Nonlinearity management in time-periodic NLS systems

Dmitry Pelinovsky (McMaster University, Canada)

Collaboration with V. Zharnitsky and E. Kirr (University of Illinois at Urbana-Champaign), P. Kevrekidis (University of Massachusetts at Amherst), M. Porter (Caltech), and M. Chugunova (McMaster University)

References:

Phys. Rev. Lett. 91, 240201 (2003)Chaos 15, 037105 (2005)J. Phys. A: Math. Gen. 39, 479 (2006)

Phys. Rev. E 70, 047604 (2004)
Phys. Rev. E 74, 036610 (2006)
J. Diff. Eqs. 220, 85 (2006)

Background and motivations

Time-periodic NLS equation

$$iu_t = -\Delta u + \gamma(t)|u|^2 u + V(x)u,$$

where

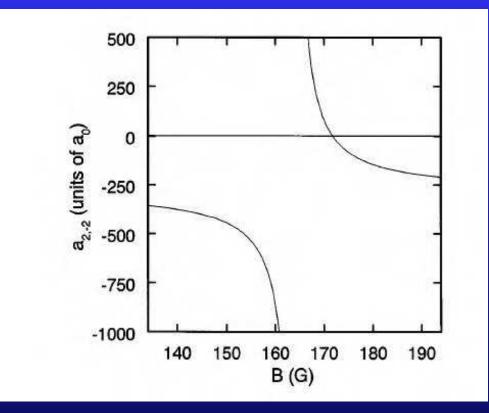
- $u(x,t): \mathbb{R}^d \times \mathbb{R}_+ \mapsto \mathbb{C}$ is a classical solution
- $\gamma(t+t_0) = \gamma(t)$ is a periodic coefficient
- $V(x) \ge 0$ is a (decaying, parabolic, and/or periodic) potential

Applications:

- Feshbach resonance in Bose-Einstein condensates
- optical pulse propagation in layered optical media

Physical experiments in BECs (1998)

Scattering length versus magnetic field



Feshbach resonance in ⁸⁵Rb

Mathematical problems

Time-periodic NLS equation

$$iu_t = -\Delta u + \gamma(t)|u|^2 u + V(x)u,$$

- homogenization in the limit of short and large-amplitude variations of γ(t)
 ⇒ derivation of the averaged NLS equation
- arrest of blowup in dimensions *d* ≥ 2
 ⇒ local and global well-posedness of the averaged equation
- stability of gap solitons in periodic potentials
 ⇒ computations of eigenvalues of linearized equations
- radiative decay of small-amplitude localized solutions
 ⇒ decay law of the amplitude of localized solutions

Averaging theory

Time-periodic NLS equation

$$iu_t = -u_{xx} + \gamma_0 |u|^2 u + \frac{1}{\epsilon} \gamma\left(\frac{t}{\epsilon}\right) |u|^2 u,$$

where

- $V(x) \equiv 0$ for simplicity
- d = 1 without loss of generality
- $\epsilon \to 0$ is the limit of short and large-amplitude variations of $\gamma(t)$, such that

$$\gamma(\tau+1) = \gamma(\tau), \qquad \int_0^1 \gamma(\tau) d\tau = 0.$$

Equivalent transformations

Local transformation

$$u(x,t) = v(x,t) \exp(-i\gamma_{-1}(\tau)|v|^2(x,t))$$

where $\gamma_{-1}(\tau)$ is the mean-zero antiderivative of $\gamma(\tau)$.

Equivalent NLS equation

$$iv_t = -v_{xx} + \gamma_0 |v|^2 v + 2i\gamma_{-1}(\tau) \left(v^2 \bar{v}_{xx} + 2|v_x|^2 v + v_x^2 \bar{v} \right) -\gamma_{-1}^2(\tau) \left(\left(|v|_x^2 \right)^2 + 2|v|_{xx}^2 |v|^2 \right) v.$$

Methods of averaging:

- canonical transformations of the Hamiltonian
- near-identity transformations
- asymptotic multiscale expansions

Asymptotic multi-scale expansions

Asymptotic expansion

$$v(x,t) = w(x,t) + \epsilon v_1(x,t,\tau) + \mathcal{O}(\epsilon^2)$$

where τ is fast time and t is slow time.

The averaged NLS equation

$$iw_t = -w_{xx} + \gamma_0 |w|^2 w - \sigma^2 \left(\left(|w|_x^2 \right)^2 + 2|w|_{xx}^2 |w|^2 \right) w,$$

where σ^2 is the mean value of $\gamma_{-1}^2(\tau)$ The first-order correction

$$v_{1} = 2(\gamma_{-1})_{-1} \left(w^{2} \bar{w}_{xx} + 2|w_{x}|^{2} w + w_{x}^{2} \bar{w} \right)$$
$$-i(\gamma_{-1}^{2} - \sigma^{2})_{-1} \left(\left(|w|_{x}^{2} \right)^{2} + 2|w|_{xx}^{2} |w|^{2} \right) w,$$

Properties of averaged NLS equation

Hamiltonian form of the time-periodic NLS equation

$$H = \int_{\mathbb{R}} \left(|u_x|^2 + \frac{1}{2}\gamma_0|u|^4 + \frac{1}{2\epsilon}\gamma\left(\frac{t}{\epsilon}\right)|u|^4 \right) dx.$$

Hamiltonian form of the averaged NLS equation

$$H = \int_{\mathbb{R}} \left(|w_x|^2 + \frac{1}{2} \gamma_0 |w|^4 + \sigma^2 |w|^2 \left(|w|_x^2 \right)^2 \right) dx.$$

Properties of averaged NLS equation

Hamiltonian form of the time-periodic NLS equation

$$H = \int_{\mathbb{R}} \left(|u_x|^2 + \frac{1}{2}\gamma_0|u|^4 + \frac{1}{2\epsilon}\gamma\left(\frac{t}{\epsilon}\right)|u|^4 \right) dx.$$

Hamiltonian form of the averaged NLS equation

$$H = \int_{\mathbb{R}} \left(|w_x|^2 + \frac{1}{2} \gamma_0 |w|^4 + \sigma^2 |w|^2 \left(|w|_x^2 \right)^2 \right) dx.$$

Local well-posedness in $H^{\infty} = \bigcap_{n \ge 0} H^n(\mathbb{R})$ (d = 1): Let $w(x, 0) \in H^{\infty}$. There exists T > 0 such that the averaged NLS equation possess a unique solution $w(x, t) \in C^1([0, T], H^{\infty})$. M. Poppenberg, Nonlinear Anal. Theory 45, 723 (2001)

Nonlinear bound states

ODE reductions for nonlinear bound states

$$w(x,t) = \Phi(x)e^{i\omega t}, \qquad \left(\frac{d\Phi}{dx}\right)^2 = \frac{(2\omega + \gamma_0 \Phi^2)}{2(1+4\sigma^2 \Phi^4)}\Phi^2$$

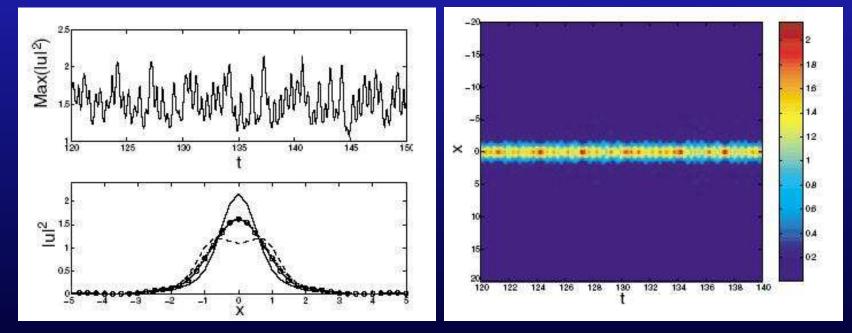
No exact solutions exist generally if $V(x) \neq 0$

Nonlinear bound states

ODE reductions for nonlinear bound states

$$w(x,t) = \Phi(x)e^{i\omega t}, \qquad \left(\frac{d\Phi}{dx}\right)^2 = \frac{(2\omega + \gamma_0\Phi^2)}{2(1+4\sigma^2\Phi^4)}\Phi^2$$

No exact solutions exist generally if $V(x) \neq 0$ Temporal evolution of the bound state if $V(x) \sim x^2$



Arrest of blowup

Hamiltonian of the averaged NLS equation

 $H = H_1(w) + \gamma_0 H_2(w),$

where $d \geq 2$, $\gamma_0 < 0$, and

$$H_1 = \int_{\mathbb{R}^d} \left(|\nabla w|^2 + \sigma^2 |w|^2 \left(\nabla |w|^2 \right)^2 \right) dx, \qquad H_2 = \frac{1}{2} \int_{\mathbb{R}^d} |w|^4 dx.$$

- Blowup occurs at $\sigma = 0$ (no nonlinearity management)
- Blowup may occur in the time-periodic NLS equation
 V. Konotop and P. Pacciani, Phys. Rev. Lett. 94, 240405 (2005)
- We show that blowup never occurs in the averaged NLS equation with $\sigma \neq 0$ (strong nonlinearity management)

Local and global solutions

- Local solutions of the averaged NLS equation in H[∞](ℝ^d)
 C.E. Kenig, *The Cauchy problem for the Quasilinear* Schroödinger Equation (2002)
- Local solutions of the time-periodic NLS equation in H¹(R^d)
 T. Cazenave, Semilinear Schrödinger equations (2003)
- Difficulty: no local existence of the averaged NLS equation is proved in $H^1(\mathbb{R}^d)$
- Assuming the local existence for the averaged NLS equation in $H^1(\mathbb{R}^d)$, we show that the solution remains globally in $H^1(\mathbb{R}^d)$, so that the standard blow-up mechanism for the focusing NLS equation with $d \ge 2$ does not occur.

Proof of arrest of blow-up

Gagliardo-Nirenberg inequality

 $||w||_{L^4} \le ||w||_{L^6}^{3/4} ||w||_{L^2}^{1/4}.$

Poincare's inequality

 $\|f\|_{L^2} \le C\left(\|\nabla f\|_{L^2} + \|f\|_{L^1}\right),$

results in the inequality

 $||w||_{L^6}^6 \le C\left(H_1(w) + ||w||_{L^3}^6\right)$

Proof of arrest of blow-up

Another Gagliardo–Nirenberg inequality

 $||w||_{L^3} \le ||w||_{L^6}^{1/2} ||w||_{L^2}^{1/2},$

results in the inequality

$$\|w\|_{L^6}^6 \le C\left(H_1(w) + \frac{1}{4\mu}\|w\|_{L^2}^6\right),$$

for any $0 < \mu < 1/(2C)$. Therefore,

$$H_{2}(w) \leq \mu H_{1}(w) + C\left(P(w) + P^{2}(w)\right) H_{1}(w) \leq C\left(H(w) + P(w) + P^{2}(w)\right),$$

where H(w) and $P(w) = ||w||_{L^2}^2$ are constant in the time evolution.

Weak nonlinearity management

$$\frac{1}{\epsilon}\gamma\left(\frac{t}{\epsilon}\right)\mapsto\gamma\left(\frac{t}{\epsilon}\right)$$

reduces the averaged NLS equation to the form

$$iw_t = -\Delta w + \gamma_0 |w|^2 w - \epsilon^2 \sigma^2 \left(|\nabla |w|^2 |^2 + 2|w|^2 \Delta |w|^2 \right) w,$$

where ϵ^2 is small.

F. Abdullaev, J. Caputo, R. Kraenkel and B. Malomed, Phys. Rev. A 67, 013605 (2003)

Contradiction:

- No blow-up occurs in the averaged NLS equation for any $\epsilon^2 \sigma^2 \neq 0$
- Blow-up *may* occur in the time-periodic NLS equation for small ϵ^2

Contradiction:

- No blow-up occurs in the averaged NLS equation for any $\epsilon^2 \sigma^2 \neq 0$
- Blow-up *may* occur in the time-periodic NLS equation for small ϵ^2

Let us consider this contradiction under the simplifications:

- d = 2 (critical blow-up)
- exact ODE reduction by using the method of moments

$$\ddot{R}(t) = \frac{\alpha + \beta \gamma(t/\epsilon)}{R^3},$$

where $\alpha, \beta = O(1)$ as $\epsilon \to 0$ and $\beta > 0$.

ODE analysis

ODE with $\beta > 0$:

$$\ddot{R}(t) = \frac{\alpha + \beta \gamma(t/\epsilon)}{R^3}.$$

Montesinos, Perez-Garcia, Torres, Physica D 191, 193 (2004)

Sufficient condition for blow-up

$$\alpha < -\beta \max_{0 \le \tau \le 1}(\gamma).$$

Necessary condition for bounded oscillations

$$\alpha > -\beta \max_{0 \le \tau \le 1}(\gamma).$$

Contradiction:

- Strong management $\beta \gg |\alpha|$ results in the blow-up arrest
- Weak management $\beta \sim |\alpha|$ may result in blow-up

Consider the averaging method for $\gamma = \sin(2\pi\tau)$:

$$R = r(t) + \epsilon^2 R_2(\tau, r) + \epsilon^4 R_4(\tau, r) + O(\epsilon^6),$$

where the mean-value term r(t) satisfies the averaged equation

$$\ddot{r} = \frac{\alpha}{r^3} + \epsilon^2 \frac{3\beta^2}{2r^7} + \epsilon^4 \frac{15\alpha\beta^2}{2r^{11}} + \mathcal{O}(\epsilon^6),$$

where $\alpha < 0$ and $\beta > 0$

Failure of the averaged equation

Effective potential

$$U(r) = \frac{\alpha}{2r^2} + \epsilon^2 \frac{\beta^2}{4r^6} + \epsilon^4 \frac{3\alpha\beta^2}{4r^{10}} + O(\epsilon^6)$$

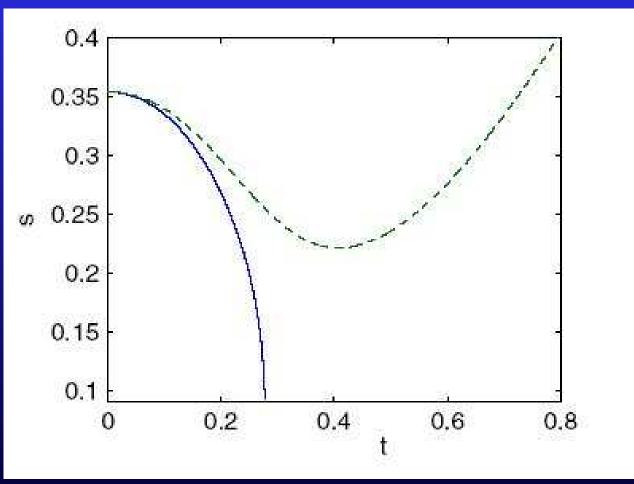
with $\alpha < 0$ and $\beta > 0$.

- $\epsilon = 0$: blow-up in a finite time
- $O(\epsilon^2)$: blow-up is arrested
- $O(\epsilon^4)$: blow-up may occur depending on the ratio between parameters α and β

The exact threshold $\alpha = -\beta$ can not be found from the truncated averaged equation!

Numerical computations

 $\alpha = -20, \beta = 8$ Solid - time-periodic NLS equation Dashed - averaged NLS equation



Gap solitons in periodic potentials

The averaged NLS equation with $V = V_0 \cos(2\omega x)$:

 $iw_t = -w_{xx} + V_0 \cos(2\omega x)w - \sigma^2 \left((|w|_x^2)^2 + 2|w|^2 (|w|^2)_{xx} \right] w,$

where d = 1 and $\gamma_0 = 0$.

Coupled-mode theory in the limit $V_0 \rightarrow 0$:

$$i(A_T + 2\omega A_X) = V_0 B + 8\sigma^2 \omega^2 (2|A|^2 + |B|^2)|B|^2 A,$$

$$i(B_T - 2\omega B_X) = V_0 A + 8\sigma^2 \omega^2 (|A|^2 + 2|B|^2)|A|^2 B,$$

where $X = \epsilon x$, $T = \epsilon t$, and

$$w(x,t) = \sqrt{\epsilon} \left(A(X,T)e^{i\omega x - i\omega_0 t} + B(X,T)e^{-i\omega x - i\omega^2 t} + O(\epsilon) \right).$$

M. Chugunova, D.P., SIAM J. Appl. Dyn. Syst. 5, 66 (2006)

Existence of gap solitons

Exact solution for gap solitons

$$A(X,T) = a(X)e^{-i\Omega T}, \quad B(X,T) = \bar{a}(X)e^{-i\Omega T},$$

where

$$a(X) = \frac{\sqrt[4]{\gamma(\cosh(4\beta X) - \Omega)}}{\sqrt{\sigma}[\cosh(2\beta X) + i\sqrt{\gamma}\sinh(2\beta X)]},$$

 $\gamma = \frac{1+\Omega}{1-\Omega}$ and $\beta = \sqrt{1-\Omega^2}$.

The family has the threshold in the power $P \ge P_0$, where

$$P = \int_{-\infty}^{\infty} (|A|^2 + |B|^2) \, dX, \quad P_0 = \frac{\pi}{\sigma\sqrt{2}}.$$

The threshold was discovered numerically in the full problem in A. Gubeskys, B. Malomed, I. Merhasin, Stud. Appl. Math. 115,

Eigenvalues of stability problem

Standard linearization, e.g. $A(X,T) = e^{-i\Omega t} (a(x) + U_1(x)e^{\lambda t})$, results in the eigenvalue problem

 $H_{\omega}\mathbf{U} = i\lambda\sigma\mathbf{U}, \quad \mathbf{U} \in \mathbb{C}^4,$

where H is a four-component Dirac operator

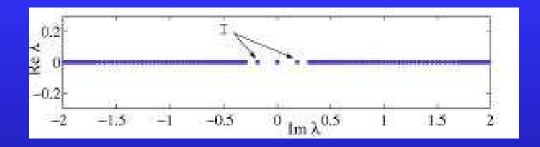
If the coupled-mode system is symmetric with respect to $a \leftrightarrow b$, there exists an orthogonal similarity transformation S in \mathbb{C}^4 :

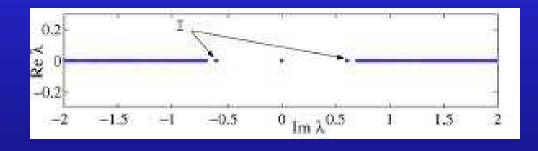
$$S^{-1}\sigma H_{\omega}S = \sigma \left(\begin{array}{cc} 0 & H_{-} \\ H_{+} & 0 \end{array} \right),$$

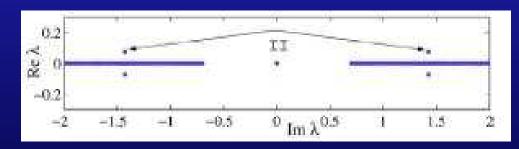
where H_{\pm} are two-by-two Dirac operators, such that

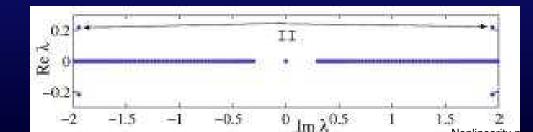
 $\sigma_3 H_- \sigma_3 H_+ \mathbf{V}_1 = -\lambda^2 \mathbf{V}_1, \quad \sigma_3 H_+ \sigma_3 H_- \mathbf{V}_2 = -\lambda^2 \mathbf{V}_2, \quad \mathbf{V}_1, \mathbf{V}_2 \in \mathbb{C}^2$

Numerical approximations of eigenvalues



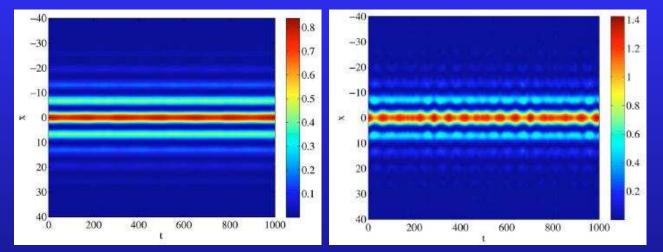




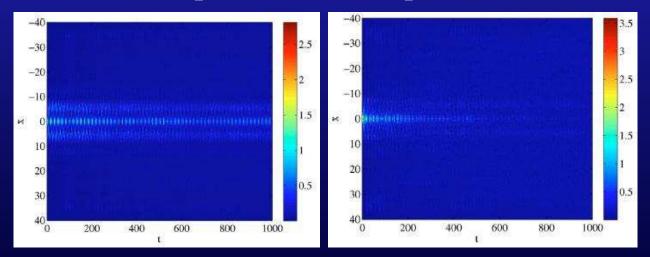


Numerical evolution of gap solitons

Simulations of the averaged NLS equation



Simulations of the time-periodic NLS equation



Open problems

- Local and global well-posedness of the averaged NLS equation in $H^1(\mathbb{R}^d)$
- Error bounds on the distance between time-periodic and averaged NLS equations
- Decay rate on radiative damping of localized solutions in the time-periodic NLS equation
- Sharp bounds on the initial data for blow-up in the time-periodic NLS equation
- Dynamics of dark solitons under the time-periodic NLS equation