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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.
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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

The Whitham equation (1967) models full-dispersion effects:

ut + uux + K ∗ ux = 0, K̂(k) =

√
gh

tanh(kh)
kh

.

The Camassa–Holm equation (1994) models dispersion-modified
nonlinear effects:

ut + 3uux − utxx = 2uxuxx + uuxxx,
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Long-wave models

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0.

The Whitham equation (1967) models full-dispersion effects:

ut + uux + K ∗ ux = 0, K̂(k) =

√
gh

tanh(kh)
kh

.

The Camassa–Holm equation (1994) in a weaker form:

ut + uux + (1− ∂2
x )
−1(u2 +

1
2

u2
x) = 0.
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2π-periodic or
decaying to 0 at infinity.
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2π-periodic or
decaying to 0 at infinity.

For the KdV equation, U satisfies

β
d2U
dz2 − cU + U2 = 0.

All solutions are smooth.
[ODE textbooks]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2π-periodic or
decaying to 0 at infinity.

For the Whitham equation, U satisfies

K ∗ U = (c− U)U.

Solutions are smooth if c− U(z) > 0 for all z.
[M. Ehrnström, H. Kalisch, 2013] [M. Ehrnström, E.Wahlén, 2015]
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Traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. For fixed c, the wave profile U is either 2π-periodic or
decaying to 0 at infinity.

For the Camassa-Holm equation, U satisfies

(c− U)2
[

d2U
dz2 − U

]
= a.

There are smooth, peaked, and cusped solutions:
smooth if c− U(z) > 0, peaked and cusped if c− U(z) ≥ 0
[J. Lenells, 2005]

Dmitry Pelinovsky, McMaster University Instability of peaked waves 3 / 22



Stability of smooth and peaked periodic waves

. KdV equation: smooth waves are linearly and orbitally stable
[B. Deconinck et.al. 2009,2010]

. Whitham equation: small amplitude smooth waves are stable, but
become unstable as they approach the peaked wave.
[J.Carter & H.Kalisch, 2014]

. Camassa-Holm, Degasperis–Procesi, Novikov: peaked waves are
orbitally and asymptotically stable in energy space.
[A.Constantin & W.Strauss, 2000], [A.Constantin & L.Molinet, 2001],

[J.Lenells, 2004], [Z.Lin, Y.Liu, 2006], [X. Liu, Y. Liu, C. Qu, 2014]
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Plan of my talk

Instability of peaked waves in the Camassa–Holm equation

ut + uux + (1− ∂2
x )
−1(u2 +

1
2

u2
x) = 0.

. Cauchy problem in Sobolev spaces

. Orbital stability of peakons in H1

. Linear instability of peakons in H1 ∩W1,∞

. Nonlinear instability of peakons in H1 ∩W1,∞
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Global existence versus wave breaking for large initial data

Definition
We say that the Cauchy problem is locally well-posed in Banach
space X if for every initial data u0 ∈ X, there are T > 0 and a unique
solution u ∈ C((−T,T),X) such that u|t=0 = u0 and the solution
depends continuosly on u0 in X.

. If the solution can be continued for every T > 0 so that
u ∈ C(R,X), the solution exists globally.

. If there is T <∞ such that ‖u(t, ·)‖X →∞ as t→ T−, the
solution blows up in a finite time.

. The finite time blow-up is called wave breaking if
‖u(t, ·)‖L∞ <∞ and ‖∂xu(t, ·)‖L∞ →∞ as t→ T−.
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Cauchy problem in Sobolev spaces

Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

m

___
M

___

Figure: The graph of ϕ on [−2π, 2π].Dmitry Pelinovsky, McMaster University Instability of peaked waves 7 / 22



Cauchy problem in Sobolev spaces

Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. Local well-posedness for u0 ∈ Hs with s > 3/2.
[A. Constantin, J. Escher (1998)] [Y.Li-P.Olver (2000)] [G.Rodriguez (2001)]

[R. Danchin (2001)] [A.Himonas, G. Misiolek (2001)] [G. Misiolek (2002)]

. Global existence for u0 ∈ H3 if m0 ≥ 0
[A.Constantin (2000)]

. Wave breaking for u0 ∈ H3 if ∃x0: (x− x0)m0(x) ≤ 0.
[A.Constantin, J. Escher (1998)] [L. Brandolese (2014)]
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Cauchy problem in Sobolev spaces

Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. No continuous dependence (norm inflation) for u0 ∈ Hs≤3/2.
[P. Byers (2006)] [A. Himonas, G. Misiolek, G. Ponce (2007)] [A. Himonas,

K. Grayshan, C. Holliman (2016)] [Z.Guo, X.Liu, L. Molinet, Z.Yin (2018)]

. Global existence of weak solutions u0 ∈ H1 with m0 ≥ 0.
[A.Constantin, L. Molinet (2000)]

. Global existence of weak solutions u0 ∈ H1.
[A. Bressan, A.Constantin (2006)] [H. Holden, X. Raynaud (2007)]
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Cauchy problem in Sobolev spaces

Let ϕ(x) = e−|x| be the Greens function satisfying (1− ∂2
x )ϕ = 2δ.

The Cauchy problem for the Camassa–Holm equation can be written
in the convolution form:{

ut + uux +
1
2ϕ
′ ∗
(
u2 + 1

2 u2
x
)
= 0,

u|t=0 = u0.

The quantity m := (1− ∂2
x )u is referred as the momentum density.

. Uniqueness of weak global solutions u0 ∈ H1.
[A. Bressan, G. Chen, Q. Zhang (2015)]

. Continuous dependence for u0 ∈ H1 ∩W1,∞.
[C. De Lellis, T. Kappeler, P. Topalov (2007)]

[F. Linares, G. Ponce, T. Sideris (2019)]

. Local solutions may break in a finite time with ux(t, x)→ −∞ at
some x ∈ R as t→ T−.
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Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.
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Figure: The graph of ϕ on [−2π, 2π].

Dmitry Pelinovsky, McMaster University Instability of peaked waves 8 / 22



Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

There exist two conserved quantities:

E(u) =
∫
R
(u2 + u2

x)dx, F(u) =
∫
R

u(u2 + u2
x)dx.

such that ‖u(t, ·)‖H1 = ‖u0‖H1 for almost every t ∈ R.

Theorem (A. Constantin–L.Molinet (2001))
ϕ is a unique (up to translation) minimizer of E(u) in H1 subject to
3F(u) = 2E(u). Consequently, global solutions with u0 ∈ H3 with
m0 ≥ 0 close to ϕ in H1 stay close to {ϕ(· − a)}a∈R in H1 for all t.
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Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

Theorem (A. Constantin–W. Strauss (2000))
For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·).
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Existence and stability of peakons

For every c ∈ R, u(t, x) = cϕ(x− ct) is a solution to

ut + uux +
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
= 0.

. Asymptotic stability of peakons for u0 ∈ H1 with m0 ≥ 0.
[L. Molinet (2018)]

. Asymptotic stability of trains of peakons and anti-peakons.
[L. Molinet (2019)]

. Inverse scattering for weak global solutions with multi-peakons.
[L.Li (2009)] [J. Eckhardt, A. Kostenko (2014)] [J. Eckhardt (2018)]
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

Dmitry Pelinovsky, McMaster University Instability of peaked waves 9 / 22
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Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

Theorem (F. Natali–D. Pelinovsky (2020))
For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0
satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).
Moreover, there exists u0 such that T is finite.
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

Weak formulation of the unique global conservative solution:∫ ∞
0

∫
R

(
uψt +

1
2

u2ψx − Q[u]ψ
)

dxdt +
∫
R

u0(x)ψ(0, x)dx = 0,

where ψ ∈ C1
c(R+ × R).
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

. If u ∈ H1(R), then Q[u] ∈ C(R).

. If u ∈ H1(R) ∩W1,∞(R), then Q[u] is Lipschitz continuous.
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
2
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

If u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}) for t ∈ [0,T). Then,
ξ(t) ∈ C1(0,T) and

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then,
(ϕ− 1)ϕ′ + Q(ϕ) = 0,

da
dt

= v(t, 0),

and

vt = (1−ϕ)vx+(v|x=0−v)ϕ′+(v|x=0−v)vx−ϕ′∗(ϕv+
1
2
ϕ′vx)−Q[v].
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Due to

[v(0)− v(x)]ϕ′(x)− ϕ′ ∗ ϕv− 1
2
ϕ′ ∗ ϕ′vx = ϕ(x)

∫ x

0
v(y)dy,

the evolution of v(t, x) simplifies to

vt = (1− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v],

where w(t, x) =
∫ x

0 v(t, y)dy.
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Linearized evolution

Truncation of the quadratic terms yields the linearized problem:{
vt = (1− ϕ)vx + ϕw, t > 0,
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy.

Solution with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s), w(t,X(t, s)) = W(t, s).
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Linearized evolution

Truncation of the quadratic terms yields the linearized problem:{
vt = (1− ϕ)vx + ϕw, t > 0,
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy.

The evolution problem splits into{ dX
dt = ϕ(X)− 1,
X|t=0 = s,

{ dW
dt = ϕ′(X)W,

W|t=0 = w0(s),

{ dV
dt = ϕ(X)W,

V|t=0 = v0(s).

Since ϕ is Lipschitz, there exists unique characteristic function X(t, s)
for each s ∈ R. The peak location X(t, 0) = 0 is invariant in the time
evolution.
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Properties of the linearized evolution

Assume v0 ∈ H1(R) ∩ C1(R\{0}). For every t > 0, we have:

. ∃C0 > 0: ‖v(t, ·)‖L∞ ≤ C0.

. limx→0+ vx(t, x) = v′0(0
+)et, limx→0− vx(t, x) = v′0(0

−)e−t.

. ‖v(t, ·)‖2
H1 = C+et + C0 + C−e−t for some C+,C0,C−.

Growth of ‖v(t, ·)‖2
H1 contradicts to H1 orbital stability of peakons.

Both properties are related to the existence of conserved quantities:

E(u) =
∫
R
(u2 + u2

x)dx, F(u) =
∫
R

u(u2 + u2
x)dx.
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Illustration of the linear instability
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Figure: The plots of v(t, x) versus x on [−2π, 2π] for different values of t in
the case v0(x) = sin(x).
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Nonlinear evolution

Recall the evolution problem:{
vt = (1− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v], t ∈ (0,T),
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy and Q[v] := 1
2ϕ
′ ∗
(
v2 + 1

2 v2
x
)
.

Solution with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s), w(t,X(t, s)) = W(t, s).
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Nonlinear evolution

Recall the evolution problem:{
vt = (1− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v], t ∈ (0,T),
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy and Q[v] := 1
2ϕ
′ ∗
(
v2 + 1

2 v2
x
)
.

The characteristic coordinates X(t, s) satisfies{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s.

Since ϕ is Lipschitz, there exists the unique characteristic function
X(t, s) for each s ∈ R if v(t, ·) remains in H1(R) ∩ C1(R\{0})
The peak location X(t, 0) = 0 is invariant in the time evolution.
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Local existence in class H1(R) ∩ C1(R\{0})

We introduce on the characteristic curves:

v(t,X(t, s)) = V(t, s), w(t,X(t, s)) = W(t, s), vx(t,X(t, s)) = U(t, s).

and write the dynamical system:

d
dt


X
V
W
U

 =


ϕ(X)− ϕ(0) + V − V|s=0

ϕ(X)W − Q[v](X)
ϕ′(X)W + 1

2 [V
2 − (V|s=0)

2]− P[v](X) + P[v]|s=0

ϕ′(X)[W − U] + ϕ(X)V − 1
2 U2 + V2 − P[v](X)


subject to the initial and boundary condition

X
V
W
U

∣∣∣∣
t=0

=


s

v0(s)
w0(s)
v′0(s)




X(t, 0) = 0,
V(t, 0) = V|s=0,
W(t, 0) = 0.
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Local existence in class H1(R) ∩ C1(R\{0})

Theorem
For every v0 ∈ H1(R) ∩ C1(R\{0}), there exists the maximal
existence time T > 0 (finite or infinite) and the unique solution
v ∈ C1([0,T),H1(R) ∩ C1(R\{0}) to the evolution problem that
depends continuously on v0.

Moreover, if T <∞, there ‖vx(t, ·)‖L∞ →∞ as t→ T−.

Remark: The result is similar to the local well-posedness theory in
H1 ∩W1,∞ but the method of the proof is very different.
[C. De Lellis, T. Kappeler, P. Topalov (2007)]

[F. Linares, G. Ponce, T. Sideris (2019)]

Dmitry Pelinovsky, McMaster University Instability of peaked waves 16 / 22



Local existence in class H1(R) ∩ C1(R\{0})

Theorem
For every v0 ∈ H1(R) ∩ C1(R\{0}), there exists the maximal
existence time T > 0 (finite or infinite) and the unique solution
v ∈ C1([0,T),H1(R) ∩ C1(R\{0}) to the evolution problem that
depends continuously on v0.

Moreover, if T <∞, there ‖vx(t, ·)‖L∞ →∞ as t→ T−.

Remark: The result is similar to the local well-posedness theory in
H1 ∩W1,∞ but the method of the proof is very different.
[C. De Lellis, T. Kappeler, P. Topalov (2007)]

[F. Linares, G. Ponce, T. Sideris (2019)]

Dmitry Pelinovsky, McMaster University Instability of peaked waves 16 / 22



Instability theorem

Theorem (F. Natali–D. Pelinovsky (2020))
For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0
satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).
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From the right side of the peak, V0(t) = V(t, 0), U0(t) = U(t, 0+):

dU0

dt
= U0 +V0 +V2

0 −
1
2

U2
0 −P[v](0), P[v] :=

1
2
ϕ ∗
(

v2 +
1
2

v2
x

)
.
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Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤
1√
2
‖v(t, ·)‖H1 < ε.

Dmitry Pelinovsky, McMaster University Instability of peaked waves 18 / 22



Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤
1√
2
‖v(t, ·)‖H1 < ε.

From the equation on the right side of the peak:

dU0

dt
= U0 + V0 + V2

0 −
1
2

U2
0 − P[v](0) ≤ U0 + Cε

Dmitry Pelinovsky, McMaster University Instability of peaked waves 18 / 22



Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤
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2
‖v(t, ·)‖H1 < ε.

Assume limx→0+ v′0(x) = −‖v′0‖L∞ = −2Cε.
The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied if ∀δ > 0,
∃ε > 0 such that (ε

3

)4
+ 2Cε < δ,
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The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied if ∀δ > 0,
∃ε > 0 such that (ε

3

)4
+ 2Cε < δ,

From the ODE comparison theory, we obtain

U0(t) ≤ −Cεet,

hence |U0(t0)| ≥ 1 for t0 := − log(Cε).
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Strong instability theorem

Theorem (F. Natali–D.Pelinovsky (2020))
For every δ > 0, there exist u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the maximal existence time of the unique solution
u ∈ C([0,T),H1 ∩W1,∞) is finite.
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Theorem (F. Natali–D.Pelinovsky (2020))
For every δ > 0, there exist u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the maximal existence time of the unique solution
u ∈ C([0,T),H1 ∩W1,∞) is finite.

By the ODE comparison theory, U0(t) ≤ U(t), where the
supersolution satisfies

dU
dt

= U − 1
2

U2
+ Cε

with U0(0) = U(0) = −Cε.
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Concluding remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[F. Linares, G. Ponce, and T. Sideris (2019)]

2. It follows from the method of characteristics that if v0 ∈ C1(R),
then v(t, ·) /∈ C1(R) for t > 0 due to the single peak at x = ξ(t):

u(t, x) = ϕ(x− t−a(t))+v(t, x− t−a(t)), t ∈ [0,T), x ∈ R.

3. The H1 orbital stability results on peakons are misleading as the
perturbations near the peakon are growing in W1,∞ norm and
may blow up in a finite time.
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Other investigations

. Much of the theory applies to the instability of perturbations to
the peaked periodic waves in the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

[A. Madiyeva and D. Pelinovsky (2020)]

. Instability of peakons was also discovered in the Novikov
equation

ut + 4u2ux − utxx = 3uuxuxx + u2uxxx,

where the unique global weak solution exists in H1 ∩W1,4.
Nevertheless, the peakons are strongly unstable in H1 ∩W1,∞.
[R.M. Chen and D. Pelinovsky (2020)]

. An interesting difference is that the peakons are linearly unstable
in H1 for Camassa-Holm and linearly stable in H1 for Novikov.
Linear stability theory for peakons in the energy space does not
imply anything for the nonlinear stability theory.
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Summary

. Global solutions and breaking in the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

. Unique global solutions exist in H1 but
continuous dependence only holds in H1 ∩W1,∞.

. Peakons are orbitally stable in H1.

. Peakons are orbitally unstable in H1 ∩W1,∞.

Thank you! Questions ???
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