Nonlinear dynamics
in PT-symmetric lattices

Dmitry Pelinovsky
Department of Mathematics, McMaster University, Ontario, Canada

Collaborations with
P. Kevrekidis (Massachusetts), V. Konotop and D. Zezyulin (Lisbon),
and |. Barashenkov (Cape Town)

SIAM Conference on Nonlinear Waves
Cambridge, UK, August 11-14, 2014

Dmitry Pelinovsky (McMaster University ) Nonlinear dynamics in PT-dNLS lattices August 11-14, 2014 1/27



PT-symmetric dNLS equation

We consider the PT-symmetric discrete nonlinear Schrodinger (dNLS)
equation

du )
IS8 = Uyt + U+ (1)t + [, nESCZ,

where v > 0 is the gain and loss coefficient and {u,} stand for the set of
complex amplitudes in the optical network on S.

S ={0,1} gives the optical dimer, S = {0,1,2,3} gives the quadrimer,
and so on. Generally, the PT-dNLS equation is not a Hamiltonian model
with conserved energy for v # 0.
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PT-symmetric dNLS equation
We consider the PT-symmetric discrete nonlinear Schrodinger (dNLS)
equation

du )
IS8 = Uyt + U+ (1)t + [, nESCZ,

where v > 0 is the gain and loss coefficient and {u,} stand for the set of
complex amplitudes in the optical network on S.

S ={0,1} gives the optical dimer, S = {0,1,2,3} gives the quadrimer,
and so on. Generally, the PT-dNLS equation is not a Hamiltonian model
with conserved energy for v # 0.

Motivations:

@ Understand if the dynamics of the PT-symmetric network is globally
bounded or unbounded.

@ Understand if the stationary solutions exist and remain stable.

@ Consider more general network configurations and nonlinearities.
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Global existence in /?(S)

For any n € S, the squared amplitude satisfies the evolution equation

d|”n|2

5 = 2(=0)"ual + g0 — g1,

where g, := i(Unlpt1 — Unlni1).
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Global existence in /?(S)

For any n € S, the squared amplitude satisfies the evolution equation

dlu,|?
% = 27(—1)"|un|* + gn — gn-1,

where g, := i(Unlpt1 — Unlni1).
Adding up all equations on S, we obtain the balance equation
d 2 n 2
EZ‘”J = 2')’2(_1) |unl”.
nes nes
By Gronwall’s inequality, the balance equation results in the a priori bound
S luttl < (S0 ) 7. cex
nesS nesS

Hence the solution does not blow up in a finite time in /?(S).
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Linear stability of zero equilibrium

Consider the finite and compensated network with Sy :={1,2,...,2N}.
Linearizing at the zero equilibrium and separating u, = w,e £t

, we obtain
the linear stationary PT-dNLS equation

Ewp, = Wpt1 + Wopo1 + iv(—=1)"w,, n€ Sy

subject to the Dirichlet end-point conditions wy = wppy41 = 0.
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Linear stability of zero equilibrium

Consider the finite and compensated network with Sy :={1,2,...,2N}.
Linearizing at the zero equilibrium and separating u, = w,e £t

, we obtain
the linear stationary PT-dNLS equation

Ewp, = Wpt1 + Wopo1 + iv(—=1)"w,, n€ Sy
subject to the Dirichlet end-point conditions wy = wppy41 = 0.
Lemma
Eigenvalues of the linear spectral problem are given explicitly:

2 2 2 mj -
+E“=4 1< /< N.
v €os (1+2N>’ =J=

In particular, all eigenvalues are simple and real for v € (—yn,yn), where

N
YN = 2cos T .
142N
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Main result

Theorem

@ For every v € (0,vy), all solutions of the PT-dNLS equation starting
from sufficiently small initial data in I>(Sy) remain bounded for all
times t € R.

@ For every v > 0, there exist solutions of the PT-dNLS equation
starting from sufficiently large initial data in I>(Sy) which grow
exponentially fast as t — oo.

These results for the dimer configuration were independently obtained by
Picton—Susanto (2013); Barashenkov—Jackson—Flach (2013); and
Kevrekidis—P—Tyugin (2013). However, Stokes constants and integrals of
motion available for the integrable dimer cannot be generalized for N > 1.
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Nonlinear dynamics of a dimer: N =1

Consider a PT-symmetric dimer with two complex amplitudes:
i% = b— iva+|al?a,
92 = a+ ivb+ |b|?b.

2 2
lal®, Ibl%, |a b]

Figure: Left: unbounded growth of the amplitude |b(t)| for the gained oscillator.
Right: bounded oscillations of the amplitudes.
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Important bound: N =1

The product |a(t)b(t)

remains bounded for all times t € R.

Lemma J

Setting B B
u:=ab+ab, v:=i(ab—3ab),
we obtain
{ % = (b — la]*)v,
& = (b —aP)(2 - v).
Solving the linear oscillator equation, we obtain
u(t) =2+ Greos [ J§ (b — |a?)dt’] + Gosin [ 5 (1612 — |aP)d]
v(t) = — G sin [f0(|b|2 a2 )dt} + Gy cos [fo (16 — |a| )dt],
where C; and C, are arbitrary constants. Hence,

la(t)b(t)| <14 |G|+ |G| forall teRR.
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Proof of the theorem: N =1

The squared amplitudes |a|? and |b|? satisfy the evolution equations:

dlaf _ _oy|al? + i(ba — ba),
DL = 29]b|? — i(ba — b3).

Let us prove that |b(t)| may grow to infinity as t — oc.
Choose the initial data (ag, by) to be sufficiently large so that
2v|bo|? — i(boao — bo3o) > 2v|bo|* — 2(1 + |G| + | Go]) > 0.
Then, |b(t)|? will grow and the inequality
29|b(t)[* — i(b(t)a(t) — b(t)a(t)) > 2v(b(t)]* = 2(1 + |G| + |Cal) > 0,

will be preserved for all positive times.
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Proof of the theorem: N =1

Hence, we have ,
dlblc 5 T _
i 27y|b|* — i(ba — ba)
and

29|b|? — i(ba — b3) > 2v|b|? — 2(1 + |G| + | G2|) > 0.
From the differential equation,

dbP 0
2 = 29— 2(1+]G +[Gl) > 0.

|b(t)|? grows exponentially like €27t as t — co. By the comparison
principle, |b(t)|? is the lower solution for |b|?, hence

|b(t)|? > |b(t)]> forall t>0.

Hence, |b(t)|? grows at least exponentially as t — oc.
At the same time, |a(t)|? decays as t — oo.
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Proof of the theorem: N =1

Let us write the differential equation in the integral form,
t -
(o) = (16~ 7 [ &2 [a(r)br) ~ a()bi)] o )
0

Alternative:
o If

Ibo|2 = i/ &2t [a(t)B(t) — 3(£)b(2)] dt,
0
then |b(t)|? remains bounded with

b(E)P < 7" sup [a(t)b(e)]. tERy
teR,

@ Otherwise, |b(t)|? grows exactly like et
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Proof of the theorem: N =1

Lemma
Let fy € (0,1) be fixed and 6 := +/|ao|?> + |bo|?> be small. Then, for every

O(672), we have

sup \/la(t)2 + b(t) < 6627, t € [0, n.

The proof uses the following elements:
@ Diagonalization of the linear part of the system in normal coordinates.
@ Removal of the linear diagonal terms by the phase rotation factors.
@ Gronwall’s inequality for the purely cubic system.

By a contradiction, if the solution grows, then |b(t)|? grows like 27t and

this growth contradicts the lemma on the time scale t = O(572).
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Nonlinear dynamics of a quadrimer: N = 2

c
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Figure: Dynamics of the quadrimer with small initial data. For the contour plot
evolution of the squared /2 norm, it is clear that all orbits remain bounded (left
panel). A typical example of the resulting bounded orbit is shown in the right
panel with the blue solid and red dash-dotted lines denoting the gain sites, while
the green dashed and cyan dotted lines correspond to the lossy ones.
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Nonlinear dynamics of a quadrimer: N = 2
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Figure: Dynamics of the quadrimer with large initial data. From the saturation of
the left panel’s logarithmic scale, it is clear that most trajectories lead to
indefinite growth. The right panel illustrates the unbounded dynamics, when one
of the gain sites grows.
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Generalized PT-symmetric dNLS network

Let us generalize the nonlinear terms in the PT-symmetric dNLS network as

{ [Up + Vp + YuUp + tp—1 + Upt1 :(|”n|2+|Vn|2)”"’ nesS

iV + Up — iVVn + Vo1 + Va1 = (Jual?® + |Va|*) Va,

The zero equilibrium is uniformly stable for any v € (—1,1) as the
dispersion relation of the linear perturbations is

wi(k) =2cos(k) £/1—~2, ke Ts.

The generalized dimer corresponds to S = {0}.
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Generalized PT-symmetric dNLS network

Let us generalize the nonlinear terms in the PT-symmetric dNLS network as

{ [Up + Vp + YuUp + tp—1 + Upt1 :(‘”n|2+|vn|2)”"’ nesS

iV + Up — iVVn + Vo1 + Va1 = (Jual?® + |Va|*) Va,

The zero equilibrium is uniformly stable for any v € (—1,1) as the
dispersion relation of the linear perturbations is

wi(k) =2cos(k) £/1—~2, ke Ts.

The generalized dimer corresponds to S = {0}.

Theorem

@ For every v € (0,1), all solutions of the generalized dimer remain
bounded for all times t € R.

@ For every v > 1, there exist solutions of the generalized dimer which
grow exponentially fast as t — co.
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Nonlinear dynamics of the generalized dimer

The generalized dimer can be written explicitly as

{ i% =b—iva+ (|2 +|b])a,
i% =a+ivb+ (|a* +|b?)b.

In Stokes variables,
S:=la> + b, X:=|a>—|bJ>, Y :=i(ab—ab), Z:=3zb+ ab,
we obtain the system
S=29X, X=2¢9§-2Y, Y=2X, Z=0.

Hence, Z and Q := S — +Y are constants of motion, whereas S satisfies

S+4(1-+%S =4Q.
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Another PT-symmetric dNLS network

Another generalized PT-symmetric dNLS network can be written as

{ 1Un+ vy + i’YUn + Up_1+ Upy1 = (|un|2 +2|Vn‘2)un + Urz,vna nes

Vo + up — i’)’Vn + Vp—1 + Vptr1 = (2|Un|2 + |Vn|2)Vn + V,%l_ln,

The zero equilibrium is still uniformly stable for any v € (—1,1). The
generalized dimer corresponds to S = {0}.
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Another PT-symmetric dNLS network

Another generalized PT-symmetric dNLS network can be written as

{ 1Un+ vy + i'YUn + Up_1+ Upy1 = (|Un|2 +2|Vn‘2)un + urz,vna nes

Vi + Up — iYn + Va1 + Vo1 = (2|un|? + |Va|?) Ve + v2in,
The zero equilibrium is still uniformly stable for any v € (—1,1). The

generalized dimer corresponds to S = {0}.

Theorem

For every v € R, all solutions of the generalized dimer remain bounded for
all times t € R.

Similar results appear back to 1994-1998 in the works of
Jorgensen—Christiansen, where a Hamiltonian dimer was studied.
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Nonlinear dynamics of a generalized dimer
The generalized dimer is now written explicitly as

i% = b—iva+(|a® +2|b]*)a + a*b,
i% = a+ivb+ (2|af? + |b]?)b + b?a.

In Stokes variables,
S:=la®+|b?>, X:=la|>—|b? Y :=i(ab—ab), Z:=ab+ ab,
we obtain the system

S=2vX, X=295-2Y +2SY, Y =2X-25X, Z=0.
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Nonlinear dynamics of a generalized dimer
The generalized dimer is now written explicitly as

i% = b—iva+(|a® +2|b]*)a + a*b,
@ = a+ivb+(2]a]? + |b]?)b + b%3.

In Stokes variables,
—=lal® +|b*>, X:=|a|>—|b]%, Y :=i(ab—ab), Z:=3ab+ ab,
we obtain the system

S=2vX, X=295-2Y +2SY, Y =2X-25X, Z=0.

Excluding S, we have the planar system

which implies that Y ~ S? if S — co. However, this contradicts to
constraint X? + Y2 + 72 = 52 hence |Y| < S.
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Nonlinear stationary states

The stationary PT-dNLS equation on the finite network Sy for the
PT-symmetric stationary states u,(t) = U,e~"E* can be reduced to the
system of N algebraic equations

EUp = Upy1 + Up_1 + in(=1)"Up + |Un?U,, 1< n <N,

subject to the boundary conditions Uy = 0 and Uny1 = Uy.

Theorem

For any v € (—1,1), the stationary PT-dNLS equation on Sy for large real
E admits 2N PT-symmetric solutions such that

||U,,|2—E| < C, foreachl <n<N.

Also it admits exactly 2 solutions such that

‘|UN|2—E|§C and \U,,|2§CE_1 foreach1<n< N —1.

v
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Stationary states of a dimer: N =1

Setting E = % and U = %, we write the stationary DNLS equation:
(1_‘Wn‘2)Wn:5[Wn+1+ Wn—l‘i’i'Y(_l)an]a 1 <n< N’
subject to the boundary condition Wy = 0 and Wy,, = Wy.
For N =1, we have
(1 — |W1|2)W1 =0 [V_Vl — i’le] .
Setti 1/2 .
etting Wi = A}’ "e'¥1, we obtain
A; =1—0cos(2p1), —sin(2p1)—v =0,

which yields two branches by the two solutions of sin(2¢;) = —7.
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Stationary states of a quadrimer: N =2

2
w,|

2
w,|

7
o
0

2 -1

Figure: Nonlinear stationary states for v = 0.5 (left), v = 0.75 (middle), and
v = 1.1 (right). The top and bottom rows show components |U;|? and |U,|?.
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Spectral stability in PT-symmetric dNLS

Substitute u(t) = e~Ef(U + V(t)) to the PT-dNLS equation with
wy = Uany1—n and obtain the linearized time-evolution problem

dV, , _
i dt” 4+ EVy = Vog1 4 Vo1 + i(—=1)"yV, + 2|U, |2V, + U2V,

Then, use _
V(t) = ¢pe ™ and V(t) =pe

to obtain the spectral problem with the eigenvalue parameter A

{ (E - i)‘)¢n = ¢n+1 + ¢n—1 + i(_l)n7¢n + 2_|Un‘2¢n + U?ﬂ/)m
(E + idNpy = Ynp1 + Yn_1 — i(=1)"yn + U2¢n + 2|Un|?®n.

Unless M is real, ¢, and v, are not complex-conjugate to each other.
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Stability Theorem

Theorem

Consider the 2N stationary solutions on Sy in the limit E — oco. There
exists exactly one spectrally stable stationary state for sufficiently large E.

Using the rescaling E = 1/6, U = W/6%/2, and A\ = A/§, we obtain

{ (1 _ 2| Wn|2)¢n - an@bn = iNgp + 5(¢n+1 + ¢n-1+ ’-(_l)n’ﬂbn)y
~WZén + (1= 2AWal?)tbn = —iMpn + 8 (Yns1 + V-1 — i(—1)"7n) .

where we recall W, = e (1 + O(6)).

For 6 = 0, there exists only one eigenvalue A = 0 of algebraic multiplicity
4N. The multiple zero eigenvalue splits in C if 6 # 0.

The only spectrally stable stationary solution has the out-of-phase
configuration for all phase differences in the sequence 6,11 — 6.
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Stationary states in the generalized PT-dNLS network

Consider the generalized PT-symmetric dNLS network as

nes.

{ [Up+ Vo + ivup + Up—1 + Upg1 = (\Un|2 + |Vn|2)un7
iVn + Un — Va4 Vo1 + Vas1 = (|Un]? + |Val?)Va,

For every v € (—1,1), all solutions of the generalized dimer remain
bounded for all times. All stationary solutions are also identical to those in
the standard PT-NLS network.

Theorem

Consider the 2N stationary solutions on Sy in the limit E — oco. There
exists exactly two spectrally stable stationary states for sufficiently large E.

Dmitry Pelinovsky (McMaster University ) Nonlinear dynamics in PT-dNLS lattices August 11-14, 2014 23 /27



Stability of stationary states of a quadrimer: N =2
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Figure: Left: the standard PT-dNLS equation. Right: the generalized PT-dNLS.
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Another generalized PT-symmetric dNLS network

Consider another generalized PT-symmetric dNLS network

{ [Up + Vo + iYUp + Up—1 + Upy1 = (|u,,|2 —|—2|v,,\2)u,, + U2, nes

Vi + Up — iYn + Va1 + Vo1 = (2|un|? + |Va|?) Ve + v2 0,
For every v € R, all solutions of the generalized dimer remain bounded for

all times t € R.

Theorem

For any v € R, the stationary PT-dNLS equation on Sy admits exactly one
PT-symmetric solution (unique up to a gauge transformation) such that

‘|U0|2—E|§C and |U,|*> < CE! for each n # 0.

The stationary state is spectrally stable if v € (—1,1).
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Open problems

@ Global bounds on the solutions in the generalized PT-symmetric
dNLS-type networks.

@ Spectral stability of general nonlinear states in the generalized
PT-symmetric dNLS-type networks.

@ Nonlinear stability of spectrally stable stationary states.

@ Extensions to multi-dimensional settings of the PT-dNLS equation.
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