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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + uux − βuxxx)x = γu,

where β and γ are real coefficients.

When β = 0 and γ = 1, the Ostrovsky equation is

(ut + uux)x = u,

and is known under the names of

the short-wave equation [Hunter, 1990];

Ostrovsky–Hunter equation [Boyd, 2005];

reduced Ostrovsky equation [Stepanyants, 2006];

the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schäfer, Wayne 2004]:

uxt = u +
1

6

`

u
3´

xx
,

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation

replaces the nonlinear Schrödinger equation for short wave packets

features exact solutions for modulated pulses

enjoys inverse scattering and an infinite set of conserved quantities



Background of our work

A. Stefanov (2010) considered a family of the generalized short-pulse
equations

uxt = u + (up)xx

and proved global existence and scattering to zero for small initial data if
p ≥ 4.

We (2010) proved both global well-posedness for small initial data and
wave breaking for large initial data if p = 3.

We (2010) proved wave breaking for sufficiently large initial data if p = 2
but found no proof of global existence for small initial data.

C. Holliman & A. Himonas (2010) proved the lack of uniform continuity
with respect to initial data for the Hunter-Saxton equation

(ut + uux)x = (ux)2.



Wave breaking results

The inviscid Burgers equation ut + uux = 0 develops wave breaking in a
finite time for any initial data u(0, x) = u0(x) if u0(x) ∈ C1 and there is a point
x0 such that u′

0(x0) < 0. In other words, there exists a finite time T ∈ (0,∞)
such that

lim inf
t↑T

inf
x

ux(t, x) = −∞, while lim sup
t↑T

sup
x

|u(t, x)| < ∞.

Moreover, the blow-up time is computed by the method of characteristics:

T = inf
ξ



1

|u′
0(ξ)|

: u
′
0(ξ) < 0

ff

.

Regarding the reduced Ostrovsky equation p = 2, it was found that

Theorem (Hunter, 1990)

Let u0(x) ∈ C1(S), where S is a circle of unit length, and define

inf
x∈S

u
′
0(x) = −m and sup

x∈S

|u0(x)| = M.

If m3 > 4M(4 + m), a smooth solution u(t, x) breaks down at a finite time.



Our work

Our goal is to find several sufficient conditions for finite-time blow-up in the
reduced Ostrovsky equation and to compare their sharpness using numerical
simulations.

There exist infinitely many conserved quantities of the Ostrovsky-Hunter
equations, which are not useful:

E0 =

Z

R

u
2
dx,

E−1 =

Z

R

„

1

3
u

3 + (∂−1
x u)2

«

dx,

· · ·

Other nonlinear evolution equations are known to exhibit integrability and
finite-time blow-up in a similar context: the Camassa-Holm equation, the
Dagesperis–Processi equation, and their multi-component generalizations.



Local well-posedness

Cauchy problem on a circle S of unit length:


ut + uux = ∂−1
x u, t > 0,

u(0, x) = u0(x),

where

∂
−1
x u :=

Z x

0

u(t, x′)dx
′ −

Z

S

Z x

0

u(t, x′)dx
′
dx.

Lemma

Assume that u0(x) ∈ Hs(S), s > 3
2

and
R

S
u0(x) dx = 0. Then there exist a

maximal time T = T (u0) > 0 and a unique solution u(t, x) to the Cauchy
problem such that

u(t, x) ∈ C([0, T ); Hs(S)) ∩ C
1([0, T ); Hs−1(S)).

Moreover, the solution depends continuously on the initial data.

Proofs back to Schäfer & Wayne (2004) and Stefanov et al. (2010).

The assumption
R

S
u0(x) dx = 0 on the initial data u0 is necessary.



Finite-time wave breaking

The maximal time T > 0 is independent of s > 3
2
.

Let u0(x) ∈ Hs(S), s > 3
2

and u(t, x) be a solution of the Cauchy
problem. The solution blows up in a finite time T ∈ (0,∞) in the sense of
limt↑T ‖u(t, ·)‖Hs = ∞ if and only if

lim
t↑T

inf
x∈S

ux(t, x) = −∞ while lim
t↑T

sup
x

|u(t, x)| < ∞.

We have

|∂−1
x u(t, x)| ≤

Z

S

|u(t, x)|dx ≤ ‖u‖L2 = ‖u‖L2

and
sup

s∈[0,t]

‖u(s, ·)‖L∞ ≤ ‖u0‖L∞ + t‖u0‖L2 , ∀t ∈ [0, T ).



Sufficient condition for wave breaking

Theorem

Assume that u0(x) ∈ Hs(S), s > 3
2

and
R

S
u0(x) dx = 0. If either

Z

S

`

u
′
0(x)

´3
dx < −

„

3

2
‖u0‖L2

«3/2

, (1)

or
Z

S

`

u
′
0(x)

´3
dx < 0 and ‖u0‖L2 >

3

4
, (2)

or there is a x0 ∈ S such that

u
′
0(x0) ≤ −(1 + ǫ) (‖u0‖L∞ + T1‖u0‖L2)

1

2 , (3)

where T1 is the smallest positive root of

2T1 (‖u0‖L∞ + T1‖u0‖L2)
1

2 = log

„

1 +
2

ε

«

,

then the solution u(t, x) of the Cauchy problem blows up in a finite time.



Proof of sufficient condition (1)

Direct computation gives

d

dt

Z

S

u
3
x dx = 3

Z

S

u
2
x

`

−u
2
x − uuxx + u

´

dx

= −2

Z

S

u
4
x dx + 3

Z

S

uu
2
x dx

≤ −2‖ux‖
4
L4 + 3‖u‖L2‖ux‖

2
L4 .

By Hölder’s inequality, we have

|V (t)| ≤ ‖ux‖
3
L3 ≤ ‖ux‖

3
L4 , V (t) =

Z

S

u
3
x(t, x) dx < 0.

Let Q0 = ‖u‖2
L2 = ‖u0‖

2
L2 and V (0) < −

`

3
2
Q0

´ 3

2 . Then,

dV

dt
≤ −2

„

|V |
2

3 −
3Q0

4

«2

+
9Q2

0

8
,

There is T < ∞ such that V (t) → −∞ as t ↑ T .



Proof of sufficient condition (3)

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂
−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain


Ẋ(t) = U,

X(0) = ξ,



U̇(t) = G,

U(0) = u0(ξ),

The map X(·, t) : S 7→ R is an increasing diffeomorphism with

∂ξX(ξ, t) = exp

„
Z t

0

ux(X(ξ, s), s)ds

«

> 0, t ∈ [0, T ), ξ ∈ S.

Using

U(t, ξ) = u0(ξ) +

Z t

0

G(s, ξ)ds, t ∈ [0, T ),

we obtain

sup
s∈[0,t]

sup
ξ∈S

|U(s, ξ)| ≤ ‖u0‖L∞ + t‖u0‖L2 , t ∈ [0, T ).



Proof of sufficient condition (3)

Let V (ξ, t) = ux(t, X(ξ, t)). Then

V̇ = −V
2 + U ⇒ V̇ ≤ −V

2 + (‖u0‖L∞ + γt‖u0‖L2)

If there is a x0 ∈ S such that

V (0) ≤ −(1 + ǫ) (‖u0‖L∞ + T1‖u0‖L2)
1

2 ,

where T1 is the smallest positive root of

2T1 (‖u0‖L∞ + T1‖u0‖L2)
1

2 = log

„

1 +
2

ε

«

,

then V (t) → −∞ as t ↑ T < T1.



Remarks

If ǫ → ∞, then T → 0. The steeper the slope of u0(x), the quicker the
solution u(t, x) blows up.

If u0 ∈ H3(S) and T < ∞ is the blow-up time, then

lim
t↑T

(T − t) inf
x∈S

ux(t, x) = −1, lim
t↑T

(T − t) sup
x∈S

ux(t, x) = 0.

Blow-up results can be extended on an infinite line in space
u(t) ∈ C([0, T ); Hs(R) ∩ Ḣ−1(R)), where Ḣ−1(R) is needed for the
energy conservation

E =

Z

R

„

1

3
u

3 + (∂−1
x u)2

«

dx,

and control of L∞-norm

sup
s∈[0,t]

‖u(s, ·)‖L∞ ≤ ‖u0‖L∞ + Ct +
1

6
‖u0‖

2
L2t

2
, t ∈ [0, T ).



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = −

i

k
ûk −

ik

2
F

h

`

F−1
û

´2
i

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx) + b sin(4πx),



Evolution of the cosine initial data
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Figure: Solution surface u(t, x) (left) and infx∈S ux(t, x) versus t (right) for a = 0.005,
b = 0 (top) and a = 0.05, b = 0 (bottom). C ≈ −1.009 and B ≈ 3.213.



Evolution of the cosine-sine initial data
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Figure: The same as Figure 1 but for a = 0.001, b = 0.0005 (top) and a = 0.01,
b = 0.005 (bottom). The least squares fit is computed with C ≈ −1.042 and B ≈ 8.442.



Power fit

We compute the best power fit for

V (t) := inf
x∈S

ux(t, x)

according to the blow-up law

V (t) ≃
−1

B + Ct
for 0 < T − t ≪ 1.

Note that the analytical blow-up result,

lim
t↑T

(T − t) inf
x∈S

ux(t, x) = −1,

implies that C = −1.
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