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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + uux − βuxxx)x = γu,

where β and γ are real coefficients.

When β = 0 and γ = 1, the Ostrovsky equation is

(ut + uux)x = u,

and is known under the names of

the short-wave equation [Hunter, 1990];

Ostrovsky–Hunter equation [Boyd, 2005];

reduced Ostrovsky equation [Stepanyants, 2006];

the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schäfer, Wayne 2004]:

uxt = u+
1

6

`

u3´

xx
,

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation

replaces the nonlinear Schrödinger equation for short wave packets

features exact solutions for modulated pulses

enjoys inverse scattering and an infinite set of conserved quantities



Relevant results

T. Schafer and C.E. Wayne (2004) proved local existence in H2(R).

A. Stefanov et al. (2010) considered a family of the generalized
short-pulse equations

uxt = u+ (up)xx

and proved scattering to zero for small initial data if p ≥ 4.

We proved both global well-posedness for small initial data and wave
breaking for large initial data if p = 3.

We proved wave breaking for sufficiently large initial data if p = 2 but
found no proof of global existence for small initial data.

C. Holliman (the group of A. Himonas) (2010-2011) proved the lack of
uniform continuity with respect to initial data for a number of equations,
including the Ostrovsky–Hunter and Hunter-Saxton equations,

(ut + uux)x = (ux)2.



Integrability of the short-pulse equation

Let x = x(y, t) satisfy
(

xy = cosw,

xt = − 1
2
w2

t .

Then, w = w(y, t) satisfies the sine–Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, J. Phys. A 39, L361 (2006)]:

wyt = sin(w).

Lemma

Let the mapping [0, T ] ∋ t 7→ w(·, t) ∈ Hs
c be C1 and

Hs
c =

n

w ∈ Hs(R) : ‖w‖L∞ ≤ wc <
π

2

o

, s ≥ 1.

Then, x(y, t) is invertible in y for any t ∈ [0, T ] and u(x, t) = wt(y(x, t), t)
solves the short-pulse equation

uxt = u+
1

6

`

u3´

xx
, x ∈ R, t ∈ [0, T ].



Solutions of the short-pulse equation

A kink of the sine–Gordon equation gives a loop solution of the short-pulse
equation:



u = 2 sech(y + t),
x = y − 2 tanh(y + t).
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Figure: The loop solution u(x, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine–Gordon equation gives a pulse solution of the
short-pulse equation:
8

>

<

>

:

u(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
= u

`

y − π
m
, t+ π

m

´

,

x(y, t) = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
= x

`

y − π
m
, t+ π

m

´

+ π
m
,

where
φ = m(y + t), ψ = n(y − t), n =

p

1 −m2,

and m ∈ R is a free parameter.
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Figure: The pulse solution to the short-pulse equation with m = 0.25



Local well-posedness of the short-pulse equation

Theorem (Schäfer & Wayne, 2004)

Let u0 ∈ H2. There exists a maximal existence time T = T (u0) > 0 and a
unique solution to the short-pulse equation

u(t) ∈ C([0, T ), H2) ∩ C1([0, T ), H1)

that satisfies u(0) = u0 and depends continuously on u0.

Remarks:

The proof can be extended to any s > 3
2

(Stefanov et al, 2010).

There is a constraint on solutions of the short-pulse equation
Z

R

u(x, t)dx = 0, t > 0.



Local well-posedness of the sine-Gordon equation

Consider the Cauchy problem for the sine-Gordon equation


wyt = sinw, y ∈ R, t > 0
w|t=0 = w0, y ∈ R.

Note: if w ∈ C1([0, T ), Hs(R)), s > 1
2
, then

Z

R

sinw(y, t)dy = 0, t ∈ (0, T ).

The standard method of Picard–Kato would not work because if w(·, t) ∈ Hs,
s > 1

2
, then sin(w(·, t)) ∈ Hs, but ∂−1

y sin(w(y, t))dy may not be in Hs.

Let q = sin(w) and rewrite the Cauchy problem in the equivalent form


qt = (1 − f(q))∂−1
y q,

q|t=0 = q0,

where

f(q) := 1 −
p

1 − q2 =
q2

1 +
p

1 − q2
, ∀|q| ≤ 1 :

q2

2
≤ f(q) ≤ q2.



Local well-posedness of the sine–Gordon equation

Consider the initial-value problem


qt = (1 − f(q))∂−1
y q,

q|t=0 = q0.

Now the constraints are

‖q(·, t)‖L∞ < 1,

Z

R

q(y, t)dy = 0, t > 0.

Theorem

Assume that q0 ∈ Xs
c , s > 1

2
, where

Xs
c =

n

q ∈ Hs ∩ Ḣ−1, ‖q‖L∞ ≤ qc < 1
o

.

There exist a maximal time T = T (q0) > 0 and a unique solution
q(t) ∈ C([0, T ), Xs

c ) of the Cauchy problem that satisfies q(0) = q0 and
depends continuously on q0.



Duhamel’s method

Consider the Cauchy problem for the linearized sine–Gordon equation


Qt = ∂−1
y Q,

Q|t=0 = Q0.

Denote
L = ∂−1

y and Q(t) = etLQ0.

The solution operator etL is an isometry from Hs to Hs for any s ≥ 0, so that

‖Q(t)‖Hs = ‖etLQ0‖Hs = ‖Q0‖Hs , ∀t ∈ R.

By Duhamel’s principle, we have

q(t) = etLq0 −
Z t

0

e(t−t′)Lf(q(t′)) ∂−1
y q dt′.



Sketch of the proof

Fix qc ∈ (0, 1), δ > 0 and α ∈ (0, 1) so that the initial data satisfy

‖q0‖Xs ≤ αδ, ‖q0‖L∞ ≤ αqc

We need to show that there exists T > 0 such that

the mapping

(Aq)(t) =

Z t

0

e(t−t′)Lf(q(t′)) ∂−1
y q dt′ : C([0, T ], Xs

c ) 7→ C([0, T ], Xs
c )

is Lipschitz continuous and a contraction for sufficiently small T > 0.

The integral equation is well-defined in

‖q(t)‖Xs ≤ δ, ‖q(t)‖L∞ ≤ qc, t ∈ [0, T ].

Existence, uniqueness, and continuous dependence come from the standard
Banach’s Fixed-Point Theorem.



Our local well-posedness of the short-pulse equation

Theorem (P., Sakovich, 2010)

Let u0 ∈ Hs ∩ Ḣ−1, s > 3/2. There exists a maximal existence time
T = T (u0) > 0 and a unique solution to the short-pulse equation

u(t) ∈ C1([0, T ), Hs ∩ Ḣ−1)

that satisfies u(0) = u0 and depends continuously on u0.

This theorem follows from the local well-posedness of the sine–Gordon
equation and the correspondence

u = wt =
qt

p

1 − q2
= p, ux =

wty

cos(w)
= tan(w) =

py
p

1 − q2
.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

· · ·

E−1 =

Z

R

„

1

24
u4 − 1

2
(∂−1

x u)2
«

dx,

E0 =

Z

R

u2dx,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx,

· · ·



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let u0 ∈ H2 and the conserved quantities satisfy 2E1 + E2 < 1. Then the
short-pulse equation admits a unique solution u(t) ∈ C(R+, H

2) with
u(0) = u0.

The values of E0, E1 and E2 are bounded by ‖u0‖H2 as follows:

E0 =

Z

R

u2dx = ‖u0‖2
L2 ,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx ≤ 1

2
‖u′

0‖2
L2 ,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx ≤ ‖u′′
0‖2

L2 .

The existence time T > 0 of the local solutions is inverse proportional to the
norm ‖u0‖H2 of the initial data. To extend T to ∞, we need to control the
norm ‖u(t)‖H2 by a T -independent constant on [0, T ].



Sketch of the proof

Let q̃(x, t) = ux√
1+u2

x

. Then, we obtain

‖q̃(t)‖H1 ≤
√

2E1 + E2 < 1, t ∈ [0, T ).

Thanks to Sobolev’s embedding ‖q̃‖L∞ ≤ 1√
2
‖q̃‖H1 < 1, so that

ux = q̃√
1−q̃2

satisfies the bound

‖ux(t)‖H1 ≤ ‖q̃‖H1

q

1 − ‖q̃‖2
H1

, t ∈ [0, T )

or equivalently

‖u(t)‖H2 ≤
„

E0 +
2E1 + E2

1 − (2E1 + E2)

«1/2

, t ∈ [0, T ).



Sharper condition for global well-posedness

Corollary

Let u0 ∈ H2 such that 2
√

2E1E2 < 1. Then the short-pulse equation admits a
unique solution u(t) ∈ C(R+, H

2) with u(0) = u0.

Let α ∈ R+ be an arbitrary parameter. If u(x, t) is a solution of the
short-pulse equation, then U(X,T ) is also a solution with

X = αx, T = α−1t, U(X,T ) = αu(x, t).

The scaling invariance yields transformation Ẽ1 = αE1 and Ẽ2 = α−1E2. For
a given u0 ∈ H2, a family of initial data U0 ∈ H2 satisfies

φ(α) = 2Ẽ1 + Ẽ2 = 2αE1 + α−1E2 ≥ 2
√

2E1E2, ∀α ∈ R+.

If 2
√

2E1E2 < 1, there exists α such that U(X,T ) is defined for any T ∈ R+.



Short-pulse equation in a periodic domain

Let S be the unit circle and let ∂−1
x be the mean-zero anti-derivative

∂−1
x u =

Z x

0

u(x′, t)dx′ −
Z

S

Z x

0

u(x′, t)dx′dx.

The short-pulse equation on a circle is given by


ut = 1
2
u2ux + ∂−1

x u,
u(x, 0) = u0(x),

x ∈ S, t ≥ 0.

Let u(t) ∈ C([0, T ), Hs(S)) ∩ C1([0, T ), Hs−1(S)) be a local solution such
that u(0) = u0 ∈ Hs(S).

The assumption
R

S
u0(x)dx = 0 is necessary for existence.

The following quantities are constant on [0, T ):

E0 =

Z

S

u2dx, E1 =

Z

S

p

1 + u2
xdx



Finite-time blow-up scenario

Lemma

Let u0 ∈ H2(S) and u(t) be a local solution of the Cauchy problem. The
solution blows up in a finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 = ∞
if and only if

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞.

For the inviscid Burgers equation


ut = 1
2
u2ux,

u(x, 0) = u0(x),
x ∈ S, t ≥ 0.

the problem can be solved by the method of characteristics. The finite-time
blow-up occurs for any u0(x) ∈ C1(S) if there is a point x0 ∈ S such that
u0(x0)u

′
0(x0) > 0. The blow-up time is

T = inf
ξ∈S



1

u0(ξ)u′
0(ξ)

: u0(ξ)u
′
0(ξ) > 0

ff

.



Method of characteristics

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain


Ẋ(t) = − 1
2
U2,

X(0) = ξ,



U̇(t) = G,
U(0) = u0(ξ),

The map X(·, t) : S 7→ R is an increasing diffeomorphism with

∂ξX(ξ, t) = exp

„Z t

0

u(X(ξ, s), s)ux(X(ξ, s), s)ds

«

> 0, t ∈ [0, T ), ξ ∈ S.

The following quantities are bounded on [0, T ):

|u(x, t)| ≤
˛

˛

˛

˛

Z x

ξt

ux(x, t) dx

˛

˛

˛

˛

≤
Z

S

|ux(x, t)|dx ≤ E1

and

|∂−1
x u(x, t)| ≤

˛

˛

˛

˛

Z x

ξ̃t

u(x, t) dx

˛

˛

˛

˛

≤
Z

S

|u(x, t)|dx ≤
√
E0.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Let u0 ∈ H2(S) and
R

S
u0(x) dx = 0. Assume that there exists x0 ∈ R such

that u0(x0)u
′
0(x0) > 0 and

either |u′
0(x0)| >

 

E2
1

4E
1/2
0

!1/3

,

|u0(x0)||u′
0(x0)|2 > E1 +

„

2E
1/2
0 |u′

0(x0)|3 −
1

2
E2

1

«1/2

,

or |u′
0(x0)| ≤

 

E2
1

4E
1/2
0

!1/3

, |u0(x0)||u′
0(x0)|2 > E1.

Then there exists a finite time T ∈ (0,∞) such that the solution
u(t) ∈ C([0, T ), H2(S)) of the Cauchy problem blows up with the property

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ E1.



Sketch of the proof

Let V (ξ, t) = ux(X(ξ, t), t) and W (ξ, t) = U(ξ, t)V (ξ, t). Then


V̇ = VW + U,

Ẇ = W 2 + V G+ U2.

Under the conditions of the theorem, there exists ξ0 ∈ S such that V (ξ0, t)
and W (ξ0, t) satisfy the apriori estimates



V̇ ≥ VW − E1,

Ẇ ≥ W 2 − V
√
E0.

We show that V (ξ0, t) and W (ξ0, t) go to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data

u0(x) = a(1 − 2bx2)e−bx2

, x ∈ R,

where (a, b) are arbitrary and
R

R
u0(x)dx = 0 is satisfied.

Figure: Global solutions exist in the red region and wave breaking occurs in the blue
region.



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk +

ik

6
F
h

`

F−1û
´3
i

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx)

Criterion for wave breaking: a > 1.053.

Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Figure: Solution surface u(x, t) (left) and the supremum norm W (t) (right) for a = 0.2
(top) and a = 0.5 (bottom).



Power fit

We compute the best power fit for

W (t) := sup
x∈S

u(x, t)ux(x, t)

according to the blow-up law

W (t) ≃ C

T − t
for 0 < T − t≪ 1.

Note that the inviscid Burgers equation has the exact blow-up law
W (t) = 1

T−t
.
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Figure: Time of wave breaking T versus a (left). Constant C of the linear regression
versus a (right).



The Ostrovsky–Hunter equation

Cauchy problem on a circle S of unit length:


ut + uux = ∂−1
x u, t > 0,

u(0, x) = u0(x),

where

∂−1
x u :=

Z x

0

u(t, x′)dx′ −
Z

S

Z x

0

u(t, x′)dx′dx.

The inviscid Burgers equation ut + uux = 0 develops wave breaking in a
finite time for any initial data u(0, x) = u0(x) if u0(x) ∈ C1 and there is a point
x0 such that u′

0(x0) < 0. In other words, there exists a finite time T ∈ (0,∞)
such that

lim inf
t↑T

inf
x
ux(t, x) = −∞, while lim sup

t↑T
sup

x
|u(t, x)| <∞.

Moreover, the blow-up time is computed by the method of characteristics:

T = inf
ξ



1

|u′
0(ξ)|

: u′
0(ξ) < 0

ff

.



Conserved quantities

For the Ostrovsky–Hunter equation, it was found that

Theorem (Hunter, 1990)

Let u0(x) ∈ C1(S), where S is a circle of unit length, and define

inf
x∈S

u′
0(x) = −m and sup

x∈S

|u0(x)| = M.

If m3 > 4M(4 +m), a smooth solution u(t, x) breaks down at a finite time.

Note that there exist infinitely many conserved quantities of the
Ostrovsky-Hunter equations, which are not useful:

E0 =

Z

R

u2dx,

E−1 =

Z

R

„

1

3
u3 + (∂−1

x u)2
«

dx,

· · ·



Finite-time wave breaking

Let u0(x) ∈ Hs(S), s > 3
2

and u(t, x) be a solution of the Cauchy
problem. The solution blows up in a finite time T ∈ (0,∞) in the sense of
limt↑T ‖u(t, ·)‖Hs = ∞ if and only if

lim
t↑T

inf
x∈S

ux(t, x) = −∞ while lim
t↑T

sup
x

|u(t, x)| <∞.

We have

|∂−1
x u(t, x)| ≤

Z

S

|u(t, x)|dx ≤ ‖u‖L2 = ‖u‖L2

and
sup

s∈[0,t]

‖u(s, ·)‖L∞ ≤ ‖u0‖L∞ + t‖u0‖L2 , ∀t ∈ [0, T ).



Sufficient condition for wave breaking

Theorem

Assume that u0(x) ∈ Hs(S), s > 3
2

and
R

S
u0(x) dx = 0. If either

Z

S

`

u′
0(x)

´3
dx < −

„

3

2
‖u0‖L2

«3/2

, (1)

or
Z

S

`

u′
0(x)

´3
dx < 0 and ‖u0‖L2 >

3

4
, (2)

or there is a x0 ∈ S such that

u′
0(x0) ≤ −(1 + ǫ) (‖u0‖L∞ + T1‖u0‖L2)

1

2 , (3)

where T1 is the smallest positive root of

2T1 (‖u0‖L∞ + T1‖u0‖L2)
1

2 = log

„

1 +
2

ε

«

,

then the solution u(t, x) of the Cauchy problem blows up in a finite time.



Proof of sufficient conditions (1)–(2)

Direct computation gives

d

dt

Z

S

u3
x dx = 3

Z

S

u2
x

`

−u2
x − uuxx + u

´

dx

= −2

Z

S

u4
x dx+ 3

Z

S

uu2
x dx

≤ −2‖ux‖4
L4 + 3‖u‖L2‖ux‖2

L4 .

By Hölder’s inequality, we have

|V (t)| ≤ ‖ux‖3
L3 ≤ ‖ux‖3

L4 , V (t) =

Z

S

u3
x(t, x) dx < 0.

Let Q0 = ‖u‖2
L2 = ‖u0‖2

L2 and V (0) < −
`

3
2
Q0

´ 3

2 . Then,

dV

dt
≤ −2

„

|V | 23 − 3Q0

4

«2

+
9Q2

0

8
,

There is T <∞ such that V (t) → −∞ as t ↑ T .



Proof of sufficient condition (3)

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain


Ẋ(t) = U,
X(0) = ξ,



U̇(t) = G,
U(0) = u0(ξ),

Let V (ξ, t) = ux(t,X(ξ, t)). Then

V̇ = −V 2 + U ⇒ V̇ ≤ −V 2 + (‖u0‖L∞ + γt‖u0‖L2)



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk − ik

2
F
h

`

F−1û
´2
i

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx) + b sin(4πx),



Evolution of the cosine initial data
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Summary

We found sufficient conditions for global well-posedness of the
short-pulse equation for small initial data.

We found sufficient conditions for wave breaking of the short-pulse and
Ostrovsky–Hunter equations for large initial data.

We illustrated both global existence and wave breaking numerically.

Numerical results suggest orbital stability of the exact modulated pulses
of the short-pulse equation.

Numerical results suggest global existence for small initial data in the
Ostrovsky-Hunter equation.
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