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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + vtz — BUzez)z = YU,

where 3 and v are real coefficients.

When g = 0 and = 1, the Ostrovsky equation is
(ut + uuz)a: =u,

and is known under the names of

@ the short-wave equation [Hunter, 1990];

@ Ostrovsky—Hunter equation [Boyd, 2005];

@ reduced Ostrovsky equation [Stepanyants, 2006];

@ the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schafer, Wayne 2004]:

Ugt = U+ % (u3)zz’

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation
@ replaces the nonlinear Schrodinger equation for short wave packets

@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Relevant results

@ T. Schafer and C.E. Wayne (2004) proved local existence in H?(R).

@ A. Stefanov et al. (2010) considered a family of the generalized
short-pulse equations
Uzt = U+ (Up)a:ac

and proved scattering to zero for small initial data if p > 4.

@ We proved both global well-posedness for small initial data and wave
breaking for large initial data if p = 3.

@ We proved wave breaking for sufficiently large initial data if p = 2 but
found no proof of global existence for small initial data.

@ C. Holliman (the group of A. Himonas) (2010-2011) proved the lack of
uniform continuity with respect to initial data for a number of equations,
including the Ostrovsky—Hunter and Hunter-Saxton equations,

(ut + vug)s = (uz)2



Integrability of the short-pulse equation

Let z = z(y, t) satisfy

Then, w = w(y, t) satisfies the sine—Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, J. Phys. A 39, L361 (2006)]:

wy = sin(w).

Lemma
Let the mapping [0, 7] 3 t — w(-,t) € H: be C* and

Hﬁ:{weHS(R); ||w\|ngwc<g}, s> 1.

Then, z(y, t) is invertible in y for any ¢ € [0, T] and u(z, t) = w(y(z, t),t)
solves the short-pulse equation

Ugt :u+%(u3)zz, z€eR, tel0,T].




Solutions of the short-pulse equation

A kink of the sine—Gordon equation gives a loop solution of the short-pulse
equation:

u = 2sech(y + t),
x =y — 2tanh(y +t).

u(z,t)

u. )

Figure: The loop solution u(z, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine—Gordon equation gives a pulse solution of the
short-pulse equation:

msinysinh ¢ +ncosycoshg

m?2sin? ) + n?2 cosh? ¢
m sin 2¢p — nsinh 2¢ *m( o t+l)+l
m?2sin® ¢ + n2 cosh? ¢ Y= m m’

u(y,t) = dmn

wly =t ),

z(y,t) =y +2mn

where
¢:m(y+t)7 w:n(yit)v n= 17m25
and m € R is a free parameter.

Figure: The pulse solution to the short-pulse equation with m = 0.25



Local well-posedness of the short-pulse equation

Theorem (Schéfer & Wayne, 2004)

Let uo € H?. There exists a maximal existence time T' = T(uo) > 0 and a
unique solution to the short-pulse equation

u(t) € C([0,T), H*)nC*([0,T), H")

that satisfies «(0) = uo and depends continuously on .

Remarks:

@ The proof can be extended to any s > g (Stefanov et al, 2010).
@ There is a constraint on solutions of the short-pulse equation

/u(:l:,t)dx =0, t>0.
R



Local well-posedness of the sine-Gordon equation

Consider the Cauchy problem for the sine-Gordon equation

wyr =sinw, yeR, t>0
w|t:0 =wo, YyER.

Note: if w € C*([0,T), H*(R)), s > 3, then

/sinw(y,t)dy =0, te(0,7).
R

The standard method of Picard—Kato would not work because if w(-,t) € H®,
s> 1, thensin(w(-,t)) € H®, but 9, " sin(w(y, t))dy may not be in H*.

Let ¢ = sin(w) and rewrite the Cauchy problem in the equivalent form

{ a = (1- f()0y, "q,
q‘t:O = qo,



Local well-posedness of the sine—Gordon equation

Consider the initial-value problem

{ a = (1- f()0y "q,

Q\t=o = qo-

Now the constraints are

lla(-, )z <1, /Rq(y,t)dy=0, t>0.

Theorem

Assume that ¢ € X, s > 3, where
x:={qe H NE™, llglz= < qc <1}.
There exist a maximal time 7' = T'(qo) > 0 and a unique solution

q(t) € C([0,T), X)) of the Cauchy problem that satisfies ¢(0) = go and
depends continuously on qo.




Duhamel’'s method

Consider the Cauchy problem for the linearized sine—Gordon equation

{ Qi =09;'Q,
Q|t=o = Qo.

Denote
L=98;" and Q(t) =" Qo.

The solution operator e'” is an isometry from H* to H* for any s > 0, so that
1QW)lm= = lle"“Qollzrs = |Qollm=, Vte€R.
By Duhamel’s principle, we have

t !
a(t) = o - / T f(g(t)) 07 q .
(0]



Sketch of the proof

Fix g. € (0,1), 6 > 0 and « € (0, 1) so that the initial data satisfy
llollxs < ad, lgolle < age

We need to show that there exists T' > 0 such that
@ the mapping

(Ag)(t) = /Ot T f(gt)) 8, qdt’ : C([0,T), X2) > C(0,T], X¢)

is Lipschitz continuous and a contraction for sufficiently small 7 > 0.
@ The integral equation is well-defined in

la@®llx= <6, llg@)l[re < ge, ¢ €[0,T].

Existence, uniqueness, and continuous dependence come from the standard
Banach’s Fixed-Point Theorem.



Our local well-posedness of the short-pulse equation

Theorem (P., Sakovich, 2010)

Letug € H* N H™ !, s > 3/2. There exists a maximal existence time
T = T(uo) > 0 and a unique solution to the short-pulse equation

u(t) € CY([0,T), H* N H™1)

that satisfies u(0) = uo and depends continuously on .

This theorem follows from the local well-posedness of the sine—Gordon
equation and the correspondence
qt Wiy

U=W = —F——= =P, Up =
' 1—¢q? b cos(w)

Py

Vi@

= tan(w) =



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

1 4 1 —1 \2
E, = —yt -2
1 /R<24u 2(81 u) )dx,
/uzdx,
R
2
Uu.
B, = | — Y g,
' /Rl—&—\/l—ﬁ—ui

’LL2
B = _ Y2 4
’ /R(1+U%)5/2 ©

Lo



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let uo € H? and the conserved quantities satisfy 2F; + E» < 1. Then the
short-pulse equation admits a unique solution u(t) € C (R, H?) with

u(0) = uo.

The values of Ey, E1 and E» are bounded by ||uo|| 52 as follows:

Ey

Ey

E,

- / Wi = [Juo| 22,
R

_ /“73”da;<1||u’||2
el VItaz @ 2ol

2
Uz 2
= foas e < i

The existence time T' > 0 of the local solutions is inverse proportional to the
norm |luo|| ;2 of the initial data. To extend 7" to oo, we need to control the
norm ||lu(t)|| 2 by a T-independent constant on [0, T'].



Sketch of the proof

o Letg(z,t) = . Then, we obtain

1+

2
lat)lm < V2E1+E2 <1, te[0,T).

@ Thanks to Sobolev's embedding ||G||z>~ < f||q||H1 < 1, so that
Uy = \/@ satisfies the bound

s @l < —0E 4 € fo,7)
V1= llall
or equivalently

2E, 4+ E» 1/2
< —_— .
e < (Bo+ 2ot 2} L el



Sharper condition for global well-posedness

Let up € H? such that 2./2E; E» < 1. Then the short-pulse equation admits a
unique solution u(t) € C(R, H?) with u(0) = uo.

Let a € Ry be an arbitrary parameter. If u(z,t) is a solution of the
short-pulse equation, then U (X, T') is also a solution with

X=az, T=ao't, UX,T) =ou(zt).

The scaling invariance yields transformation £, = aE; and E; = a~ ' Es. For
a given ug € H?, a family of initial data U, € H? satisfies

(o) = 2E) + B> = 201 + o "By > 2v/2E1 B2, VYa € Ry,

If 2/2E1 E> < 1, there exists a such that U(X, T) is defined for any T' € R...



Short-pulse equation in a periodic domain

Let S be the unit circle and let 8, ! be the mean-zero anti-derivative

az_lu:/ u(m’,t)d:c'—// u(z’, t)dz' dz.
0 sJo

The short-pulse equation on a circle is given by

1,2
{“t_2“_“z+a b pes, t>0.

u( ,0) (),

Letu(t) € C([0,T), H*(S)) N C*([0,T), H*~'(S)) be a local solution such
that u(0) = uo € H*(S).

@ The assumption [, uo(x)dz = 0 is necessary for existence.
@ The following quantities are constant on [0, T'):

:/qux, Er :/\/l—i—u%dm
s s



Finite-time blow-up scenario

Let up € H(S) and u(t) be a local solution of the Cauchy problem. The
solution blows up in a finite time 7" < oo in the sense limyr ||u(-, ¢)|| g2 = oo
if and only if

hmsup u(z, t)ug(x,t) = +o0.
1T zes

For the inviscid Burgers equation

1,2
vt = gt e, S, t>0
{ u(@,0) =up(w), T IET

the problem can be solved by the method of characteristics. The finite-time
blow-up occurs for any uo(x) € C*(S) if there is a point zo € S such that
uo(zo)ug(zo) > 0. The blow-up time is

=in é wo (&) uf .
T‘zé{w@maa' @)“@>0}



Method of characteristics

Let{ €S,t€0,7T), and denote
z=X(E1), u@t)=UE, 8 uzt) =G

At characteristics x = X (¢, t), we obtain

® The map X (-,t) : S +— Ris an increasing diffeomorphism with

0 X (&,t) = exp (/Ot u(X({,s),s)uz(X(g,s),s)ds) >0, t€[0,T), £€S.

@ The following quantities are bounded on [0, T"):

fu(z,1)] < ’/ o (2,1) d

< /|ux(m,t)\dac < E;
s

and .
0 (e, )] < V w(z, 1) do
3

< /S|u(x,t)|da: < VEs.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Letuo € H*(S) and [ uo(x) do = 0. Assume that there exists z, € R such
that uo(zo)uo(xo) > 0 and

1/3
E2
either lug(x0)| > | — ;
4E)?

1 1/2
o)) > v + (28 o) - 52)
B

1/3
/ 2
4E§/2) s uo(wo)||ug(zo)|” > Ex.

or lug(xo)| < (
Then there exists a finite time T" € (0, co) such that the solution
u(t) € C([0,T), H*(S)) of the Cauchy problem blows up with the property

i - while i D)l < B
ltlTnTlitéguu,t)ux(x,t) +o00, e limu(,¢)lze < Ex




Sketch of the proof

Let V(&,t) = ua (X (&, t),t) and W(E,t) = U (&, t)V (€, t). Then

17%4 W24+ VG+ U

{ V = VW+4U,

Under the conditions of the theorem, there exists &, € S such that V (&, t)
and W (&, t) satisfy the apriori estimates

V > VW - E,
W > W?-V+E,.

We show that V' (&0, t) and W (&, t) go to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data
uo(z) = a(l — 2bx2)e_bzz, z €R,

where (a,b) are arbitrary and [, uo(z)dz = 0 is satisfied.

30

x  wave breaking
25 » well-posedness
20
b st
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5
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Figure: Global solutions exist in the red region and wave breaking occurs in the blue
region.



Numerical simulation

Using the pseudospectral method, we solve

8A o 7:,\ ik —1\3
i =—ru+ ZF [(F9)°] L k#0, t>0.

Consider the 1-periodic initial data

uo(x) = acos(2wx)

@ Criterion for wave breaking: a > 1.053.
@ Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Figure: Solution surface u(z, t) (left) and the supremum norm W (t) (right) for a = 0.2
(top) and a = 0.5 (bottom).



We compute the best power fit for

W(t) = ité}g)u(x, t)ug(x,t)

according to the blow-up law

W(t):i for 0<T—-t<1

T—t
Note that the inviscid Burgers equation has the exact blow-up law
W(t) = 75
N
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Figure: Time of wave breaking 7" versus a (left). Constant C' of the linear regression
versus a (right).



The Ostrovsky—Hunter equation

Cauchy problem on a circle S of unit length:

w + ute = 07w, t>0,
u(0,z) = uo(z),

a9y 'u :=/ u(t,x/)dx/f// u(t, z")dx' dx.
0 sJo

The inviscid Burgers equation u; + uu, = 0 develops wave breaking in a
finite time for any initial data (0, z) = uo () if uo(z) € C* and there is a point
xo such that ug(zo) < 0. In other words, there exists a finite time T" € (0, o)
such that

where

lim inf inf u, (t,2) = —oo, while limsupsup |u(t, z)| < oco.
OT @ HT @

Moreover, the blow-up time is computed by the method of characteristics:

T:irglf{‘ualw: ug(§)<0}.



Conserved quantities

For the Ostrovsky—Hunter equation, it was found that

Theorem (Hunter, 1990)

Let uop(x) € C*(S), where S is a circle of unit length, and define

inf ug(z) = —m and sup|uo(z)| = M.
€S z€S

If m® > 4M (4 + m), a smooth solution u(t, =) breaks down at a finite time.

Note that there exist infinitely many conserved quantities of the
Ostrovsky-Hunter equations, which are not useful:

FEy = /qux,
R

B, = /<1u3+(8;1u)2>dx,
2 \ 3



Finite-time wave breaking

@ Letup(z) € H*(S), s > 2 and u(t, z) be a solution of the Cauchy
problem. The solution blows up in a finite time 7" € (0, co0) in the sense of
limgr7 |Ju(t, -)||ms = oo if and only if

lim inf u, (t,) = —co while limsup |u(¢, z)| < co.
1T 2€S UT 4

@ We have
107 u(t, 7)) < / Ju(t, )| d < [Jull 2 = ull.z
S

and
sup [[u(s,")llzee < [luollze + t[uollL2, Vt€[0,T).
s€[0,t]



Sufficient condition for wave breaking

Assume that uo(z) € H*(S), s > 2 and [ uo(x) dz = 0. If either
3 3 3/2
[ @)’ do <~ (Sluolzz) &
or 5
/(ug(x))‘* dr <0 and fuolzz > 3, @
S
or there is a xo € S such that
i
ug(z0) < —(1+€) (Jluollze + TilluollL2)* ®3)

where T is the smallest positive root of

1 2
273 (|luollze> + Tiluolz2)? = log <1 + ;) ,

then the solution «(¢, z) of the Cauchy problem blows up in a finite time.




Proof of sufficient conditions (1)—(2)

Direct computation gives
d 3 o 2 2
— fuzdr = 3 [ uy (—uz — Ulge + u) dx
dt Js s

= —2/uidx+3/uu§dm
s s

4 2
—2|ua|[La + 3l 2 lue [ zs-

IN

By Hoélder's inequality, we have

V)| < llusle < lluslZe, V() = /Sui(t,x) dz < 0.

3
Let Qo = [|ul|32 = [luol|72 and V(0) < — (£Qo) 2. Then,

av 2 3Q0\° | 9Q3
&V o« _ 2%0 %0
dt_2<|v|3 4>+8’

Thereis T < co suchthat V(t) — —ccast 1 T.



Proof of sufficient condition (3)

Leté €S, t € [0,T), and denote
T = X(&»t)a U(I,t) = U(§7 t)a 6;1’11(1‘7 t) = G(&a t)'
At characteristics x = X (¢, t), we obtain

{ X(t) =0, { U(t) =G,
X(0) =¢, U(0) = uo(§),

Let V(&,t) = ua (¢, X (&,t)). Then

V=-V’4+U = V<-V>+(|uolle + ~vt|uollr2)



Numerical simulation

Using the pseudospectral method, we solve
9 . i

_ N ik —1.\2
aukffgukfgf[(]—' u)]k, k#0, t>0.

Consider the 1-periodic initial data

uo(z) = acos(2wx) + bsin(4rz),

—— Theorem 1
—— Theorem 2|
—— Theorem 3




Evolution of the cosine initial data

infu
*-0.032|

uxy ©0%
-0.0:

% |

0
0. t

-0.036|

%

80
6L
40
2
0

1

x

o
N
S
a
5
2
3
o
8
o

15

38

infu,
%

0 1 2 3
t

Figure: Solution surface u(¢, z) (left) and inf,cs uz (¢, z) versus ¢ (right) for a = 0.005,
b =0 (top) and a = 0.05, b = 0 (bottom). C' =~ —1.009 and B =~ 3.213.



@ We found sufficient conditions for global well-posedness of the
short-pulse equation for small initial data.

@ We found sufficient conditions for wave breaking of the short-pulse and
Ostrovsky—Hunter equations for large initial data.

@ We illustrated both global existence and wave breaking numerically.

@ Numerical results suggest orbital stability of the exact modulated pulses
of the short-pulse equation.

@ Numerical results suggest global existence for small initial data in the
Ostrovsky-Hunter equation.
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