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PT-symmetric quantum mechanics

Consider the evolution problem

i
du

dt
= Hu, u(·, t) ∈ L2, t ∈ R,

where H is a linear operator with a domain in L2. If H is Hermitian, then
σ(H) ⊂ R and e−itH is a unitary group on L2.
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PT-symmetric quantum mechanics

Consider the evolution problem

i
du

dt
= Hu, u(·, t) ∈ L2, t ∈ R,

where H is a linear operator with a domain in L2. If H is Hermitian, then
σ(H) ⊂ R and e−itH is a unitary group on L2.

Let us now assume that H is not Hermitian but PT -symmetric, where

P stands for parity transformation

T stands for time reversion and complex conjugation.

In other words, there is an operator P : L2 → L2 such that P2 = Id and

H̄ = PHP, or THT = PHP, or PTH = HPT ,

where Tu(t) = ū(−t) [C.M. Bender, 2007]
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Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

v(t) = PTu(t) = Pū(−t)

is also a solution of the same system

i
dv

dt
= Hv ⇒ −iP

dū

dt
= HPū ⇒ −i

d ū

dt
= H̄ū ⇒ i

du

dt
= Hu.
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v(t) = PTu(t) = Pū(−t)

is also a solution of the same system

i
dv

dt
= Hv ⇒ −iP

dū

dt
= HPū ⇒ −i

d ū

dt
= H̄ū ⇒ i

du

dt
= Hu.

If E is an eigenvalue and U is an eigenfunction, then Ē is also an
eigenvalue with the eigenfunction PŪ, because

u(t) = Ue−iEt ⇒ v(t) = PŪe−i Ē t .
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If u(t) is a solution of the evolution equation, then

v(t) = PTu(t) = Pū(−t)

is also a solution of the same system

i
dv

dt
= Hv ⇒ −iP

dū

dt
= HPū ⇒ −i

d ū

dt
= H̄ū ⇒ i

du

dt
= Hu.

If E is an eigenvalue and U is an eigenfunction, then Ē is also an
eigenvalue with the eigenfunction PŪ, because

u(t) = Ue−iEt ⇒ v(t) = PŪe−i Ē t .

Bender’s Conjecture: For many physically relevant PT -symmetric operators
H, all eigenvalues are real and all eigenfunctions are PT -symmetric.

Dmitry Pelinovsky (McMaster University)Nonlinear states in PT-symmetric lattices Nonlinear Waves 3 / 21



Examples of PT -symmetric operators
Consider a Schrödinger operator

H := −∂2
x + V (x), where V̄ (−x) = V (x).

This operator is PT -symmetric w.r.t. space reflection: Pu(x) := u(−x).

a harmonic oscillator with a linear damping term

V (x) = x2 + iγx =

(

x +
iγ

2

)2

+
γ2

4

The spectrum of H is purely discrete and real

σ(H) =

{

γ2

4
+ 1 + 2m, m ∈ N0

}

.
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x + V (x), where V̄ (−x) = V (x).

This operator is PT -symmetric w.r.t. space reflection: Pu(x) := u(−x).

a harmonic oscillator with a linear damping term

V (x) = x2 + iγx =

(

x +
iγ

2

)2

+
γ2

4

The spectrum of H is purely discrete and real

σ(H) =

{

γ2

4
+ 1 + 2m, m ∈ N0

}

.

an unharmonic oscillator

V (x) = x2(−ix)γ .

The spectrum of H is purely discrete and real for γ > 0
(Bender C. M.; Boettcher S.; PRL 80 (1998) 5243).
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Goals of our studies

We consider the PT-symmetric discrete nonlinear Schrödinger equation

i
dun

dt
= un+1 − 2un + un−1 + Vnun + |un|

2un, n ∈ S ⊂ Z,

where V̄−n = Vn.

If S = Z and Vn is spatially extended, we show that the spectrum of
the linear Schrödinger operators is not real (P., Kevrekidis,
Franzeskakis, EPL 101 (2013), 11002).

If S = Z and Vn is compactly supported, we prove existence of
localized states (Kevrekidis, P., Tyugin, SIAD (2013), accepted).

If S = {1, 2, ..., 2N} and Vn = iγ(−1)n, we study nonlinear dynamics
of PT-symmetric oscillators (Kevrekidis, P., Tyugin, JPA (2013),
submitted).
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Spectrum of the linear DNLS equation
Consider the spatially extended PT -symmetric potential,

Eun = − (un+1 + un−1 − 2un) +
(

n2 + iγn
)

un, n ∈ Z.

The spectrum is purely discrete for any γ ∈ R because

Re(Vn) = n2 → ∞ as n → ∞.
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Spectrum of the linear DNLS equation
Consider the spatially extended PT -symmetric potential,

Eun = − (un+1 + un−1 − 2un) +
(

n2 + iγn
)

un, n ∈ Z.

The spectrum is purely discrete for any γ ∈ R because

Re(Vn) = n2 → ∞ as n → ∞.

Using the discrete Fourier transform:

un =
1

2π

∫ π

−π
û(k)e−ikndk,

we convert the spectral problem to the differential equation

d2û

dk2
+ γ

dû

dk
+ [E − 2 + 2 cos(k)] û(k) = 0,

subject to the 2π-periodicity of û(k).
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Complex spectrum
If v̂(k) = û(k)eγk/2, then v̂(k) satisfies the Mathieu equation:

d2v̂

dk2
+

[

E − 2 −
γ2

4
+ 2 cos(k)

]

v̂ = 0,

subject to the condition v̂(k + 2π) = eπγ v̂(k). We are looking for the
Floquet multiplier µ∗ = eπγ of the monodromy matrix associated with the
Mathieu equation.

0 5 10 15 20
−30

−20

−10

0

10

20

30

E

∆(
E)

0 5 10 15 20
−30

−20

−10

0

10

20

30

E

∆(
E)

γ = 1 

γ = 0.5 

γ = 0.05 

0 100 200 300 400

−20

−10

0

10

20

Im
(E

)

Re(E)
0 5

−2
0
2

Dmitry Pelinovsky (McMaster University)Nonlinear states in PT-symmetric lattices Nonlinear Waves 7 / 21



Spectrum of another linear DNLS equation

Consider the spatially extended potential without real part,

Eun = − (un+1 + un−1 − 2un) + iγnun, n ∈ Z.

If γ = 0, the spectrum is purely continuous.

If γ is large enough, the spectrum is purely discrete.
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Spectrum of another linear DNLS equation

Consider the spatially extended potential without real part,

Eun = − (un+1 + un−1 − 2un) + iγnun, n ∈ Z.

If γ = 0, the spectrum is purely continuous.

If γ is large enough, the spectrum is purely discrete.

The equivalent differential equation

γ
dû

dk
+ [E − 2 + 2 cos(k)] û = 0,

has the exact solution

û(k) = û(0)eγ
−1[(2−E)k−2 sin(k)]. (1)

The 2π-periodicity of the discrete Fourier transform û(k) gives now the
eigenvalues E = 2 + iγm, where m is an arbitrary integer.
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Numerically obtained spectrum
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Figure : Eigenvalues for γ = 1 (left) and γ = 0.1 (right).

Conjecture:
There exists γ0 ∈ (0,∞) such that the spectrum is purely discrete for
γ > γ0. It is a union of the set of simple eigenvalues embedded into a
vertical strip of the continuous spectrum for γ ∈ (0, γ0).

Dmitry Pelinovsky (McMaster University)Nonlinear states in PT-symmetric lattices Nonlinear Waves 9 / 21



Stationary states for PT-symmetric dNLS

Consider the stationary PT -symmetric DNLS equation

Ewn = wn+1 + wn−1 + iγ(−1)nwn + |wn|
2wn, n ∈ SN := {1, 2, ..., 2N},

subject to the Dirichlet end-point conditions w0 = w2N+1 = 0.
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Stationary states for PT-symmetric dNLS

Consider the stationary PT -symmetric DNLS equation

Ewn = wn+1 + wn−1 + iγ(−1)nwn + |wn|
2wn, n ∈ SN := {1, 2, ..., 2N},

subject to the Dirichlet end-point conditions w0 = w2N+1 = 0.

Eigenvalues of the spectral problem are found explicitly:

γ2 + E 2 = 4 cos2
(

πj

1 + 2N

)

, 1 ≤ j ≤ N.

In particular, all eigenvalues are simple and real for γ ∈ (−γN , γN), where

γN := 2 cos

(

πN

1 + 2N

)

.
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Local bifurcation from a simple real eigenvalue E0

Theorem

There exists a unique (up to a gauge transformation) PT-symmetric
solution w = Pw̄ of the stationary PT-dNLS equation for real E > E0.
Moreover, the solution branch is parameterized by a small real parameter a
such that the map R ∋ a → (E ,w) ∈ R× C

2N is C∞ and for sufficiently
small real a, there is a positive constant C such that

‖w‖2 + |E − E0| ≤ Ca2.

The proof is achieved by Lyapunov–Schmidt reductions

E = E0 +∆, w = aw0 + u, 〈Pw0,u〉 = 0,

and the symmetry constraints that yield real ∆ and PT -symmetric u.
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Bifurcation from infinity for large E

Theorem

For any γ ∈ (−1, 1), the stationary PT-dNLS equation in the limit of large
real E admits 2N PT-symmetric solutions w = Pw̄ (unique up to a gauge
transformation) such that, for sufficiently large real E , the map E → w is
C∞ at each solution and there is an E-independent constant C such that

∣

∣

∣

∣

∣

∣

∑

n∈SN

|wn|
2 − 2NE

∣

∣

∣

∣

∣

∣

≤ C .

The difficulty in the proof arises due to the fact that, although the
algebraic equations decouple as E → ∞ with the N independent solutions

Wk = e−iϕkek + e iϕke2N+1−k , 1 ≤ k ≤ N,

where ϕk ∈ R is arbitrary, the nonlinear system does not enjoy the
superposition principle.
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Bifurcation from infinity for large E

Setting E = 1
δ and w = W√

δ
, we write the stationary DNLS equation:

(1 − |Wn|
2)Wn = δ [Wn+1 + Wn−1 + iγ(−1)nWn] , n ∈ SN ,

subject to the boundary condition W0 = 0 and W2N = 0.

For N = 1, we have

(1 − |W1|
2)W1 = δ

[

W̄1 − iγW1

]

.

Setting W1 = A
1/2
1 e iϕ1 , we obtain

A1 = 1 − δ cos(2ϕ1), − sin(2ϕ1)− γ = 0,

which yields two branches by the two solutions of sin(2ϕ1) = −γ.
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Numerical illustration: N = 2
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Figure : Nonlinear stationary states for γ = 0.5 (left), γ = 0.75 (middle), and
γ = 1.1 (right). The top and bottom rows show components |w1|

2 and |w2|
2.
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Numerical illustration: N = 3
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Figure : Nonlinear stationary states for γ = 0.25 (top) and γ = 1.1 (bottom).
The left, middle, and right columns show components |w1|

2, |w2|
2, and |w3|

2.
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Discrete solitons for PT-symmetric dNLS

Consider the stationary PT -symmetric DNLS equation

Ewn = wn+1 + wn−1 + iγ(−1)nχn∈SN
wn + |wn|

2wn, n ∈ Z,

where χn∈SN
is a characteristic function for the set SN := {1, 2, ..., 2N}

(PT -symmetric defects).

Theorem

For any γ ∈ (−1, 1), the nonlinear stationary PT-dNLS equation admits 2N

PT-symmetric solutions W = PW̄ ∈ l2(Z) (unique up to a gauge
transformation) such that, for sufficiently small positive δ, the map δ → W

is C∞ at each solution and there is a positive δ-independent constant C:

|W − W0| ≤ Cδ,

where W0 is the PT-symmetric state on the set SN .
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Numerical illustrations of discrete solitons for N = 1
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Figure : The left panel shows the relative phase 2θ between the two central sites
obtained by the numerical computation and the solvability condition sin(2θ) = γ

(a green dash-dotted line). The right panel shows the squared eigenvalue of the
linearized PT-dNLS equation at the discrete soliton versus γ for each branch.
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Numerical instabilities of in-phase discrete solitons
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Figure : The evolution of the unstable in-phase solution for γ = 0 (left) and
γ = 0.5 (right).
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Nonlinear dynamics of a dimer
Consider a PT-symmetric dimer (N = 1) with two complex amplitude:

{

i da

dt
= b − iγa + |a|2a,

i db

dt
= a + iγb + |b|2b.

For γ ∈ (0, 1), the zero equilibrium is stable.
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Figure : Left: unbounded growth of the amplitude |b(t)| for the gained oscillator.
Right: bounded oscillations of the amplitudes.
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Main claims of new work

For the nonlinear dynamics of a finite PT-dNLS chain, we prove the
following results:

Solutions of the PT-dNLS equation do not blow up in a finite time.

For values of the gain and loss coefficient γ when the zero equilibrium
state is neutrally stable, the solutions of the finite PT-dNLS equation
starting with small initial data remain bounded for all times.

For the same values of γ, there exist time evolutions of the finite
PT-dNLS equation starting with sufficiently large initial data which
grow exponentially fast for larger times.
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Discussions: next goals

General theorems that linear PT-dNLS equation with spatially
extended potentials has unstable spectrum for any γ 6= 0.

Nonlinear stability of spectrally stable stationary states, e.g. the
spectrally stable fundamental discrete soliton for N = 1.

Sharp conditions on the initial data to distinguish bounded oscillations
and exponentially growing trajectories.

Extensions to multi-dimensional and continuous settings of the
PT-dNLS equation.
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