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Krein signature in Hamiltonian systems

Stability of critical points in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

d
dit’ — JH'(u), u(t) e X

where X is the phase space, J : X — X is a skew-adjoint operator with a
bounded inverse J~1 = —J, and H: X — R is the Hamilton function.

® Assume existence of a critical point up € X such that H'(up) = 0.
® Perform linearization u(t) = ug + vet, where ) is the spectral
parameter and v € X satisfies the spectral problem

JH" (up)v = Av,
where H"(up) : X — X is a self-adjoint Hessian operator.

If there exists A with Re(A\) > 0 and v € X, then wg is called
spectrally unstable. Otherwise, ug is spectrally stable.
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Main Question

Assume:

® The spectrum of H”(up) is strictly positive except for finitely many
negative and zero eigenvalues of finite multiplicity.

® The spectrum of JH”(ug) is purely imaginary except for finitely many
unstable eigenvalues.

® Multiplicity of the zero eigenvalue of JH"(up) is given by the number
of parameters in up (symmetries).

Question: Is there a relation between unstable eigenvalues of JH"(ug) and
eigenvalues of H”(up) in the spectral problem

JH" (ug)v = Av.
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Orbital Stability Theorem for Hamiltonian Systems

Consider the spectral stability problem:
JH (wp)v = Av, veEX,

under the same assumptions on J and H”(up). Eigenvalues \ appear in

pairs relative to the imaginary axis: A and —\.

Stability Theorem (Grillakis—Shatah—Strauss, 1990)

Assume zero eigenvalue of H”(up) of multiplicity N and related N
symmetries/conserved quantities. If H”(up) has no negative eigenvalues
under N constraints, then JH”(up) has no unstable eigenvalues and an
orbit of wug is linearly and nonlinearly stable.
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Negative Index Theorem for Hamiltonian Systems

Stability Theorem (Kapitula—Promislow, 2013)

Assume no symmetries/zero eigenvalues of H”(up). Then,
Neo(JH") + Ne(JH") + N (JH") = Noeg(H") < o0,

where
® N, - number of real unstable eigenvalues;
® M. - number of complex unstable eigenvalues;

® N - number of imaginary eigenvalues of negative Krein signature.

| A\

Definition (Krein signature)

Suppose that A € /R\{0} is a simple isolated eigenvalue of JH” with the
eigenvector v. The quadratic form (H"v,v);> = A(J71v,v),2 is nonzero
and its sign is called the Krein signature of the eigenvalue \.

o
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Example: degree-2 Hamiltonian system

Consider energy

1
H:§(Y12+Y22)+§(

The quadratic form for H has two positive and two negative eigenvalues.

—)\ )\2X2 )

Both oscillators are unstable:

= Y1,

X2 = Y2, )'<-1 - )\%Xl = 0,
=X, | - =0
— N\1X1, X2 = U.

Y2 = A3xa,

Negative index count:
Nee(JH) = 2 = Npeg(H)
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Example: degree-2 Hamiltonian system

Consider energy
H_E(2_ 2)+1(22_ 22)
=5 Yyi—>» 5 WXy — WaXy

The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are nevertheless stable:

X1 =y,

Xo = —ya, N { X +wixy =0,
Vi = —wixi, X3 + wixa = 0.
Y2 = wixz,

Negative index count:
Ni, (JH) = 2 = Nucg(H)
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Example: degree-2 Hamiltonian system

Consider energy
1
H= 201 = v3) +wixax

The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are unstable with a quadruplet of complex eigenvalues:

X.l =¥,

. .. 2

Xp = — X1 +wx =0 4

.2 -)/227 = 1 2 2 ’ = X](_ ) + w4X1 = 0
Y1 = —w X, Xo —wxy =0,

Yo = —w?xi,

Negative index count:
Ne(JH) = 2 = Npeg(H)
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Properties of Krein quantity

Definition (Krein quantity)

Suppose that A € /R\{0} is a simple isolated eigenvalue of JH" with the
eigenvector v. The quadratic form

K\) := (H"v,v)2 = M(J 71w, v) 2

is called the Krein quantity of the eigenvalue \.

Lemma (Krein quantity properties)

| \

Suppose that A € C\{0} is a simple isolated eigenvalue of JH”. Then:
1. K()\o) € R.

2. K()\o) 75 0if Ag € iR.
3. K()\o) =0if \p € (C\{iR}.
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Necessary condition for instability bifurcation

Consider a perturbed spectral problem
JIH"+eW)v=Xv, veX, (%)

where ¢ < 1 is a perturbation parameter and
W is a symmetric bounded operator in X.

Instability Theorem

Suppose \1(g), A2(¢) are eigenvalues of () continuously depending on

e € R.If A1, A2 € iR with K(A1)K(X\2) < 0 for e < 0 and A1, A coalesce
at € = 0, then, under a certain non-degeneracy condition, Ai(g), A2(¢) are
complex for £ > 0.
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Linear PT-symmetric systems

Definition (P and 7 operators)

Parity transformation P and time reversal transformation 7

Pu(x,t) == u(—x,t), Tu(x,t):=u(x,—t).

| A\

Definition
A linear operator L : X — X is PT-symmetric if it commutes with PT:
[L,PT]=LPT —PTL=0.
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Linear P T -symmetric systems

Linear PT-symmetric systems

Definition (P and 7 operators)
Parity transformation P and time reversal transformation 7
Pu(x,t) == u(—x,t), Tu(x,t):=u(x,—t).

v

A linear operator L : X — X is PT-symmetric if it commutes with PT:
[L,PT]=LPT —PTL=0.

A PT-symmetric operator L may have only real eigenvalues.
B PT7 symmetry in quantum mechanics (C.M. Bender, 1998)

B PT-symmetry in nonlinear optics
(D.N. Christodoulides et al. 2008)
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Examples of P7-symmetric operators

Consider a Schradinger operator on X = L2(R):
L=—-02+V(x), where V(—x)= V(x).

® 2 harmonic oscillator with a linear damping term
V(x) = x? + 2iyx = (x + i7)? +~2
The spectrum of L is purely discrete and real

o(L)={y*+1+2m, meNo}.
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Linear P T -symmetric systems

Examples of P7T-symmetric operators

Consider a Schradinger operator on X = L2(R):
L=—-02+V(x), where V(—x)= V(x).

® 2 harmonic oscillator with a linear damping term
V(x) = x? + 2iyx = (x + i7)? +~2
The spectrum of L is purely discrete and real

o(L)={y*+1+2m, meNo}.

® an unharmonic oscillator
V(x) = x3(—ix)7.

The spectrum of L is purely discrete and real for v > 0
(C.M. Bender, S.Boettcher 1998).
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Properties of linear P77 -symmetric systems

Consider the evolution system

d
id—l: =Lu, u(,t)eX,

where LPT — PTL=0.

If u(t) is a solution of the evolution equation, then
v(t) = PTu(t) = Pu(—t)

is also a solution of the same system.
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Linear PT-symmetric systems

Properties of linear P7-symmetric systems
Consider the evolution system

o
dt
where LPT — PTL=0.

Lu, u(-,t) € X,

If u(t) is a solution of the evolution equation, then
v(t) = PTu(t) = Pu(—t)

is also a solution of the same system.

If v is an eigenvalue and U is an eigenfunction, then [ is also an
eigenvalue with the eigenfunction PT U:

u(t) = Ue ™ = v(t)=PU0e ™.
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Linear PT-symmetric systems

Consider a spectral problem for the PT-symmetric linear operator L:
Lv=puv, veX,

where LPT — PTL=0.

Theorem (S.Nixon, J.Yang, 2016)

The spectral problem can be written in the Hamiltonian form
JHv = Av,

where J =P, H="PL, and A = ip.

Proof: (iP)(PL)v = iuv,
H*=L*P=PL=H,
Jr = —Pi=—J.
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L e |
Krein quantity in linear P7-symmetric systems

The spectral problem with the P7T-symmetric L:
Lv=pv & (iP)(PL)v=ipv.

Definition (Krein quantity)

Suppose that © € R\{0} is a simple isolated eigenvalue of L with the
eigenvector v. The Krein quantity of the eigenvalue p is

K(p) :== (PLv,v) = u(Pv,v)

Suppose that u € C\{0} is a simple isolated eigenvalue of L. Then:
1. K(mo) € R.
2. K(uo) # 0 if yio € R.
3. K(po) =0 if ug € C\{R}.
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Stability of the linear PT-symmetric systems
The spectral problem for the PT-symmetric linear operator L:
Lv=pv & (iP)(PL)v=ipv
with
L=—0%+x*+2ivx, L=-02+x*(—ix).

For v = 0: L is positive with i > 0, but PL has co-many eigenvalues of

positive Krein signature and oo-many eigenvalues of negative Krein
signature:

K(p) = (PLv,v) = pu(Pv,v).

® Orbital Stability Theorem - NO
® Negative Index Theorem - NO
® |[nstability Bifurcation Theorem - YES

Infinitely many eigenvalues may become unstable.
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Linear P T -symmetric systems

Example of a discrete Schrodinger equation

Consider the spatially extended PT-symmetric potential,

—(Ups1 + up—1) + (n2 + 2iyn) up = pu,, n e Z.

By using the discrete Fourier transform, the spectral problem is
transformed to the differential equation

d?i di N
Pl 2y— - + [u + 2cos(k)] d(k) =0,

subject to the 27-periodicity of d(k).

(D.P, P.Kevrekidis, D.Frantzeskakis, 2013)
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Linear P T -symmetric systems

Example of a discrete Schrodinger equation

If 0(k) = d(k)e", then U(k) satisfies the Mathieu equation:
d’v
dk2

subject to the condition U(k + 27) = e>™¥(k). Hence we look for the

Floquet multiplier y1, = €™ of the monodromy matrix.

+ [ =~ +2cos(k)] ¥ =0,

Im(E)

5 . .
100 200 Re(E) 300 400
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Nonlinear P77 -symmetric systems

Nonlinear P7 -symmetric systems

Main Question: How to extend the Krein quantity and related results to
nonlinear P77 -symmetric systems?

100 = [~02 + V(x) + inW(x)] ¢ £ [,

where V., W : R — R: V(x) = V(—x), W(—x) = —W(x), e.g.

® \Wadati potential: V(x) = sech?(x), W(x) = sech(x) tanh(x);

® Confining potential: V(x) = x2, W(x) = xe /2.
This scalar model is different from dimers (coupled NLS systems), where
some progress has been done:

B N.Alexeeva-l.Barashenkov-Yu.Kivshar (2012,2017);

B M.Stanislavova—A. Stefanov (2017);

B A. Chernyavsky-D.P. (2016).
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Spectral stability problem

Stationary state: ¢)(t,x) = ®(x)e ", € R, & : R — C.
pd = [—02 + V(x) + inW(x)] & £ o>,

o satisfies the PT symmetry: ® = PT® or d(x) = @(—x).
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Spectral stability problem

Stationary state: ¢)(t,x) = ®(x)e ", € R, & : R — C.
pd = [—02 + V(x) + inW(x)] & £ o>,

o satisfies the PT symmetry: ® = PT® or d(x) = @(—x).
Linearization near ®:

Y(t,x) = e Mt
e = o |

(000 + Y(x)e™] |
B(x) + Z(x)e ],
where \ € C is spectral parameter:

Lo+ ivW — pu+ 2|2 2
% Lo — inW — ju + 2|2

q--om[s]. o

20 /27

where Ly = —92 + V and o3 = diag(1, —1).



Krein quantity

The spectral problem

Lo+ ivW — p + 2|2 ®2
®° Lo — ifW — p+ 2|0

~~

L

and the adjoint spectral problem

{--om[g] o

[Lo—iVW—u+2|¢\2 2

Y, < [V,
_ i
o’ Lo+ ivW — 1+ 2|0 [Z} 173 {z] ()

£*
where Lo = —02 + V and o3 = diag(1, —1).

Main problem: no relations between eigenvectors and adjoint
eigenvectors.
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Krein quantity

The spectral problem

Lo+ ivW — pu + 2|®|? ? Y| \ Y
—2 i _ 2| |7z = —IA03 Z\l (*)
o Lo —ivW — p+ 2|P|
c
and the adjoint spectral problem
Lo — ivW — p + 2|®|? P2 Yol _ 50 [YVa
-2 i _ 2 7| = INC3 7.1 (**)
o Lo+ ivW — u+2|9| a a
E*

where Lo = —02 + V and o3 = diag(1, —1).

If Ao € iR is simple, the eigenvectors are PT-symmetric, e.g.

Y =PTY or Y(x)=Y(—x).
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Krein quantity

The spectral problem

Lo+ iyW — p +2|®|? P2
®° Lo — inW — p+ 2|0

4 --smfg]. o

where Ly = —02 + V and o3 = diag(1, —1).

Definition (Krein signature)

Let Ao € iR\{0} be a simple isolated eigenvalue of the problem (k) with
the eigenvector (Y, Z) and the adjoint eigenvector (Y3, Z;). The Krein
signature of \q is the sign of the Krein quantity

K(No) = <o—3 [ 4 ] , { ’Z/: ]> - /R [Y (Y309 — Z()Z()] dx.
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Krein quantity

The spectral problem

Lo+ ivW — p + 2|92 P2
®° Lo — ifW — p+ 2|0

{--smfg]. o

where Ly = —02 + V and o3 = diag(1, —1).

Lemma (Krein quantity properties)

Assume that there exists a simple isolated eigenvalue A\g € C\{0} of the
spectral problem (x).Then:

1. K(Xo) € R.
2. K(Xo) #0if A € iR.
3. K(X\o) =0 if \g € C\{iR}.
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Krein quantity

The spectral problem

Lo+ izW — p + 2|02 2
®° Lo — ivW — i+ 2|0

{--smfg]. o

where Lo = —02 + V and o3 = diag(1, —1).

Theorem (Necessary conditions for instability bifurcation)

Suppose Ai(e), Az2(€) are eigenvalues of (x) continuously depending on

e € R.If A1, A2 € iR with K(A1)K(X\2) < 0 for e < 0 and A1, Ay coalesce
into a defective eigenvalue at € = 0, then, under a certain non-degeneracy
condition, A1(g), A2(¢) are complex for € > 0.
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Behind the proof.

Assume self-adjointness of Ly = —92 + V on L2(R) and W € L*®(R).
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Behind the proof.
Assume self-adjointness of Ly = —92 + V on L%(R) and W € L®(R).
Nonlinear problem:

pd = [—0F + V(x) + inW(x)] & £ o>,
Assume existence of ® € H?(R) with real-analytic dependence on (7, 1)
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Behind the proof.

Assume self-adjointness of Ly = —92 + V on L%(R) and W € L®(R).

Nonlinear problem:
pd = [—0F + V(x) + inW(x)] & £ o>,
Assume existence of ® € H?(R) with real-analytic dependence on (7, ).

Spectral problem:
Lo+ izW — pu + 2|®|? 2 Y . Y
-2 . 2 = _I)\03 ) (*)
o Lo — iZW — p+29)?| [ £ z
~—~—
I v

Assume existence of a double defective eigenvalue \g for (7o, po) with
eigenvector vg and generalized eigenvector v{:

Lovg = —idgosvg, Lovi = —ilgo3vi — io3vg.
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Behind the proof.

Fix u. The operator family £ : H?(R) C L2(R) — L2(R) is real-analytic in
7 at 7 with

L= Lo+ (7 =)L+ O((v —0)%)-
with £1 : L2(R) — L2(R).
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Behind the proof.

Fix u. The operator family £ : H?(R) C L2(R) — L2(R) is real-analytic in
7 at 7 with

L= Lo+ (7 =)L+ O((v —0)%)-
with £1 : L2(R) — L2(R).

Since Ag is a defective eigenvalue, use the Puiseux expansions:

A= X+ (=) + (v —10)h + O((v — 70)¥?),
v vo + (7 —70)Y2v1 + (7 — o) va + O((7 — 70)*?).
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Behind the proof.

Fix u. The operator family £ : H?(R) C L2(R) — L2(R) is real-analytic in
7 at 7 with

L= Lo+ (v —10)L1+O((v —70)?)-
with £1 : L2(R) — L2(R).

Since Ag is a defective eigenvalue, use the Puiseux expansions:

A= X+ (=) + (v —10)h + O((v — 70)¥?),

v vo + (7 —70)Y2v1 + (7 — o) va + O((7 — 70)*?).

Fredholm theory gives

L
(—in)? = ( 1V07V0a>.
03(V1, Voa)
The inner products are real and the splitting takes place if (£1vo, voa) # 0.

Justification is given by the Lyapunov-Schmidt reduction method. .



Nonlinear P77 -symmetric systems

Numerics: V(x) = —2sech? x + i2.21 sech x

o
Re(A)

0.5

-2.8

-2.6

-2.4

tanh x

Re(N)

-2.8

-2.6 -2.4
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Nonlinear P77 -symmetric systems

Numerical Results:V/(x) = x> + iyxe
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Nonlinear P 7T -symmetric systems

Numerical Results:V/(x) = x> + iyxe
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Summary and Open Problems

Summary:

® Some methods from Hamiltonian systems can be successfully used in
the study of linear P7T-symmetric systems.

® Krein quantity and instability bifurcations can be analyzed for
nonlinear PT-symmetric systems.
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Summary and Open Problems

Summary:

Some methods from Hamiltonian systems can be successfully used in
the study of linear P7T-symmetric systems.

Krein quantity and instability bifurcations can be analyzed for
nonlinear PT-symmetric systems.

Open questions:
Instability bifurcations for zero and semi-simple eigenvalues

Relation between branches of non-P7 -symmetric states and unstable
eigenvalues in the linearization of the PT-symmetric states.

Thank you!
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