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The problem

The nonlinear Dirac equations in one spatial dimension,

i(u + ug) + v = 0z W (u,v),
(v — vz) +u = 0 W(u,v),

where W (u,v) : C* — R satisfies the following three conditions:
@ symmetry W (u,v) = W(v,u);
@ gauge invariance W (eu, e'?v) = W (u,v) for any 6 € R;
@ polynomial in (u,v) and (@, v).
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Compare with quantum physics in three spatial dimensions,
3
i(ue + Z ajug;) — mBu + g(ud)fu = 0,
j=1

where 4 = gu*, m € R is Dirac mass, g(-) is a nonlinear function, and
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and o1, 02, o3 are Pauli matrices.



Examples in one dimension

@ Coupled-mode equations for Bragg resonance (photonic crystals)

W = a(lu]* + |v[*)? + 2alul*|v]?, a€R.

@ Periodic modulations of Kerr nonlinearity (nonlinear optics)

W = afaw + uv)(|u]* + [v]?) + B(@°v* + u’0%),

@ Gross—Neveu model (general relativity)

W = a(av + uv)?,

@ Massive Thirring model (integrable systems)

W = alul*[v],

@ Feshbach resonance in optical lattices (Bose—Einstein condensation)

W = a(ul® + [o]*)[ul*v]*.



Local existence and questions

Assume ug € H*(R) for any fixed s > . There exists 7' > 0 such that the
nonlinear Dirac equations admit a unique solution

u(t) € ¢([0,T), H*(R)) nC*([0,T), H ' (R)) :  u(0) = uo,

which depends continuously on the initial data.

@ Global existence in H'(R) or even in L?(R):
How does it depend on the nonlinearity W?

@ Gap solitons and their spectral stability:
Can we control isolated eigenvalues inducing instabilities?

@ Asymptotic stability of gap solitons:
Is the linear dispersion sufficient for decay of perturbations?



Global existence in H'(R)

Theorem (

Assume that W is a polynomial in variables |u|? and |v|?. A local solution is
extended globally as u(t) € C(R, H'(R)).

@ L? conservation gives |[u(t)||.2 = |[u(0)] 2
@ To obtain apriori energy estimates, cancellation of W is used in

Be ([ul**2 4 [ 2) 405 (Jul**2 — [o|*2) = i(p+1) (va—vuw) (Jul*" —[v[*").
@ By Gronwall’s inequality, we have
(@) L2p2 < e[w(0)]|L2ps2, ¢ €0, T],

which holds for any p > 0 including p — oo.
@ This allows to control

d

2 4(N—-1 2
@72 < Cwe' ™ u, 1),

where N is the degree of W in variables |u|* and |v|?.



Discussion

@ For the nonlinear Schrédinger equation,
e + Uze £ [u*Nu =0,

global existence in H*(R) is known for —|u|*" « with any N > 0 and for
|u|*Nu with 0 < N < 2. Blowup in a finite time is known for N > 2.

For the nonlinear Dirac equation, the result does not depend on the
power of nonlinearity.

@ The energy conservation is crucial in the proof of global existence for the
NLS equation and plays no role for the nonlinear Dirac equations,
because the energy

H:%/(uzﬁ—uﬂz—vzz’)—kvz’)z)dx—kf(vﬂ+uz7—W(u,v))d:c
R R

is not sign-definite near the zero equilibrium.



Global existence and scattering in Strichartz spaces

Strichartz spaces LY LY and LZL?Y are defined for 1 < p, ¢ < oo by

T 1/p 1/q
o = ([ 15C00Ega) 0 Wfllasy = [ 176 lgpae)

We say that a pair (g, r) is Strichartz admissible for the nonlinear Dirac
equations in Strichartz space L{ L7, if

q>2, r>2 and + =<

S|

N
N | =

In particular, (¢,r) = (4, 00) and (g, r) = (o0, 2) are end-point Strichartz pairs.

Lemma ( , 1999; , 2010)

Let (g, r) be a Strichartz admissible pair. There are constants C' > 0 such that

le™ ™ Ellparge < ClIfllay,

le™" ™8| Lo rra < ClEl 2
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Global existence and scattering in Strichartz spaces

Assume W be a homogeneous polynomial in u of degree 2n + 2 for n > 2.
Assume u(0) € H'(R) and ||u(0)|| ;1 be sufficiently small. There exists a
global solution

u(t) € C(R+, H'(R)) N L*(R+, L™ (R)).

@ By Duhamel’s principle, we have

u(t) = e "u(0) + / t e "IN (u(s))ds,

where H is the Dirac operator in one dimension.
@ By Lemma above, we have

all s ponzge ms < Clluolla + CIVW (@) 111,
@ By the assumption on nonlinearity,
IVW (@)l Li a1 < Cll(Jul + [uz)lal™ 2322 < Cllullpgo s 720 o -
@ For a Strichartz admissible pair (when n > 2),
2/n 1-2/n

||uHL§nL;C < ||“||L§Lgo||u||Lt°°Lgo < C”uHLfL‘LgOﬁL?CH}D'

The fixed point argument is closed for small u(0) € H*(R).



Discussion

@ Because ||lu(t)|| = is a continuous function of t € R and
[u(®)||z € L*(R4), we have

Jim [[u(t)]z= =0.

@ Although cubic nonlinearity (quartic W with n = 1) are excluded from
analysis in Strichartz spaces, analysis of Hayashi & Naumkin
(2008,2009) relying on properties of e~ *(*%=) where (id,) = /1 — 92,
show scattering to zero with

(i) u(t)|| L~ < Ce(1+1)"Y 2, teRy,

if || () (10, )*u(0) || .2 < e sufficiently small.



Existence of gap solitons

Time-periodic space-localized solutions
u(z,t) = U(z)e ™", w(z,t) = V(z)e ™"
satisfy a system of stationary Dirac equations

(H —wI)U + VW (U) = 0.



Existence of gap solitons

Time-periodic space-localized solutions
u(z,t) = U(z)e ™", w(z,t) = V(z)e ™"
satisfy a system of stationary Dirac equations

(H —wI)U + VW (U) = 0.

@ Translations in x and ¢t can be added as free parameters.

@ Constraintw € (—1, 1) exists because spectrum of linear waves is
located for (—oo, —1] U [1, 00).

o If |U|,|V| — 0as|z| — oo, then U(z) = V(z) for all z € R.

@ Analytical expressions are available for homogeneous polynomials W,

U(z) = Vi-w
VT = wcosh(v1 — w?z) + iy/T + wsinh(v/1 — w?z)




Stability of gap solitons

Given a time-periodic space-localized solution, the stability can be
considered in three senses: (a) spectral, (b) orbital, and (c) asymptotic.

Spectral stability: We say that the gap soliton is spectrally unstable if the
spectral problem for the linearized operator in L*(R) has at least one
eigenvalue X\ with ReA > 0. Otherwise, it is (weakly) spectrally stable.

Orbital stability: We say that the gap soliton e~ **U is orbitally stable if for
any ¢ > 0O thereis a d(¢) > 0, such that if |[u(0) — U||z: < é(e) then

: —i0
— <
inf lu(t) —e " Ulm <e

forall ¢ > 0.

Asymptotic stability: We say that the gap soliton is asymptotically stable if it is
orbitally stable and for any u(0) near U, there is Uy, near U such that

lim inf |u(t) — e “Us|r = 0.
t—oo OER



Spectral stability

Stability depends on W and w. Linearization with the decomposition

yields the linear eigenvalue problem

iAU; = (7’£— whU; + V1}U1 + ‘/13U27
—iAUz = (Ho —wI)Usz + V12 Uy + V11 Uy,

where Ui 5 = [U 2, Vi2]" € C2.
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Lemma (Chugunova, P, 2006)

There exists an orthogonal similarity transformation S in C* such that

o [ He 0 . 5 0 H_
S H“,S—( 0 H_)’ 5] O'HWS—O'<H+ 0 )

where H. are Dirac operators.




An example for cubic nonlinearity

Mumerical sigenvalues of L H H_ (w=0.282]). Nurerical sigenvalues of L, H , H_{ «=0.008).
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Discussion

@ Berkolaiko & Comech (math-ph/0910.0917) showed more examples of
instabilities and tried to capture unstable eigenvalues.

@ Comech (math-ph/1107.1763) constructed examples of neutrally stable
eigenvalues and discussed the instability bifurcations (via famous
Vakhitov-Kolokolov/Grillakis-Shatah-Strauss criterion)

@ Boussaid & Cuccagna (preprint, 2011) introduced a concept of Krein
signature for eigenvalues of the Dirac operator with sign-indefinite
energy and used it for asymptotic stability in three spatial dimensions.



Asymptotic stability of gap solitons

The nonlinear Dirac equations with a potential,

i(ue + ug) + v = W (u,v),
(v — vz) +u = W (u,v),
where W = B(z)(|ul® + |v|*) + v(z) (@v + ud) + Wi (u, v).

Assumptions:
® 3,7 € L=(R) and there is C' > 0 and s > 0 such that

B@) + (@) < Ce ™, zeR.

@ o(H)\oc(H) = {wo}, where wy € (—1,1) is a simple eigenvalue of H
with the L?-normalized eigenfunction uo € H'(R).

@ No resonances occur at the end points +1 of o-(#) in the sense that no
solutions of Hu = £u existin L= (R).

@ The nonlinearity is homogeneous,

VWa(aU) = *" 'YW (U), aeR.



Local bifurcation

Lemma
Let Assumptions be satisfied and

<u07 VWHI(UO»LZ > 0.

For sufficiently small ¢ > 0, there is a family of solutions U € H'(R) of the
nonlinear Dirac equations for any w € (wo,wo + €) such that the map

(wo,wo + €) 3w — U € H*(R) is defined implicitly by small parameter a € R
and by the asymptotic expansion,

O(a®" ),
O(a™),

U — auol|

jw = wo — a® (uo, N(uo)) 2|

asa — 0.

The proof holds by the Lyapunov—Schmidt decomposition,

U=au+V, a€R, (up,V);,2=0.



Decomposition of the solution

Let us consider a local solution near the gap solitons,

w(z,t) = e DU (z;w(t) + Ui (=, 1)],
v(@,t) = e OV (z;0(t) + Vi(z, 1)].
If (w,0) € C*(R4,R?), then U; = [Uy, V4]7 satisfies the time evolution,

dU;
dt

where N(U) = VW, (U).

= (H —wl)U; —i0d,U — (§ —w)(U +U;) + N(U + U;) — N(U),

1

Question: How to ensure that the decomposition is unique and to define
evolutions of (w, 0)?
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Question: How to ensure that the decomposition is unique and to define
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Answer: U; is required to satisfy the symplectic orthogonality conditions,
which is orthogonality (with respect to the symplectic inner product) to the
two-dimensional generalized null space of the linearized operator.



Modulation equations

Thanks to symplectic orthogonality conditions, we obtain the modulation
equations on w(t) and 6(t):

GRe(0,U, U = Uy 2 + (6 — w)Im(U, Uy) 2 = O,
WIm(92U, Uy) 2 + (0 — w)Re(0,U, U + Uy) 2 = Qo,

where
@ = Im[(UN(U+U;) = N(U))2 + (V12U = V1, U, Uy) 2],
Q2 = Re[(0.U,N(U+U;)—N(U))s2 — (V120,U + V110,U, Uy) 12|

These modulation equations determine uniquely the time evolution of
U1 = Yew.



Asymptotic stability of gap solitons

Theorem (P. & Stefanov, 2011)

Fix e > 0 and ¢ > 0 sufficiently small such that 6(0) = 0, w(0) € (wo,wo + €),
and Y (0) € B(g(Hl). There exist g > €, 0 € R, weo € (wo,wo + €0),
(w,0) € C*(R+,R?), and

Y(t) € C(Ry, H') N L* (R4, L™)

such that (w, 6)(¢) solve the modulation equations, Y (¢) solves the time
evolution equation, and

t
lim (O(t) —/ w(s)ds) =0, lim w(t)=wx, tlim 1Y (t)|| e = 0.
0 — 00

t—o0 t—o0

The proof of this theorem brings together Strichartz estimates for nonlinear
terms and Mizumachi estimates for quadratic, exponentially decaying terms.



Discussion

@ Global existence in H'(R) or even in L*(R):
Can the proof be extended for W that depend on (av + u©)?

@ Gap solitons and their spectral stability:
Can we use the new ideas of Krein signature to control isolated
eigenvalues inducing instabilities?

@ Asymptotic stability of gap solitons:
Can we prove asymptotic stability for the cubic nonlinearity n = 1?

@ Massive Thirring model

i(us +uz) +v = |v]2u,
i(ve — vz) + u = |ul?v.

Candy (2011) proved local and global well-posedness in L*(R).
Can we use Béacklund transformation and Lax operators to control
nonlinear perturbations to gap solitons?
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