Stationary states and nonlinear dynamics in PT-symmetric dNLS lattices

Dmitry Pelinovsky

Department of Mathematics and Statistics, McMaster University, Ontario, Canada Department of Applied Mathematics, Nizhny Novgorod State Technical University, Russia

> Nonlinear Waves–Theory and Applications Beijing, China, June 14, 2013

PT-symmetric quantum mechanics

Consider the evolution problem

$$irac{du}{dt}=Hu,\quad u(\cdot,t)\in L^2,\quad t\in\mathbb{R},$$

where *H* is a linear operator with a domain in L^2 . If *H* is Hermitian, then $\sigma(H) \subset \mathbb{R}$ and e^{-itH} is a unitary group on L^2 .

PT-symmetric quantum mechanics

Consider the evolution problem

$$irac{du}{dt}=Hu,\quad u(\cdot,t)\in L^2,\quad t\in\mathbb{R},$$

where *H* is a linear operator with a domain in L^2 . If *H* is Hermitian, then $\sigma(H) \subset \mathbb{R}$ and e^{-itH} is a unitary group on L^2 .

Let us now assume that H is not Hermitian but PT-symmetric, where

- *P* stands for parity transformation
- T stands for time reversion and complex conjugation.

In other words, there is an operator $P: L^2 \to L^2$ such that $P^2 = \mathrm{Id}$ and

$$\bar{H} = PHP$$
, or $THT = PHP$, or $PTH = HPT$,

where $Tu(t) = \bar{u}(-t)$ [C.M. Bender, 2007]

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\overline{u}(-t)$$

is also a solution of the same system

$$irac{dv}{dt} = Hv \Rightarrow -iPrac{dar{u}}{dt} = HPar{u} \Rightarrow -irac{dar{u}}{dt} = ar{H}ar{u} \Rightarrow irac{du}{dt} = Hu.$$

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\overline{u}(-t)$$

is also a solution of the same system

$$irac{dv}{dt} = Hv \ \Rightarrow \ -iPrac{dar{u}}{dt} = HPar{u} \ \Rightarrow \ -irac{dar{u}}{dt} = ar{H}ar{u} \ \Rightarrow \ irac{du}{dt} = Hu.$$

If E is an eigenvalue and U is an eigenfunction, then \overline{E} is also an eigenvalue with the eigenfunction $P\overline{U}$, because

$$u(t) = Ue^{-iEt} \quad \Rightarrow \quad v(t) = P\bar{U}e^{-i\bar{E}t}.$$

Properties of PT-symmetric systems

If u(t) is a solution of the evolution equation, then

$$v(t) = PTu(t) = P\bar{u}(-t)$$

is also a solution of the same system

$$i\frac{dv}{dt} = Hv \Rightarrow -iP\frac{d\bar{u}}{dt} = HP\bar{u} \Rightarrow -i\frac{d\bar{u}}{dt} = \bar{H}\bar{u} \Rightarrow i\frac{du}{dt} = Hu.$$

If E is an eigenvalue and U is an eigenfunction, then \overline{E} is also an eigenvalue with the eigenfunction $P\overline{U}$, because

$$u(t) = Ue^{-iEt} \quad \Rightarrow \quad v(t) = P\bar{U}e^{-i\bar{E}t}.$$

Bender's Conjecture: For many physically relevant *PT*-symmetric operators *H*, all eigenvalues are real and all eigenfunctions are *PT*-symmetric.

Examples of *PT*-symmetric operators

Consider a Schrödinger operator

$$H:=-\partial_x^2+V(x), \quad ext{where} \quad ar V(-x)=V(x).$$

This operator is *PT*-symmetric w.r.t. space reflection: Pu(x) := u(-x).

a harmonic oscillator with a linear damping term

$$V(x) = x^2 + i\gamma x = \left(x + \frac{i\gamma}{2}\right)^2 + \frac{\gamma^2}{4}$$

The spectrum of H is purely discrete and real

$$\sigma(H) = \left\{ rac{\gamma^2}{4} + 1 + 2m, \quad m \in \mathbb{N}_0
ight\}.$$

Examples of PT-symmetric operators

Consider a Schrödinger operator

$$H:=-\partial_x^2+V(x), \quad ext{where} \quad ar V(-x)=V(x).$$

This operator is *PT*-symmetric w.r.t. space reflection: Pu(x) := u(-x).

• a harmonic oscillator with a linear damping term

$$V(x) = x^2 + i\gamma x = \left(x + \frac{i\gamma}{2}\right)^2 + \frac{\gamma^2}{4}$$

The spectrum of H is purely discrete and real

$$\sigma(H) = \left\{ rac{\gamma^2}{4} + 1 + 2m, \quad m \in \mathbb{N}_0
ight\}.$$

• an unharmonic oscillator

$$V(x) = x^2 (-ix)^{\gamma}.$$

The spectrum of *H* is purely discrete and real for $\gamma > 0$ (Bender C. M.; Boettcher S.; PRL **80** (1998) 5243).

Goals of our studies

We consider the PT-symmetric discrete nonlinear Schrödinger equation

$$i\frac{du_n}{dt}=u_{n+1}-2u_n+u_{n-1}+V_nu_n+|u_n|^2u_n,\quad n\in S\subset\mathbb{Z},$$

where $\bar{V}_{-n} = V_n$.

- If S = Z and V_n is spatially extended, we show that the spectrum of the linear Schrödinger operators is not real (P., Kevrekidis, Franzeskakis, EPL 101 (2013), 11002).
- If S = Z and V_n is compactly supported, we prove existence of localized states (Kevrekidis, P., Tyugin, SIAD (2013), accepted).
- If S = {1, 2, ..., 2N} and V_n = iγ(-1)ⁿ, we study nonlinear dynamics of PT-symmetric oscillators (Kevrekidis, P., Tyugin, JPA (2013), submitted).

Spectrum of the linear DNLS equation

Consider the spatially extended PT-symmetric potential,

$$Eu_n = -(u_{n+1} + u_{n-1} - 2u_n) + (n^2 + i\gamma n) u_n, \quad n \in \mathbb{Z}.$$

The spectrum is purely discrete for any $\gamma \in \mathbb{R}$ because

$$\operatorname{Re}(V_n) = n^2 \to \infty \quad \text{as} \quad n \to \infty.$$

Spectrum of the linear DNLS equation

Consider the spatially extended PT-symmetric potential,

$$Eu_n = -(u_{n+1} + u_{n-1} - 2u_n) + (n^2 + i\gamma n) u_n, \quad n \in \mathbb{Z}.$$

The spectrum is purely discrete for any $\gamma \in \mathbb{R}$ because

$$\operatorname{Re}(V_n) = n^2 \to \infty \quad \text{as} \quad n \to \infty.$$

Using the discrete Fourier transform:

$$u_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}\hat{u}(k)e^{-ikn}dk,$$

we convert the spectral problem to the differential equation

$$\frac{d^2\hat{u}}{dk^2} + \gamma \frac{d\hat{u}}{dk} + \left[E - 2 + 2\cos(k)\right]\hat{u}(k) = 0,$$

subject to the 2π -periodicity of $\hat{u}(k)$.

Complex spectrum

If $\hat{v}(k) = \hat{u}(k)e^{\gamma k/2}$, then $\hat{v}(k)$ satisfies the Mathieu equation:

$$\frac{d^2\hat{v}}{dk^2} + \left[E - 2 - \frac{\gamma^2}{4} + 2\cos(k)\right]\hat{v} = 0,$$

subject to the condition $\hat{v}(k + 2\pi) = e^{\pi\gamma}\hat{v}(k)$. We are looking for the Floquet multiplier $\mu_* = e^{\pi\gamma}$ of the monodromy matrix associated with the Mathieu equation.

Dmitry Pelinovsky (McMaster University)Nonlinear states in PT-symmetric lattices

Spectrum of another linear DNLS equation

Consider the spatially extended potential without real part,

$$Eu_n = -(u_{n+1} + u_{n-1} - 2u_n) + i\gamma nu_n, \quad n \in \mathbb{Z}.$$

- If $\gamma=$ 0, the spectrum is purely continuous.
- If γ is large enough, the spectrum is purely discrete.

Spectrum of another linear DNLS equation

Consider the spatially extended potential without real part,

$$Eu_n = -(u_{n+1} + u_{n-1} - 2u_n) + i\gamma nu_n, \quad n \in \mathbb{Z}.$$

• If $\gamma = 0$, the spectrum is purely continuous.

• If γ is large enough, the spectrum is purely discrete.

The equivalent differential equation

$$\gamma \frac{d\hat{u}}{dk} + \left[E - 2 + 2\cos(k)\right]\hat{u} = 0,$$

has the exact solution

$$\hat{u}(k) = \hat{u}(0)e^{\gamma^{-1}[(2-E)k-2\sin(k)]}.$$
(1)

The 2π -periodicity of the discrete Fourier transform $\hat{u}(k)$ gives now the eigenvalues $E = 2 + i\gamma m$, where *m* is an arbitrary integer.

Numerically obtained spectrum

Figure : Eigenvalues for $\gamma = 1$ (left) and $\gamma = 0.1$ (right).

Conjecture:

There exists $\gamma_0 \in (0, \infty)$ such that the spectrum is purely discrete for $\gamma > \gamma_0$. It is a union of the set of simple eigenvalues embedded into a vertical strip of the continuous spectrum for $\gamma \in (0, \gamma_0)$.

Stationary states for PT-symmetric dNLS

Consider the stationary PT-symmetric DNLS equation

$$Ew_n = w_{n+1} + w_{n-1} + i\gamma(-1)^n w_n + |w_n|^2 w_n, \quad n \in S_N := \{1, 2, ..., 2N\},$$

subject to the Dirichlet end-point conditions $w_0 = w_{2N+1} = 0$.

Stationary states for PT-symmetric dNLS

Consider the stationary PT-symmetric DNLS equation

$$Ew_n = w_{n+1} + w_{n-1} + i\gamma(-1)^n w_n + |w_n|^2 w_n, \quad n \in S_N := \{1, 2, ..., 2N\},$$

subject to the Dirichlet end-point conditions $w_0 = w_{2N+1} = 0$.

Eigenvalues of the spectral problem are found explicitly:

$$\gamma^2 + E^2 = 4\cos^2\left(rac{\pi j}{1+2N}
ight), \quad 1 \leq j \leq N.$$

In particular, all eigenvalues are simple and real for $\gamma \in (-\gamma_N, \gamma_N)$, where

$$\gamma_{\boldsymbol{N}} := 2\cos\left(\frac{\pi \boldsymbol{N}}{1+2\boldsymbol{N}}\right).$$

Local bifurcation from a simple real eigenvalue E_0

Theorem

There exists a unique (up to a gauge transformation) PT-symmetric solution $\mathbf{w} = P\bar{\mathbf{w}}$ of the stationary PT-dNLS equation for real $E > E_0$. Moreover, the solution branch is parameterized by a small real parameter a such that the map $\mathbb{R} \ni \mathbf{a} \to (E, \mathbf{w}) \in \mathbb{R} \times \mathbb{C}^{2N}$ is C^{∞} and for sufficiently small real a, there is a positive constant C such that

$$\|\mathbf{w}\|^2 + |E - E_0| \le Ca^2.$$

The proof is achieved by Lyapunov-Schmidt reductions

$$E = E_0 + \Delta, \quad \mathbf{w} = a\mathbf{w}_0 + \mathbf{u}, \quad \langle P\mathbf{w}_0, \mathbf{u} \rangle = 0,$$

and the symmetry constraints that yield real Δ and *PT*-symmetric **u**.

Bifurcation from infinity for large E

Theorem

For any $\gamma \in (-1, 1)$, the stationary PT-dNLS equation in the limit of large real E admits 2^N PT-symmetric solutions $\mathbf{w} = P\bar{\mathbf{w}}$ (unique up to a gauge transformation) such that, for sufficiently large real E, the map $E \to \mathbf{w}$ is C^{∞} at each solution and there is an E-independent constant C such that

$$\left|\sum_{n\in S_N}|w_n|^2-2NE\right|\leq C.$$

The difficulty in the proof arises due to the fact that, although the algebraic equations decouple as $E \rightarrow \infty$ with the *N* independent solutions

$$\mathbf{W}_k = e^{-i\varphi_k} \mathbf{e}_k + e^{i\varphi_k} \mathbf{e}_{2N+1-k}, \quad 1 \le k \le N,$$

where $\varphi_k \in \mathbb{R}$ is arbitrary, the nonlinear system does not enjoy the superposition principle.

Dmitry Pelinovsky (McMaster University)Nonlinear states in PT-symmetric lattices

Bifurcation from infinity for large E

Setting $E = \frac{1}{\delta}$ and $\mathbf{w} = \frac{\mathbf{w}}{\sqrt{\delta}}$, we write the stationary DNLS equation: $(1 - |W_n|^2)W_n = \delta [W_{n+1} + W_{n-1} + i\gamma(-1)^n W_n], \quad n \in S_N,$

subject to the boundary condition $W_0 = 0$ and $W_{2N} = 0$.

For N = 1, we have

$$(1-|W_1|^2)W_1=\delta\left[\bar{W}_1-i\gamma W_1\right].$$

Setting $W_1 = A_1^{1/2} e^{i \varphi_1}$, we obtain

$${\cal A}_1=1-\delta\cos(2arphi_1),~~-\sin(2arphi_1)-\gamma=0,$$

▲■▼ ▲ ■ ▼ ▲ ■ ▼ ■ ● ● ● ●

which yields two branches by the two solutions of $sin(2\varphi_1) = -\gamma$.

Numerical illustration: N = 2

Figure : Nonlinear stationary states for $\gamma = 0.5$ (left), $\gamma = 0.75$ (middle), and $\gamma = 1.1$ (right). The top and bottom rows show components $|w_1|^2$ and $|w_2|^2$.

Numerical illustration: N = 3

Figure : Nonlinear stationary states for $\gamma = 0.25$ (top) and $\gamma = 1.1$ (bottom). The left, middle, and right columns show components $|w_1|^2$, $|w_2|^2$, and $|w_3|^2$.

15 / 21

Discrete solitons for PT-symmetric dNLS

Consider the stationary PT-symmetric DNLS equation

$$Ew_n = w_{n+1} + w_{n-1} + i\gamma(-1)^n \chi_{n \in S_N} w_n + |w_n|^2 w_n, \quad n \in \mathbb{Z},$$

where $\chi_{n \in S_N}$ is a characteristic function for the set $S_N := \{1, 2, ..., 2N\}$ (*PT*-symmetric defects).

Theorem

For any $\gamma \in (-1, 1)$, the nonlinear stationary PT-dNLS equation admits 2^N PT-symmetric solutions $\mathbf{W} = P\bar{\mathbf{W}} \in l^2(\mathbb{Z})$ (unique up to a gauge transformation) such that, for sufficiently small positive δ , the map $\delta \to \mathbf{W}$ is C^{∞} at each solution and there is a positive δ -independent constant C:

$$|\mathbf{W}-\mathbf{W}_0|\leq C\delta,$$

where W_0 is the PT-symmetric state on the set S_N .

Numerical illustrations of discrete solitons for N = 1

Figure : The left panel shows the relative phase 2θ between the two central sites obtained by the numerical computation and the solvability condition $\sin(2\theta) = \gamma$ (a green dash-dotted line). The right panel shows the squared eigenvalue of the linearized PT-dNLS equation at the discrete soliton versus γ for each branch.

Numerical instabilities of in-phase discrete solitons

Figure : The evolution of the unstable in-phase solution for $\gamma=$ 0 (left) and $\gamma=$ 0.5 (right).

Nonlinear dynamics of a dimer

Consider a PT-symmetric dimer (N = 1) with two complex amplitude:

$$\left\{ \begin{array}{l} irac{da}{dt}=b-i\gamma a+|a|^{2}a,\ irac{db}{dt}=a+i\gamma b+|b|^{2}b. \end{array}
ight.$$

For $\gamma \in (0,1)$, the zero equilibrium is stable.

Figure : Left: unbounded growth of the amplitude |b(t)| for the gained oscillator. Right: bounded oscillations of the amplitudes.

Nonlinear Waves 19 / 21

Main claims of new work

For the nonlinear dynamics of a finite PT-dNLS chain, we prove the following results:

- Solutions of the PT-dNLS equation do not blow up in a finite time.
- For values of the gain and loss coefficient γ when the zero equilibrium state is neutrally stable, the solutions of the finite PT-dNLS equation starting with small initial data remain bounded for all times.
- For the same values of γ , there exist time evolutions of the finite PT-dNLS equation starting with sufficiently large initial data which grow exponentially fast for larger times.

Discussions: next goals

- General theorems that linear PT-dNLS equation with spatially extended potentials has unstable spectrum for any $\gamma \neq 0$.
- Nonlinear stability of spectrally stable stationary states, e.g. the spectrally stable fundamental discrete soliton for N = 1.
- Sharp conditions on the initial data to distinguish bounded oscillations and exponentially growing trajectories.
- Extensions to multi-dimensional and continuous settings of the PT-dNLS equation.