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Introduction: periodic potentials

Let us consider again the nonlinear Schrödinger (Gross–Pitaevskii) equation

iut = −uxx + V(x)u± |u|2u,

with a periodic potential, e.g. V(x) = V0 sin2(x).

Stationary solutions u(x, t) = φ(x)e−iωt with ω ∈ R satisfy a stationary Schrödinger
equation with a periodic potential

ωφ = −φxx + V(x)φ± |φ|2φ

Spectrum of L = −∂2
x + V(x) for V(x) = V0 sin2(x) and N = 1:



Floquet–Bloch spectrum

The spectral problem with a bounded 2π-periodic potential V ,

ωW = −∂2
x W + V(x)W, x ∈ R,

has a purely continuous spectrum, which can be found by using Bloch waves

W(x) = ei`xf (`, x), `, x ∈ R,

where f (`, ·) is a 2π-periodic function for every ` ∈ R. Since these functions satisfy
the continuation conditions

f (`, x) = f (`, x + 2π), f (`, x) = f (`+ 1, x)eix, `, x ∈ R,

we can restrict the definition of f (`, x) to x ∈ T2π = R/(2πZ) and ` ∈ T1 = R/Z.

For a fixed ` ∈ T1, the Bloch waves are found from the periodic spectral problem,

−(∂x + i`)2f + V(x)f = ω(`)f , x ∈ T2π.

There exists a Schauder basis {f (m)(`, ·)}m∈N in L2(0, 2π)
for an increasing sequence of eigenvalues {ω(m)(`)}m∈N.



Homogenization of the NLS equation

The NLS equation with a bounded periodic potential V ,

iut = −uxx + V(x)u± |u|2u,

can be reduced to a homogeneous NLS equation

i∂T A = −1
2
∂2
`ω

(m0)(`0)∂
2
XA± ν|A|2A, ν =

‖f (m0)(`0, ·)‖4
L4

per

‖f (m0)(`0, ·)‖2
L2

per

Theorem (Schneider–Uecker, 2006; Dohnal, 2008; Ilan–Weinstein, 2010)
Fix m0 ∈ N, `0 ∈ T1, and assume ω(m)(`0) 6= ω(m0)(`0) for every m 6= m0. Then, for
every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for all solutions
A ∈ C(R,H3(R)) of the homogeneous NLS equation with

sup
T∈[0,T0]

‖A(T, ·)‖H3 ≤ C0

and for all ε ∈ (0, ε0), there are solutions u ∈ C([0, T0/ε
2], L∞(R)) of the periodic

NLS equation satisfying the bound

sup
t∈[0,T0/ε

2]

sup
x∈R

∣∣∣u(t, x)− εA(ε2t, ε(x− cgrt))f (m0)(`0, x)ei`0xe−iω(m0)(`0)t
∣∣∣ ≤ Cε3/2.



Application of the NLS equation to existence of nonlinear bound states

In the defocusing case, the nonlinear bound states bifurcate if ∂2
`ω

(m0)(`0) < 0. In
the focusing case, the nonlinear bound states bifurcate if ∂2

`ω
(m0)(`0) > 0.

For V(x) = V0 sin2(x) and the defocusing case, the bifurcation diagram is

D.P. Localization in Periodic Potentials (Cambridge University Press, 2011)



Application of the NLS equation to existence of nonlinear bound states

For V(x) = V0 sin2(x) and the focusing case, the bifurcation diagram is

 



Periodic Graph

Let the periodic graph Γ consist of the circles of the normalized length 2π and the
horizontal links of the length L. Writing the periodic graph as

Γ = ⊕n∈ZΓn, with Γn = Γn,0 ⊕ Γn,+ ⊕ Γn,−,

we parameterize Γn,0 := [nP, nP + L] and Γn,± := [nP + L, (n + 1)P], where
P = L + π is the graph period.

The NLS equation on the periodic graph Γ,

i∂tu + ∂2
x u + |u|2u = 0, t ∈ R, x ∈ Γ, (1)

subject to the Kirchhoff boundary conditions at the vertices.



Motivations

I Understand differences between analysis of bounded periodic potentials and of
singularities related to the periodic graph.

I Study homogenizations of the NLS equation on the periodic graph.

I Construct nonlinear bound states and the ground state on the periodic graph.

S. Gilg, D.P., and G. Schneider, “Validity of the NLS approximation for periodic
quantum graphs” (2016)
D.P. and G. Schneider, arXiv: 1603.05463



Linear spectral problem

The spectral problem with a bounded 2π-periodic potential V ,

λw = −∂2
x w, x ∈ Γ,

subject to the Kirchhoff boundary conditions for n ∈ Z,{
wn,0(nP + L) = wn,+(nP + L) = wn,−(nP + L),
wn+1,0((n + 1)P) = wn,+((n + 1)P) = wn,−((n + 1)P),

and {
∂xwn,0(nP + L) = ∂xwn,+(nP + L) + ∂xwn,−(nP + L),
∂xwn+1,0((n + 1)P) = ∂xwn,+((n + 1)P) + ∂xwn,−((n + 1)P).

E. Korotyaev and I. Lobanov, Ann. Henri Poincare 8 (2007), 1151
P. Kuchment and O. Post, Commun Math. Phys. 275 (2007), 805

x = L+π

x = L+π
x = Lx = 0

Figure : The basic cell Γ0 of the periodic graph Γ.



Decomposition of the spectrum on Γ

Lemma
The linear operator −∂2

x : D(Γ)→ L2(Γ) is self-adjoint. Its spectrum σ(−∂2
x ) is

positive and consists of two parts.

Integrating by parts with Kirchhoff boundary conditions, we have

λ‖w‖2
L2(Γ) = ‖∂xw‖2

L2(Γ) ≥ 0.

The first part of σ(−∂2
x ) corresponds to the eigenfunctions of the form{

wn,0(x) = 0, x ∈ [nP, nP + L],
wn,+(x) = −wn,−(x), x ∈ [nP + L, (n + 1)P],

n ∈ Z.

Clearly, λ = m2, m ∈ N is an eigenvalue of infinite multiplicity with the
eigenfunction wn,±(x) = ±δn,k sin[m(x− 2πn)], k ∈ Z.

The second part of σ(−∂2
x ) corresponds to the eigenfunctions of the form

wn,+(x) = wn,−(x), x ∈ [nP + L, (n + 1)P], n ∈ Z.
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Construction of symmetric eigenfunctions

Let us parameterize the spectral parameter λ = ω2. Then, solutions of ODEs are
found in terms of the boundary conditions:{

wn,0(x) = an cos(ω(x− nP)) + bn sin(ω(x− nP)), x ∈ [nP, nP + L],
wn,±(x) = cn cos(ω(x− nP− L)) + dn sin(ω(x− nP− L)), x ∈ [nP + L, (n + 1)P],

Kirchhoff boundary conditions yield{
cn = an cos(ωL) + bn sin(ωL),
2dn = −an sin(ωL) + bn cos(ωL),

and {
an+1 = cn cos(ωπ) + dn sin(ωπ),
bn+1 = −2cn sin(ωπ) + 2dn cos(ωπ).

The monodromy matrix

M(ω) :=

[
cos(ωπ) sin(ωπ)
−2 sin(ωπ) 2 cos(ωπ)

] [
cos(ωL) sin(ωL)
− 1

2 sin(ωL) 1
2 cos(ωL)

]
satisfies det(M) = 1 and tr(M) = 2 cos(ωπ) cos(ωL)− 5

2 sin(ωπ) sin(ωL).
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The symmetric part of the spectrum

Trace of the monodromy matrix:

T(ω) = 2 cos(ωπ) cos(ωL)− 5
2

sin(ωπ) sin(ωL) ∈ [−2, 2].

Note that T(m) = 2(−1)m cos(mL) ∈ [−2, 2] for every m ∈ N.

The spectrum σ(−∂2
x ) in L2(Γ) consists of eigenvalues {m2}m∈N of infinite

multiplicity and a countable set of spectral bands {σk}k∈N. Moreover,
m2 ∈ ∪k∈Nσk for every m ∈ N.
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Floquet–Bloch spectrum

For simplicity, take L = π and define the Bloch waves

W(x) = ei`xf (`, x), `, x ∈ R,

where f (`, ·) = (f0, f+, f−)(`, ·) is a 2π-periodic function for every ` ∈ R satisfying
the `-dependent Kirchhoff boundary conditions{

f0(`, π) = f+(`, π) = f−(`, π),
f0(`, 0) = f+(`, 2π) = f−(`, 2π)

and {
(∂x + i`)f0(`, π) = (∂x + i`)f+(`, π) + (∂x + i`)f−(`, π),
(∂x + i`)f0(`, 0) = (∂x + i`)f+(`, 2π) + (∂x + i`)f−(`, 2π).

Note that ei`x is defined for x ∈ R but is not defined for x ∈ Γ.

For a fixed ` ∈ T1, the Bloch waves are found from the periodic spectral problem,

−(∂x + i`)2f = ω(`)f , x ∈ T2π.



Numerical approximation of spectral bands: L = π

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



Numerical approximation of spectral bands: L > π

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



Numerical approximation of spectral bands: semi-rings of different lengths

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



The NLS equation on the periodic graph

Define piecewise functions for solutions of the NLS equation on the periodic graph Γ:

u0(x) = ∪n∈Z

{
un,0(x), x ∈ In,0 = [2πn, 2πn + π],

0, elsewhere,

and

u±(x) = ∪n∈Z

{
un,±(x), x ∈ In,± = [2πn + π, 2π(n + 1),

0, elsewhere.

The NLS equation on the periodic graph Γ can be written as the evolutionary
problem for U = (u0, u+, u−):

i∂tU + ∂2
x U + |U|2U = 0, t ∈ R, x ∈ R \ {kπ : k ∈ Z},

subject to the Kirchhoff boundary conditions at the vertex points.

Figure : A schematic representation of the asymptotic solution to the NLS equation on the
periodic graph Γ.



Homogeneous NLS equation

The asymptotic solution in the form

U(t, x) = εA(T,X)f (m0)(`0, x)ei`0xe−iω(m0)(`0)t + higher-order terms,

with T = ε2t and X = ε(x− cgt) satisfies the homogeneous NLS equation

i∂T A +
1
2
∂2
`ω

(m0)(`0)∂
2
XA + ν|A|2A = 0, ν =

‖f (m0)(`0, ·)‖4
L4

per

‖f (m0)(`0, ·)‖2
L2

per

.

Theorem (Gilg–Schneider-P, 2016)
Fix m0 ∈ N, `0 ∈ T1, and assume ω(m)(`0) 6= ω(m0)(`0) for every m 6= m0. Then, for
every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for all solutions
A ∈ C(R,H3(R)) of the homogeneous NLS equation with

sup
T∈[0,T0]

‖A(T, ·)‖H3 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε
2], L∞(R)) to the NLS

equation on the periodic graph Γ satisfying the bound

sup
t∈[0,T0/ε

2]

sup
x∈R

∣∣∣U(t, x)− εA(T,X)f (m0)(`0, x)ei`0xe−iω(m0)(`0)t
∣∣∣ ≤ Cε3/2.



Extension to the Dirac equations

The symmetry constraints un,+(t, x) = un,−(t, x) is invariant under the time evolution
of the NLS equation on the periodic graph Γ. Under the constraints, the spectral
bands feature Dirac points and no flat bands.

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



Homogeneous Dirac equations

The asymptotic solution in the form

U(t, x) = εA+(T,X)f +(0, x)e−iω+(0)t+εA−(T,X)f−(0, x)e−iω−(0)t+higher-order terms,

with T = ε2t and X = ε2x satisfies the homogeneous Dirac equations{
i∂T A+ + i∂`ω+(0)∂XA+ +

∑
j1,j2,j3∈{+,−} ν

+
j1j2j3

Aj1 Aj2 Aj3 = 0,
i∂T A− + i∂`ω−(0)∂XA− +

∑
j1,j2,j3∈{+,−} ν

−
j1j2j3

Aj1 Aj2 Aj3 = 0,

Theorem (Gilg–Schneider-P, 2016)
For every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for all
solutions A± ∈ C(R,H2(R)) of the Dirac equations with

sup
T∈[0,T0]

‖A±(T, ·)‖H2 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε
2], L∞(R)) of the NLS

equation on the periodic graph Γ satisfying the bound

sup
t∈[0,T0/ε

2]

sup
x∈R
|U(t, x)− εΨdirac(t, x)| ≤ Cε3/2.



Function spaces

The operator L = −∂2
x is considered in the space

L2 = {U = (u0, u+, u−) ∈ (L2(R))3 : supp(un,j) = In,j, n ∈ Z, j ∈ {0,+,−}}

with the domain of definition

H2 := {U ∈ L2 : un,j ∈ H2(In,j), n ∈ Z, j ∈ {0,+,−} Kirchhoff BCs}.

I The spaceH2 is closed under pointwise multiplication.

I The skew symmetric operator−iL defines a unitary semi-group (e−iLt)t∈R in L2.

I There exists a positive constant CL such that

‖e−iLtU‖H2 ≤ CL‖U‖H2

for every U ∈ H2 and every t ∈ R.

I There exists a unique local solution U ∈ C([−T0, T0],H2) to the NLS equation
on the periodic graph Γ.
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Bloch transform on the real line

For a function f : R→ C, Bloch transform is defined by

f̃ (`, x) = (T f )(`, x) =
∑
j∈Z

eijx f̂ (`+ j),

where f̂ (ξ) = (F f ) (ξ), ξ ∈ R is the Fourier transform of f . The inverse transform is

f (x) = (T −1 f̃ )(x) =

∫ 1/2

−1/2
ei`x f̃ (`, x)d`.

By construction, f̃ (`, x) is extended from (`, x) ∈ T1 × T2π to (`, x) ∈ R× R
according to the continuation conditions:

f̃ (`, x) = f̃ (`, x + 2π) and f̃ (`, x) = f̃ (`+ 1, x)eix.

I T is an isomorphism between Hs(R) and L2(T1,Hs(T2π)).

I Multiplication in x space corresponds to convolution in Bloch space.

I If χ : R→ R is 2π periodic, then

T (χu)(`, x) = χ(x)(T u)(`, x).

In particular, if χj are periodic cut-off functions in Ij, j ∈ {0,+,−}, then
T (uj)(`, x) = T (χjuj)(`, x) = χj(x)(T uj)(`, x).
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Function spaces for Bloch transforms

The operator L̃(`) = −(∂x + i`)2 is self-adjoint in the space

L2
Γ := { Ũ = (ũ0, ũ+, ũ−) ∈ (L2(T2π))3 : supp(ũj) = I0,j, j ∈ {0,+,−}}

with the domain of definition

H2
Γ := {Ũ ∈ L2

Γ : ũj ∈ H2(I0,j), j ∈ {0,+,−}, Kirchhoff BCs}.

In Bloch space, we work with functions in L2(T1, L2
Γ). Local well-posedness applies

to smooth functions in H̃2 = L2(T1,H2
Γ).

Key Lemma: The Bloch transform T is an isomorphism betweenH2 and H̃2.

I Extend a piecewise H2 function u0 to u0,ext ∈ H2(R).

I By Bloch transform on the real line, T (u0,ext) ∈ L2(T1,H2(T2π)).

I Compact support persists as ũ0 = T (u0) = T (χ0u0,ext) = χ0T (u0,ext).

I From the properties of T (u0,ext), we obtain ũ0 ∈ L2(T1,H2(I0,0)).
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Γ := {Ũ ∈ L2
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Rest of the proof

I Bloch transform for the NLS equation on the periodic graph Γ.

I Decomposition of solutions in the Bloch space

Ũ(t, `, x) = Ṽ(t, `)f (m0)(`, x) + Ũ⊥(t, `, x)

I Approximation of the principal part of the solution

Ṽapp(t, `) = Ã
(
ε2t,

`− `0

ε

)
e−iω(m0)(`0)te−i∂`ω

(m0)(`0)(`−`0)t.

As ε→ 0, Ã satisfies the homogeneous NLS equation in the Fourier space.

I A near-identity transformation for Ũ⊥(t, `, x) with a suitable chosen
approximation Ũ⊥app(t, `, x).

I Estimates of residual terms in Bloch spaces.

I Estimates of the approximation between the Fourier space and Bloch space.

I Estimates of the error term in time evolution with Gronwall’s inequality.
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∂2
`ω
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2
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L4

per

‖f (m0)(`0, ·)‖2
L2

per

.
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A ∈ C(R,H3(R)) of the homogeneous NLS equation with

sup
T∈[0,T0]

‖A(T, ·)‖H3 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε
2], L∞(R)) to the NLS

equation on the periodic graph Γ satisfying the bound

sup
t∈[0,T0/ε

2]

sup
x∈R

∣∣∣U(t, x)− εA(T,X)f (m0)(`0, x)ei`0xe−iω(m0)(`0)t
∣∣∣ ≤ Cε3/2.



Bifurcations of nonlinear bound states

The stationary NLS equation on the periodic graph Γ:

−∂2
xφ− 2|φ|2φ = Λφ Λ ∈ R, φ(x) : Γ→ R.

The effective homogeneous NLS equation on the real line

−1
2
∂2
`ω

(m0)(`0)∂
2
XA− ν|A|2A = ΩA, A(X) : R→ R.

The stationary reduction is satisfied if ∂`ω(m0)(`0) = 0.

 



Nonlinear bound states on the periodic graph

Stable bound states bifurcate from the bottom of the linear spectrum at Λ = 0:

−∂2
xφ− 2|φ|2φ = Λφ Λ ∈ R, φ(x) : Γ→ R.

Theorem
There are positive constants Λ0 and C0 such that for every Λ ∈ (−Λ0, 0), there exist
two bound states φ ∈ D(Γ) (up to the discrete translational invariance) s.t. either

φ(x− L/2) = φ(L/2− x), x ∈ Γ

or
φ(x− L− π/2) = φ(L + π/2− x), x ∈ Γ.

Moreover, it is true for both bound states that

(i) φ is symmetric in upper and lower semicircles of Γ,

(ii) φ(x) > 0 for every x ∈ Γ,

(iii) φ(x)→ 0 as |x| → ∞ exponentially fast.



Numerical approximations of the bound states with L = π
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Figure : Profile of the numerically generated bound state on (x, φ) plane (left) and on (φ, φ′)
plane (right). The red dots show the break points on the periodic graph Γ. The green dashed line
shows the NLS soliton on the infinite line.
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Figure : The same but for the other bound state.



Discrete homogenization method

We set Λ = −ε2 and consider the limit ε→ 0.

For every (a, b) ∈ R2 and every ε ∈ R, there is a unique solution
ψ(x; a, b, ε) ∈ C∞(R) of the initial-value problem: ∂2

xψ − ε2ψ + 2|ψ|2ψ = 0, x ∈ R,
ψ(0) = a,
∂xψ(0) = b,

For each Γn,0 and Γn,±, the solution can be defined in the implicit form:

φn,0(x) = ψ(x− nP; an, bn, ε), φn,±(x) = ψ(x− nP− L; cn, dn, ε).

Kirchhoff boundary conditions produces a two-dimensional map:{
an+1 = ψ(π; cn, dn, ε),
bn+1 = 2∂xψ(π; cn, dn, ε),

{
cn = ψ(L; an, bn, ε),
2dn = ∂xψ(L; an, bn, ε),

(2)

The nonlinear discrete map generalizes the linear transfer matrix method.



Approximate continuous solution

In the limit ε→ 0, expand solution ψ(x; εα, ε2β, ε) in the power series in ε. The
two-dimensional map is now available in the perturbative form:{
αn+1 = αn + ε(L + π/2)βn + 1

2 ε
2(L2 + πL + π2)(1− 2α2

n)αn +O(ε3),
βn+1 = βn + ε(L + 2π)(1− 2α2

n)αn + 1
4 ε

2(2L2 + 4Lπ + π2)(1− 6α2
n)βn +O(ε3).

Approximate continuous solution:

αn = A(X + X0), βn = B(X + X0), X = εn, n ∈ Z,

where X0 is arbitrary and A,B satisfy the continuous limit{
A′(X) = (L + π/2)B(X),
B′(X) = (L + 2π)(1− 2A2)A(X),

with the continuous NLS solitons

A(X) = sech(νX), B(X) = −µ tanh(νX)sech(νX), X ∈ R,
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Justification of the approximate continuous solution

Key Lemma: For a given f ∈ `2(Z) satisfying the reversibility symmetry fn = f1−n

for every n ∈ Z, consider solutions of the linearized difference equation

−αn+1 − 2αn + αn−1

ε2 + ν2(1− 6A2(εn))αn = fn, n ∈ Z.

For sufficiently small ε > 0, there exists a unique solution α ∈ `2(Z) satisfying the
reversibility symmetry αn = α1−n for every n ∈ Z. Moreover there is a positive
ε-independent constant C such that

ε−1 ‖σ+α− α‖`2 ≤ C‖f‖`2 , ‖α‖`2 ≤ C‖f‖`2 ,

where σ+ is the shift operator defined by (σ+α)n := αn+1, n ∈ Z.

I Translational parameter X0 can be chosen to satisfy the reversibility symmetry.
I Two reversibility symmetries give two nonlinear bound states.
I The symmetry φ+ = φ− holds by construction.
I Positivity and exponential decay are not obtained from this method.
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Positivity and exponential decay

The perturbative two-dimensional map:{
αn+1 = αn + ε(L + π/2)βn + 1

2 ε
2(L2 + πL + π2)(1− 2α2

n)αn +O(ε3),
βn+1 = βn + ε(L + 2π)(1− 2α2

n)αn + 1
4 ε

2(2L2 + 4Lπ + π2)(1− 6α2
n)βn +O(ε3).
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Figure : The plane (α, β), where the blue dots denote a sequence {αn, βn}n∈Z, the green
dashed line shows the unstable curve β = Uε(α), and the red dash-dotted line shows the
symmetry curve β = Nε(α).



Conclusion

For the periodic graph Γ, we have obtained the following results:
I We developed the Bloch transform on Γ and justified homogenization of the

NLS equation on Γ with the homogeneous NLS or Dirac equations on the line.

I We approximated nonlinear bound states near the lowest spectral band by using
NLS solitons.

I We used discrete maps and dynamical system methods to study linear spectrum
of the periodic graph Γ and the nonlinear bound states on Γ.

I Scattering and nonlinear dynamics on the periodic graph Γ are still to be
analyzed in some future.

Thank you!
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