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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + vtz — BUzez)z = YU,

where 3 and v are real coefficients.

When g = 0 and = 1, the Ostrovsky equation is
(ut + uuz)a: =u,

and is known under the names of

@ the short-wave equation [Hunter, 1990];

@ Ostrovsky—Hunter equation [Boyd, 2005];

@ reduced Ostrovsky equation [Stepanyants, 2006];

@ the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schafer, Wayne 2004]:

Ugt = U+ % (u3)zz’

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation
@ replaces the nonlinear Schrodinger equation for short wave packets

@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Background of our work

@ A. Stefanov (2010) considered a family of the generalized short-pulse
equations
Uzt = U+ (up)a;z

and proved global existence and scattering to zero for small initial data if
p =>4

@ We (2010) proved both global well-posedness for small initial data and
wave breaking for large initial data if p = 3.

@ We (2010) proved wave breaking for sufficiently large initial data if p = 2
but found no proof of global existence for small initial data.

@ C. Holliman & A. Himonas (2010) proved the lack of uniform continuity
with respect to initial data for the Hunter-Saxton equation

(ut + utg)s = (um)2



Wave breaking results

The inviscid Burgers equation u; + uu, = 0 develops wave breaking in a
finite time for any initial data (0, z) = uo () if uo(z) € C* and there is a point
xo such that ug(zo) < 0. In other words, there exists a finite time T' € (0, o)
such that

lim inf inf u, (¢, 7) = —oo, while limsupsup |u(t, )| < co.
Tz 1T z

Moreover, the blow-up time is computed by the method of characteristics:

T= u6(£)<0}.

1
inf{ ————:
€ {\u6(§)|

Regarding the reduced Ostrovsky equation p = 2, it was found that

Theorem (Hunter, 1990)

Let uo(x) € C*(S), where S is a circle of unit length, and define

inf ug(z) = —m and sup |uo(z)| = M.
TES €S

If m® > 4M (4 + m), a smooth solution u(t, =) breaks down at a finite time.




Our goal is to find several sufficient conditions for finite-time blow-up in the
reduced Ostrovsky equation and to compare their sharpness using numerical
simulations.

There exist infinitely many conserved quantities of the Ostrovsky-Hunter
equations, which are not useful:

/ uzdx,
R
E, = / (1'@3 + (8;1'@)2) dzx,
r \3
Other nonlinear evolution equations are known to exhibit integrability and

finite-time blow-up in a similar context: the Camassa-Holm equation, the
Dagesperis—Processi equation, and their multi-component generalizations.

Eo



Local well-posedness

Cauchy problem on a circle S of unit length:

w4+ wue = 05 tu, t>0,
u(0,z) = uo(z),

;' ::/ u(t,x/)d;c/f// u(t, z")dx' dx.
0 sJo

where

Lemma

Assume that uo(z) € H*(S), s > 3 and [ uo(x) do = 0. Then there exist a
maximal time T' = T'(uo) > 0 and a unique solution u(¢, z) to the Cauchy
problem such that

u(t,z) € C([0,T); H*(S)) N C*([0,T); H*1(S)).

Moreover, the solution depends continuously on the initial data.

@ Proofs back to Schafer & Wayne (2004) and Stefanov et al. (2010).
@ The assumption fs uo(z) dz = 0 on the initial data o is necessary.



Finite-time wave breaking

@ The maximal time 7' > 0 is independent of s > 2.

@ Letuo(z) € H*(S), s > 2 and u(t, z) be a solution of the Cauchy
problem. The solution blows up in a finite time 7" € (0, co) in the sense of
limgyr ||u(t, -)||ms = oo if and only if

lim inf u, (t,2) = —oco  while limsup |u(t, z)| < oco.
t1T xS 1T 5

@ We have
|07 u(t, z)| < /Iu(t,x)ldaz < lullzz = [Jull L2
S

and

sup [[u(s,)[roe < |luolle + tlluollz2, V¥t €[0,T).
s€[0,t]



Sufficient condition for wave breaking

Assume that uo(z) € H*(S), s > 2 and [ uo(x) dz = 0. If either
3 3 3/2
[ @)’ do <~ (Sluolzz) &
or 5
/(ug(x))‘* dr <0 and fuolzz > 3, @
S
or there is a xo € S such that
i
ug(z0) < —(1+€) (Jluollze + TilluollL2)* ®3)

where T is the smallest positive root of

1 2
273 (|luollze> + Tiluolz2)? = log <1 + ;) ,

then the solution «(¢, z) of the Cauchy problem blows up in a finite time.




Proof of sufficient condition (1)

Direct computation gives
d 3 o 2 2
— fuzdr = 3 [ uy (—uz — Ulge + u) dx
dt Js s

= —2/uidx+3/uu§dm
s s

4 2
—2|ua|[La + 3l 2 lue [ zs-

IN

By Hoélder's inequality, we have

V)| < llusle < lluslZe, V() = /Sui(t,x) dz < 0.

3
Let Qo = [|ul|32 = [luol|72 and V(0) < — (£Qo) 2. Then,

av 2 3Q0\° | 9Q3
&V o« _ 2%0 %0
dt_2<|v|3 4>+8’

Thereis T < co suchthat V(t) — —ccast 1 T.



Proof of sufficient condition (3)

Let¢ €S, t € [0,T), and denote
=X(&t), wu(z,t)=U(Et), 0, ulx,t)=G(E1).
At characteristics © = X (¢, ¢), we obtain
{ X(t) =0, { U(t) =G,
X(0)=¢, U(0) = uo(§),

@ The map X (-,t) : S +— Ris an increasing diffeomorphism with

Oe X (&,t) = exp (/ uz(X(f,s),s)ds) >0, t€[0,T), £€S.
0
@ Using
U(t, &) = uo(€ / G(s,&)ds, te]0,T),
we obtain

sup SUP|U( O < lluollze + tlluol[r2, t€[0,T).
s€[0,t] &



Proof of sufficient condition (3)

Let V(§,t) = uaz(t, X (&,t)). Then

V=-V4+U = V<-V°>+(Juolr= +~t|uolr2)

If there is a o € S such that

V(0) < —(1 + € (luoll e + Tilluollz2)

where T is the smallest positive root of

L 2
2711 (luoll Lo + Til[uol[z2)? = log (1 + E) ,

then V(t) - —ccast 1T < Ti.



@ If e — oo, then T' — 0. The steeper the slope of uo(z), the quicker the
solution u(t, =) blows up.

9 Ifup € H3(S) and T < oo is the blow-up time, then
lim(T — t) inf u, (¢, ) = —1, lm(T —t)supus(t,z) =0.

t1T z€S 1T €S

@ Blow-up results can be extended on an infinite line in space
u(t) € C([0,T); H*(R) N H~*(R)), where H*(R) is needed for the
energy conservation

E = / <1u3 + (8;1u)2> dz,
e \3

and control of L°°-norm

1
sup [[u(s, )| < [luofe + Ct + g\|u0||21;2t27 t€0,T).
s€[0,t]



Numerical simulation

Using the pseudospectral method, we solve
9 . i

_ N ik —1.\2
aukffgukfgf[(]—' u)]k, k#0, t>0.

Consider the 1-periodic initial data

uo(z) = acos(2wx) + bsin(4rz),

—— Theorem 1
—— Theorem 2|
—— Theorem 3




Evolution of the cosine initial data
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Figure: Solution surface u(¢, z) (left) and inf,cs uz (¢, z) versus ¢ (right) for a = 0.005,
b =0 (top) and a = 0.05, b = 0 (bottom). C' =~ —1.009 and B =~ 3.213.



Evolution of the cosine-sine initial data
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Figure: The same as Figure 1 but for « = 0.001, b = 0.0005 (top) and a = 0.01,
b = 0.005 (bottom). The least squares fit is computed with C' ~ —1.042 and B =~ 8.442.



We compute the best power fit for
V(t) = ;Iéfgu””(t’x)

according to the blow-up law

B+ Ct

V(t) ~ for 0<T—-t<1.

Note that the analytical blow-up result,
£1Tr¥(T —t) ;réfSUz(t’ x) = —1,

implies that C = —1.
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