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Background: periodic potentials

In many problems (BECs, photonics, optics), wave dynamics is modeled with the
cubic nonlinear Schrödinger (Gross–Pitaevskii) equation with a periodic potential

iut = −uxx + V(x)u± |u|2u,

where V(x) = V(x + L) is bounded and the two different signs correspond to either
defocusing (repelling) or focusing (attractive) nonlinearity.

Stationary solutions u(x, t) = φ(x)e−iωt with ω ∈ R satisfy a stationary Schrödinger
equation with a periodic potential

ωφ = −φxx + V(x)φ± |φ|2φ

Spectrum of L = −∂2
x + V0 sin2(x):

J. Yang; M. Weinstein;
T. Dohnal; G. Schneider;
V. Konotop; G. Alfimov;
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Background: gap solitons

For the defocusing case, the bifurcation diagram is

The bifurcation diagram can be understood with the effective NLS equation:

ΩA = −1
2
∂2
`ω

(m0)(`0)∂
2
XA± ν|A|2A, ν > 0.



Graph models

Graph models for the dynamics of constrained quantum particles were first suggested
by Pauling and then used by Ruedenberg and Scherr in 1953 to study the spectrum of
aromatic hydrocarbons.

Nowadays graph models are widely used in the modeling of quantum dynamics of
thin graph-like structures (quantum wires, nanotechnology, large molecules, periodic
arrays in solids, photonic crystals...).

I G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs
(AMS, Providence, 2013).

I P. Exner and H. Kovarı́k, Quantum Waveguides, (Springer, Heidelberg, 2015).



Metric Graphs

Graphs are one-dimensional approxi-
mations for constrained dynamics in
which transverse dimensions are small
with respect to longitudinal ones.

A metric graph Γ is given by a set of
edges and vertices, with a metric struc-
ture on each edge. Proper boundary con-
ditions are needed on the vertices to en-
sure that certain differential operators de-
fined on graphs are self-adjoint.

Kirchhoff boundary conditions:
I Functions in each edge have the same value at each vertex.
I Sum of fluxes (signed derivatives of functions) is zero at each vertex.



Example: Y junction graph
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The Laplacian operator on the graph Γ is defined by

∆Ψ =

[
u′′0 (x), x ∈ (−∞, 0),
u′′±(x), x ∈ (0,∞)

]
,

acting on functions in the form

Ψ =

[
u0(x), x ∈ (−∞, 0)
u±(x), x ∈ (0,∞)

]
,

in the domain

D(Γ) =
{

(u0, u+, u−) ∈ H2(R−)× H2(R+)× H2(R+) :
u0(0) = u+(0) = u−(0), u′0(0) = u′+(0) + u′−(0)

}
.



Laplacian on the Y junction graph

Lemma
The operator ∆ : D(Γ)→ L2(Γ) is self-adjoint.

The Kirchhoff boundary conditions are symmetric:

〈Φ,∆Ψ〉 − 〈∆Φ,Ψ〉 =
[
v̄′0u0 − v̄0u′0

]
x=0
−
[
v̄′+u+ − v̄+u′+

]
x=0
−
[
v̄′−u− − v̄−u′−

]
x=0

= 0,

where Φ = (v0, v+, v−) and Ψ = (u0, u+, u−) satisfy the Kirchhoff conditions:{
u0(0) = u+(0) = u−(0),

u′0(0) = u′+(0) + u′−(0).

Moreover, ∆ is self-adjoint under generalized Kirchhoff boundary conditions{
α0u0(0) = α+u+(0) = α−u−(0)

α−1
0 u′0(0) = α−1

+ u′+(0) + α−1
− u′−(0),

where α0, α+, α− are arbitrary nonzero parameters.



NLS on the Y junction graph

So far, α0, α+, α− are arbitrary. Let us connect these parameters with the nonlinear
coefficients of a nonlinear Schrödinger equation defined on the graph Γ:

i∂tu0 + ∂2
x u0 + α2

0|u0|2u0 = 0, x < 0,

i∂tu± + ∂2
x u± + α2

±|u±|2u± = 0, x > 0,

subject to the generalized Kirchhoff boundary conditions at x = 0.

The charge (power) functional

Q =

∫ 0

−∞
|u0|2dx +

∫ +∞

0
|u+|2dx +

∫ +∞

0
|u−|2dx

is constant in time t (related to the gauge symmetry).

The Hamiltonian (energy) functional

E =

∫ 0

−∞

(
|∂xu0|2 −

α2
0

2
|u0|4

)
dx + similar terms for u±,

is constant in time t (related to the time translation symmetry).



NLS equation on star graphs

I Scattering and stability of solitary waves by R. Adami; C. Cacciapuoti; D.
Finco; D.Noja (2011-2014).

I Existence and non-existence of ground states on unbounded graphs by R.
Adami; E. Serra; P. Tilli (2014-2016).

I Understanding Kirchhoff boundary conditions in the limit of thin graphs by Z.
Sobirov; H. Uecker (2014-2016).

I Reflectionless transmission of solitary waves on the graph vortices by D.
Matrasulov; K. Sabirov; D. Dytukh; J.G. Caputo; (2014-2016).

I Dynamical system methods for existence, bifurcations, and stability on tadpole,
dumbbell, and periodic graphs.

References:
D.Noja, D.P., and G.Shaikhova, Nonlinearity 28 (2015), 2343;
J. Marzuola and D.P., Applied Math. Research Express 2016, 98–145;
D.P. and G. Schneider, arXiv:1603.05463 (2016);
S. Gilg, D.P., and G. Schneider, (2016).



Periodic Graph

Let the periodic graph Γ consist of the circles of the normalized length 2π and the
horizontal links of the length L. Writing the periodic graph as

Γ = ⊕n∈ZΓn, with Γn = Γn,0 ⊕ Γn,+ ⊕ Γn,−,

we parameterize Γn,0 := [nP, nP + L] and Γn,± := [nP + L, (n + 1)P], where
P = L + π is the graph period.

The NLS equation on the periodic graph Γ,

i∂tu + ∂2
x u + |u|2u = 0, t ∈ R, x ∈ Γ, (1)

subject to the Kirchhoff boundary conditions at the vertices.



Linear spectral problem

The spectral problem with a bounded 2π-periodic potential V ,

λw = −∂2
x w, x ∈ Γ,

subject to the Kirchhoff boundary conditions for n ∈ Z,{
wn,0(nP + L) = wn,+(nP + L) = wn,−(nP + L),
wn+1,0((n + 1)P) = wn,+((n + 1)P) = wn,−((n + 1)P),

and {
∂xwn,0(nP + L) = ∂xwn,+(nP + L) + ∂xwn,−(nP + L),
∂xwn+1,0((n + 1)P) = ∂xwn,+((n + 1)P) + ∂xwn,−((n + 1)P).

E. Korotyaev and I. Lobanov, Ann. Henri Poincare 8 (2007), 1151
P. Kuchment and O. Post, Commun Math. Phys. 275 (2007), 805

x = L+π

x = L+π
x = Lx = 0

Figure : The basic cell Γ0 of the periodic graph Γ.



Decomposition of the spectrum on Γ

Lemma
The linear operator −∂2

x : D(Γ)→ L2(Γ) is self-adjoint. Its spectrum σ(−∂2
x ) is

positive and consists of two parts.

Integrating by parts with Kirchhoff boundary conditions, we have

λ‖w‖2
L2(Γ) = ‖∂xw‖2

L2(Γ) ≥ 0.

The first part of σ(−∂2
x ) corresponds to the eigenfunctions of the form{

wn,0(x) = 0, x ∈ [nP, nP + L],
wn,+(x) = −wn,−(x), x ∈ [nP + L, (n + 1)P],

n ∈ Z.

Clearly, λ = m2, m ∈ N is an eigenvalue of infinite multiplicity with the
eigenfunction wn,±(x) = ±δn,k sin[m(x− 2πn)], k ∈ Z.

The second part of σ(−∂2
x ) corresponds to the eigenfunctions of the form

wn,+(x) = wn,−(x), x ∈ [nP + L, (n + 1)P], n ∈ Z.
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Construction of symmetric eigenfunctions

Let us parameterize the spectral parameter λ = ω2. Then, solutions of ODEs are
found in terms of the boundary conditions:{

wn,0(x) = an cos(ω(x− nP)) + bn sin(ω(x− nP)), x ∈ [nP, nP + L],
wn,±(x) = cn cos(ω(x− nP− L)) + dn sin(ω(x− nP− L)), x ∈ [nP + L, (n + 1)P],

Kirchhoff boundary conditions yield{
cn = an cos(ωL) + bn sin(ωL),
2dn = −an sin(ωL) + bn cos(ωL),

and {
an+1 = cn cos(ωπ) + dn sin(ωπ),
bn+1 = −2cn sin(ωπ) + 2dn cos(ωπ).

The monodromy matrix

M(ω) :=

[
cos(ωπ) sin(ωπ)
−2 sin(ωπ) 2 cos(ωπ)

] [
cos(ωL) sin(ωL)
− 1

2 sin(ωL) 1
2 cos(ωL)

]
satisfies det(M) = 1 and tr(M) = 2 cos(ωπ) cos(ωL)− 5

2 sin(ωπ) sin(ωL).
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The symmetric part of the spectrum

Trace of the monodromy matrix:

T(ω) = 2 cos(ωπ) cos(ωL)− 5
2

sin(ωπ) sin(ωL) ∈ [−2, 2].

Note that T(m) = 2(−1)m cos(mL) ∈ [−2, 2] for every m ∈ N.

The spectrum σ(−∂2
x ) in L2(Γ) consists of eigenvalues {m2}m∈N of infinite

multiplicity and a countable set of spectral bands {σk}k∈N. Moreover,
m2 ∈ ∪k∈Nσk for every m ∈ N.
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Numerical approximation of spectral bands: L = π

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



Numerical approximation of spectral bands: L > π

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



Numerical approximation of spectral bands: semi-rings of different lengths

 

Figure : The spectral bands λ plotted versus the Bloch wave number ` for the periodic quantum
graph Γ.



The NLS equation on the periodic graph

Define piecewise functions for solutions of the NLS equation on the periodic graph Γ:

u0(x) = ∪n∈Z

{
un,0(x), x ∈ In,0 = [2πn, 2πn + π],

0, elsewhere,

and

u±(x) = ∪n∈Z

{
un,±(x), x ∈ In,± = [2πn + π, 2π(n + 1),

0, elsewhere.

The NLS equation on the periodic graph Γ can be written as the evolutionary
problem for U = (u0, u+, u−):

i∂tU + ∂2
x U + |U|2U = 0, t ∈ R, x ∈ R \ {kπ : k ∈ Z},

subject to the Kirchhoff boundary conditions at the vertex points.

Figure : A schematic representation of the asymptotic solution to the NLS equation on the
periodic graph Γ.



Homogeneous NLS equation

The asymptotic solution in the form

U(t, x) = εA(T,X)f (m0)(`0, x)ei`0xe−iω(m0)(`0)t + higher-order terms,

with T = ε2t and X = ε(x− cgt) satisfies the homogeneous NLS equation

i∂T A +
1
2
∂2
`ω

(m0)(`0)∂
2
XA + ν|A|2A = 0, ν =

‖f (m0)(`0, ·)‖4
L4

per

‖f (m0)(`0, ·)‖2
L2

per

.

Theorem (Gilg–Schneider-P, 2016)
Fix m0 ∈ N, `0 ∈ T1, and assume ω(m)(`0) 6= ω(m0)(`0) for every m 6= m0. Then, for
every C0 > 0 and T0 > 0, there exist ε0 > 0 and C > 0 such that for all solutions
A ∈ C(R,H3(R)) of the homogeneous NLS equation with

sup
T∈[0,T0]

‖A(T, ·)‖H3 ≤ C0

and for all ε ∈ (0, ε0), there are solutions U ∈ C([0, T0/ε
2], L∞(R)) to the NLS

equation on the periodic graph Γ satisfying the bound

sup
t∈[0,T0/ε

2]

sup
x∈R

∣∣∣U(t, x)− εA(T,X)f (m0)(`0, x)ei`0xe−iω(m0)(`0)t
∣∣∣ ≤ Cε3/2.



Function spaces

The operator L = −∂2
x is considered in the space

L2 = {U = (u0, u+, u−) ∈ (L2(R))3 : supp(un,j) = In,j, n ∈ Z, j ∈ {0,+,−}}

with the domain of definition

H2 := {U ∈ L2 : un,j ∈ H2(In,j), n ∈ Z, j ∈ {0,+,−} Kirchhoff BCs}.

I The spaceH2 is closed under pointwise multiplication.

I The skew symmetric operator−iL defines a unitary semi-group (e−iLt)t∈R in L2.

I There exists a positive constant CL such that

‖e−iLtU‖H2 ≤ CL‖U‖H2

for every U ∈ H2 and every t ∈ R.

I There exists a unique local solution U ∈ C([−T0, T0],H2) to the NLS equation
on the periodic graph Γ.
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Bloch transform on the real line

For a function f : R→ C, Bloch transform is defined by

f̃ (`, x) = (T f )(`, x) =
∑
j∈Z

f (x + 2πj)e−i`(x+2πj).

The inverse transform is

f (x) = (T −1 f̃ )(x) =

∫ 1/2

−1/2
ei`x f̃ (`, x)d`.

By construction, f̃ (`, x) is extended from (`, x) ∈ T1 × T2π to (`, x) ∈ R× R
according to the continuation conditions:

f̃ (`, x) = f̃ (`, x + 2π) and f̃ (`, x) = f̃ (`+ 1, x)eix.

I T is an isomorphism between Hs(R) and L2(T1,Hs(T2π)).

I Multiplication in x space corresponds to convolution in Bloch space.

I If χ : R→ R is 2π periodic, then

T (χu)(`, x) = χ(x)(T u)(`, x).

In particular, if χj are periodic cut-off functions in Ij, j ∈ {0,+,−}, then
T (uj)(`, x) = T (χjuj)(`, x) = χj(x)(T uj)(`, x).
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Function spaces for Bloch transforms

The operator L̃(`) = −(∂x + i`)2 is self-adjoint in the space

L2
Γ := { Ũ = (ũ0, ũ+, ũ−) ∈ (L2(T2π))3 : supp(ũj) = I0,j, j ∈ {0,+,−}}

with the domain of definition

H2
Γ := {Ũ ∈ L2

Γ : ũj ∈ H2(I0,j), j ∈ {0,+,−}, Kirchhoff BCs}.

In Bloch space, we work with functions in L2(T1, L2
Γ). Local well-posedness applies

to smooth functions in H̃2 = L2(T1,H2
Γ).

Key Lemma: The Bloch transform T is an isomorphism betweenH2 and H̃2.

I Extend a piecewise H2 function u0 to u0,ext ∈ H2(R).

I By Bloch transform on the real line, T (u0,ext) ∈ L2(T1,H2(T2π)).

I Compact support persists as ũ0 = T (u0) = T (χ0u0,ext) = χ0T (u0,ext).

I From the properties of T (u0,ext), we obtain ũ0 ∈ L2(T1,H2(I0,0)).
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Rest of the proof

I Bloch transform for the NLS equation on the periodic graph Γ.

I Decomposition of solutions in the Bloch space

Ũ(t, `, x) = Ṽ(t, `)f (m0)(`, x) + Ũ⊥(t, `, x)

I Approximation of the principal part of the solution

Ṽapp(t, `) = Ã
(
ε2t,

`− `0

ε

)
e−iω(m0)(`0)te−i∂`ω

(m0)(`0)(`−`0)t.

As ε→ 0, Ã satisfies the homogeneous NLS equation in the Fourier space.

I A near-identity transformation for Ũ⊥(t, `, x) with a suitable chosen
approximation Ũ⊥app(t, `, x).

I Estimates of residual terms in Bloch spaces.

I Estimates of the approximation between the Fourier space and Bloch space.

I Estimates of the error term in time evolution with Gronwall’s inequality.



Bifurcations of nonlinear bound states

The stationary NLS equation on the periodic graph Γ:

−∂2
xφ− 2|φ|2φ = Λφ Λ ∈ R, φ(x) : Γ→ R.

The effective homogeneous NLS equation on the real line

−1
2
∂2
`ω

(m0)(`0)∂
2
XA− ν|A|2A = ΩA, A(X) : R→ R.

The stationary reduction is satisfied if ∂`ω(m0)(`0) = 0.

 



Nonlinear bound states on the periodic graph

Stable bound states bifurcate from the bottom of the linear spectrum at Λ = 0:

−∂2
xφ− 2|φ|2φ = Λφ Λ ∈ R, φ(x) : Γ→ R.

Theorem
There are positive constants Λ0 and C0 such that for every Λ ∈ (−Λ0, 0), there exist
two bound states φ ∈ D(Γ) (up to the discrete translational invariance) s.t. either

φ(x− L/2) = φ(L/2− x), x ∈ Γ

or
φ(x− L− π/2) = φ(L + π/2− x), x ∈ Γ.

Moreover, it is true for both bound states that

(i) φ is symmetric in upper and lower semicircles of Γ,

(ii) φ(x) > 0 for every x ∈ Γ,

(iii) φ(x)→ 0 as |x| → ∞ exponentially fast.



Numerical approximations of the bound states with L = π
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Figure : Profile of the numerically generated bound state on (x, φ) plane (left) and on (φ, φ′)
plane (right). The red dots show the break points on the periodic graph Γ. The green dashed line
shows the NLS soliton on the infinite line.
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Figure : The same but for the other bound state.



Discrete homogenization method

We set Λ = −ε2 and consider the limit ε→ 0.

For every (a, b) ∈ R2 and every ε ∈ R, there is a unique solution
ψ(x; a, b, ε) ∈ C∞(R) of the initial-value problem: ∂2

xψ − ε2ψ + 2|ψ|2ψ = 0, x ∈ R,
ψ(0) = a,
∂xψ(0) = b,

For each Γn,0 and Γn,±, the solution can be defined in the implicit form:

φn,0(x) = ψ(x− nP; an, bn, ε), φn,±(x) = ψ(x− nP− L; cn, dn, ε).

Kirchhoff boundary conditions produces a two-dimensional map:{
an+1 = ψ(π; cn, dn, ε),
bn+1 = 2∂xψ(π; cn, dn, ε),

{
cn = ψ(L; an, bn, ε),
2dn = ∂xψ(L; an, bn, ε),

(2)

The nonlinear discrete map generalizes the linear transfer matrix method.



Approximate continuous solution

In the limit ε→ 0, expand solution ψ(x; εα, ε2β, ε) in the power series in ε. The
two-dimensional map is now available in the perturbative form:{
αn+1 = αn + ε(L + π/2)βn + 1

2 ε
2(L2 + πL + π2)(1− 2α2

n)αn +O(ε3),
βn+1 = βn + ε(L + 2π)(1− 2α2

n)αn + 1
4 ε

2(2L2 + 4Lπ + π2)(1− 6α2
n)βn +O(ε3).

Approximate continuous solution:

αn = A(X + X0), βn = B(X + X0), X = εn, n ∈ Z,

where X0 is arbitrary and A,B satisfy the continuous limit{
A′(X) = (L + π/2)B(X),
B′(X) = (L + 2π)(1− 2A2)A(X),

with the continuous NLS solitons

A(X) = sech(νX), B(X) = −µ tanh(νX)sech(νX), X ∈ R,
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Justification of the approximate continuous solution

Key Lemma: For a given f ∈ `2(Z) satisfying the reversibility symmetry fn = f1−n

for every n ∈ Z, consider solutions of the linearized difference equation

−αn+1 − 2αn + αn−1

ε2 + ν2(1− 6A2(εn))αn = fn, n ∈ Z.

For sufficiently small ε > 0, there exists a unique solution α ∈ `2(Z) satisfying the
reversibility symmetry αn = α1−n for every n ∈ Z. Moreover there is a positive
ε-independent constant C such that

ε−1 ‖σ+α− α‖`2 ≤ C‖f‖`2 , ‖α‖`2 ≤ C‖f‖`2 ,

where σ+ is the shift operator defined by (σ+α)n := αn+1, n ∈ Z.

I Translational parameter X0 can be chosen to satisfy the reversibility symmetry.
I Two reversibility symmetries give two nonlinear bound states.
I The symmetry φ+ = φ− holds by construction.
I Positivity and exponential decay are not obtained from this method.
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Positivity and exponential decay

The perturbative two-dimensional map:{
αn+1 = αn + ε(L + π/2)βn + 1

2 ε
2(L2 + πL + π2)(1− 2α2

n)αn +O(ε3),
βn+1 = βn + ε(L + 2π)(1− 2α2

n)αn + 1
4 ε

2(2L2 + 4Lπ + π2)(1− 6α2
n)βn +O(ε3).
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Figure : The plane (α, β), where the blue dots denote a sequence {αn, βn}n∈Z, the green
dashed line shows the unstable curve β = Uε(α), and the red dash-dotted line shows the
symmetry curve β = Nε(α).



Conclusion

I We have defined the NLS evolution equations on graphs and considered the role
of Kirchhoff boundary conditions in the energy conservation.

I We have justified the homogeneous NLS equation on the periodic graphs.

I We approximated nonlinear bound states near the lowest spectral band by using
NLS solitons.

I We used discrete maps and dynamical system methods to study linear spectrum
of the periodic graph Γ and the nonlinear bound states on Γ.

I Scattering and nonlinear dynamics on the periodic graph are still to be analyzed
in some future.

Thank you!
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