality

‖w‖6
L6 ≤ C

(
H1(w) +

1

4µ
‖w‖6

L2

)
,

for any 0 < µ < 1/(2C).
Therefore,

H2(w) ≤ µH1(w) + C
(
P (w) + P 2(w)

)

H1(w) ≤ C
(
H(w) + P (w) + P 2(w)

)
,

where H(w) and P (w) = ‖w‖2
L2 are constant in the time evolution.
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Strong versus weak managements
Weak nonlinearity management

1

ε
γ

(
t

ε

)
7→ γ

(
t

ε

)

reduces the averaged NLS equation to the form

iwt = −∆w + γ0|w|2w − ε2σ2
(∣∣∇|w|2

∣∣2 + 2|w|2∆|w|2
)
w,

where ε2 is small.

F. Abdullaev, J. Caputo, R. Kraenkel and B. Malomed, Phys. Rev.
A 67, 013605 (2003)
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Strong versus weak managements
Contradiction:

• No blow-up occurs in the averaged NLS equation for any
ε2σ2 6= 0

• Blow-up may occur in the time-periodic NLS equation for
small ε2

Let us consider this contradiction under the simplifications:

• d = 2 (critical blow-up)
• exact ODE reduction by using the method of moments

R̈(t) =
α + βγ(t/ε)

R3
,

where α, β = O(1) as ε→ 0 and β > 0.
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ODE analysis
ODE with β > 0:

R̈(t) =
α + βγ(t/ε)

R3
.

Montesinos, Perez-Garcia, Torres, Physica D 191, 193 (2004)

• Sufficient condition for blow-up

α < −β max
0≤τ≤1

(γ).

• Necessary condition for bounded oscillations

α > −β max
0≤τ≤1

(γ).
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Strong versus weak managements
Contradiction:
• Strong management β � |α| results in the blow-up arrest
• Weak management β ∼ |α| may result in blow-up

Consider the averaging method for γ = sin(2πτ):

R = r(t) + ε2R2(τ, r) + ε4R4(τ, r) + O(ε6),

where the mean-value term r(t) satisfies the averaged equation

r̈ =
α

r3
+ ε2

3β2

2r7
+ ε4

15αβ2

2r11
+ O(ε6),

where α < 0 and β > 0
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Failure of the averaged equation
Effective potential

U(r) =
α

2r2
+ ε2

β2

4r6
+ ε4

3αβ2

4r10
+ O(ε6)

with α < 0 and β > 0.

• ε = 0: blow-up in a finite time
• O(ε2): blow-up is arrested
• O(ε4): blow-up may occur depending on the ratio between

parameters α and β

The exact threshold α = −β can not be found from the truncated
averaged equation!
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Numerical computations
α = −20, β = 8
Solid - time-periodic NLS equation
Dashed - averaged NLS equation
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Gap solitons in periodic potentials
The averaged NLS equation with V = V0 cos(2ωx):

iwt = −wxx + V0 cos(2ωx)w − σ2
(
(|w|2x)2 + 2|w|2(|w|2)xx

]
w,

where d = 1 and γ0 = 0.
Coupled-mode theory in the limit V0 → 0:

i(AT + 2ωAX) = V0B + 8σ2ω2(2|A|2 + |B|2)|B|2A,
i(BT − 2ωBX) = V0A+ 8σ2ω2(|A|2 + 2|B|2)|A|2B,

where X = εx, T = εt, and

w(x, t) =
√
ε
(
A(X,T )eiωx−iω0t +B(X,T )e−iωx−iω

2t + O(ε)
)
.

M. Chugunova, D.P., SIAM J. Appl. Dyn. Syst. 5, 66 (2006)
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Existence of gap solitons
Exact solution for gap solitons

A(X,T ) = a(X)e−iΩT , B(X,T ) = ā(X)e−iΩT ,

where

a(X) =
4
√
γ(cosh (4βX)− Ω)√

σ[cosh(2βX) + i
√
γ sinh(2βX)]

,

γ = 1+Ω
1−Ω

and β =
√

1− Ω2.
The family has the threshold in the power P ≥ P0, where

P =

∫ ∞

−∞

(
|A|2 + |B|2

)
dX, P0 =

π

σ
√

2
.

The threshold was discovered numerically in the full problem in
A. Gubeskys, B. Malomed, I. Merhasin, Stud. Appl. Math. 115,
255 (2005) Nonlinearity management in time-periodic NLS systems – p. 21/25



Eigenvalues of stability problem
Standard linearization, e.g.A(X,T ) = e−iΩt

(
a(x) + U1(x)eλt

)
,

results in the eigenvalue problem

HωU = iλσU, U ∈ C4,

where H is a four-component Dirac operator
If the coupled-mode system is symmetric with respect to a←→ b,
there exists an orthogonal similarity transformation S in C4:

S−1σHωS = σ

(
0 H−
H+ 0

)
,

where H± are two-by-two Dirac operators, such that

σ3H−σ3H+V1 = −λ2V1, σ3H+σ3H−V2 = −λ2V2, V1,V2 ∈ C2.
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Numerical approximations of eigenvalues
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Numerical evolution of gap solitons
Simulations of the averaged NLS equation

Simulations of the time-periodic NLS equation
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Open problems
• Local and global well-posedness of the averaged NLS equation

in H1(Rd)

• Error bounds on the distance between time-periodic and
averaged NLS equations

• Decay rate on radiative damping of localized solutions in the
time-periodic NLS equation

• Sharp bounds on the initial data for blow-up in the
time-periodic NLS equation

• Dynamics of dark solitons under the time-periodic NLS
equation
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