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The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,

where u is a real-valued function of (x, ) and p € N.
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
where u is a real-valued function of (x, ) and p € N.

> For p = 1, the equation arises as 5 — 0 from the Ostrovsky
equation
(4 + sty + Bityex)x = yu
derived in the context of long gravity waves in a rotating fluid, as
a generalization of the KdV equation (y = 0). [Ostrovsky, 1978]
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Introduction

The generalized reduced Ostrovsky equation

(uy + uPuy)y = u,

where p € N.

> Local well-posedness in H* for s > 3/2. [Stefanov et. al., 2010]

> Solutions break in finite time for sufficiently large initial data.
[Liu & P. & Sakovich 2009, 2010 forp = 1,p = 2.]

> Global solutions exist for sufficiently small initial data.
[P & Sakovich 2010 for p = 2, Grimshaw & P. 2014 for p = 1].

> Zero mass constraint is necessary: [ udx = 0.
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
in the physically relevant cases: p = 1,2

> The equations can be transformed to an integrable equation of
Klein—Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

Dmitry Pelinovsky, McMaster University Instability of peaked periodic waves 4/23



Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
in the physically relevant cases: p = 1,2

> The equations can be transformed to an integrable equation of
Klein—Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

> For p = 1: explicit periodic traveling waves exist;
smooth solutions in terms of Jacobi elliptic functions
[Grimshaw & Helfrich & Johnson 2012],
peaked solutions with parabolic shape [Ostrovsky, 1978]
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
where p € N.

> p = 1,2: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
where p € N.

> p = 1,2: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

> p = 1,2: Nonlinear stability of smooth periodic waves for
subharmonic perturbations. [Johnson & P., 2016]

> Any p € N: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Geyer & P., 2017]
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
where p € N.

> p = 1,2: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

> p = 1,2: Nonlinear stability of smooth periodic waves for
subharmonic perturbations. [Johnson & P., 2016]

> Any p € N: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Geyer & P., 2017]

Next goal: Linear and nonlinear instability of the limiting peaked
periodic wave for p = 1.
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Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x —ct),

where z = x — ct is the travelling wave coordinate and ¢ > 0 is the
wave speed. The wave profile U is 2T-periodic for fixed ¢ > 0.
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Traveling wave solutions

Traveling wave solutions are solutions of the form
u(x,t) = U(x —ct),

where z = x — ct is the travelling wave coordinate and ¢ > 0 is the
wave speed. The wave profile U is 2T-periodic for fixed ¢ > 0.

The wave profile U satisfies the boundary-value problem

d o dU B U(-T) = U(T),
" <(c— UP) dZ) U@ =0y, } (ODE)

where [ ET U(z)dz = 0, i.e. the periodic waves have zero mean.
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Existence of periodic traveling waves

Let c > 0 and p € N. A function U is a smooth periodic solution of

d du
J— —_ p — =
- ((c U)dz)+U 0 (ODE)
iff (u,v) = (U, U’) is a periodic orbit £ of the planar system
u =v,
oo M + puP—hy?
c—w

which has the first integral

1 |
E(u,v) = E(c —uP)V? %uz — mu”“.

The periodic wave U is smooth iff ¢ — U(z)? > O for every z.
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Existence of periodic traveling waves

Let c > 0 and p € N. A function U is a smooth periodic solution of

d du

J— —_ p — =

- ((c ur) dz) +TU=0 (ODE)
iff (u,v) = (U, U’) is a periodic orbit y£ of the planar system with
first integral E(u,v) = %(c — )+ Su? — A

There exists a smooth family of periodic solutions U € H;;gr of (ODE)
parametrized by the energy E € (0, E.), where 2T depends on E.
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Scaling transformation

For fixed ¢, the map E — T is decreasing with T(0) = wc'/2.
For fixed T, the map E > c is increasing with ¢(0) = T?/x2.
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Scaling transformation

For fixed ¢, the map E — T is decreasing with T(0) = wc'/2.

For fixed T, the map E > c is increasing with ¢(0) = T?/x2.

The map E — T for fixed c is transferred to the map E — c¢ for fixed
T by the scaling transformation

U(z;c):cl/pf](Z), z:cl/zz, T:cl/zf",

where U is a 2T -periodic solution of the same (ODE) with ¢ = 1.
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Peaked periodic wave for p = 1

The 27 periodic traveling wave solutions U(z) satisfy the BVP
[c—U@IU(2) +(0:'U)(2) =0, z€ (-7,
{ U(~) = Um),
where z =x — ctand ["_U(z)dz = 0.
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Peaked periodic wave for p = 1

The 27 periodic traveling wave solutions U(z) satisfy the BVP
e —U@IU' ) +(0;'0)(2) =0, z€(-mm)
U(=m) = U(r),

where z =x — ctand ["_U(z)dz = 0.

Lemma (Existence of smooth periodic waves)

There exists ¢« > 1 such that for every ¢ € (1, c,), the BVP admits a
unique smooth periodic wave U satisfying U(z) < c for z € [—7, 7].

AN
VUIVY
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Peaked periodic wave for p = 1

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile
372 — 2
18 7

\ 1/

N

U*(Z) = zZE [—7'[',71'],
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Peaked periodic wave for p = 1

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

Ui(z) = T

z € [—m, 7],

which can be periodically continued.

A AT N
\\.// / AN 4 ’ \I_/ \\\/’/ \\\_/,/
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Peaked periodic wave for p = 1

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U.(z) = T

z€ [—7'[', 7T]7
which can be periodically continued.

N

ANV VANV AN,

N

> The peaked periodic wave U, € m,m) fors < 3/2:

per(

I’l

o 2(—
Z 3n2 cos(nz),

n=1
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Peaked periodic wave for p = 1

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U.(z) = T

z€ [—7'[', 7T]7
which can be periodically continued.

\ ﬁ / ' / /
\ / \\ /\ x / \ /\\ //

ANV VANV AN,

N

> The peaked periodic wave U, € Hpe,

o 2(—1)"
Z 2 cos(nz),

n=1

> Ui(z) < cx forz € (—m,7), Up(£m) = ¢4, and Ul (£7) =
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Peaked periodic wave for p = 1

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U(z) = TR z € [-m, 7],

which can be periodically continued.

LA A )

/

,

/

/
\ 7 \ / \ / \
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Lemma

The peaked periodic wave U, is the unique solution with a jump
discontinuity in the derivative at 7 = +£.
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Broader picture on stability of peaked periodic waves

> KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]
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> Camassa-Holm: both smooth and peaked waves are stable
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> Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
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Broader picture on stability of peaked periodic waves

> KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

> Camassa-Holm: both smooth and peaked waves are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

> Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

> Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]
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Spectral stability of the peaked periodic wave

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:

{ v+ 0 [(Ui(z) —ci)v] = 07y, >0,
V=0 = Vo,

or equivalently

v; = O.Lv, where L= P (8;2 +cy — U*) Py: L2 —12

per per»

where L%er is the L? space of periodic function with zero mean.
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Spectral stability of the peaked periodic wave

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:

{ v+ 0 [(Ui(z) —ci)v] = 07y, >0,
V=0 = Vo,

or equivalently

v; = O.Lv, where L= P (8;2 +cy — U*) Py: L2 —12

per per»

where Lger is the L? space of periodic function with zero mean.

Lemma
The spectrum of the self-adjoint operator L is o(L) = {A\_} U [O, %2} .

(L)

A0 A=0
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Spectral stability of the peaked periodic wave

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:

{ v+ 0 [(Ui(z) —ci)v] = 07y, >0,
V=0 = Vo,

or equivalently

v; = 0;Lv, where L= P (8;2 4y — U*) Py: L2 —12

per per»

where Lger is the L? space of periodic function with zero mean.

Lemma
The spectrum of the self-adjoint operator L is o(L) = {A\_} U [O, %2} .

The spectral stability problem can not be solved by applying standard
energy methods due to the lack of coercivity.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —ci)v] =071y, >0, (1inO)

V]i=0 = vo.

Goal: show that the peaked periodic wave is linearly unstable.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —ci)v] =071y, >0, (1inO)

V|i=0 = vo.
Goal: show that the peaked periodic wave is linearly unstable.

Definition
The travelling wave U is linearly stable if for every vy € H;er

there exists a unique global solution v € C(R, H;er) to (linO) s.t.

”V([)Hngﬂ < Cl|lvollgr, t>0.

per

Otherwise, it is said to be linearly unstable.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V=0 =vp € le,er.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V=0 =vp € le,er.

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, 1) := v(Z(s,1),1) is

V(s,t) = %[7‘(‘ cosh(71/6)—ssinh(7z/6)]*vo(s), s € [—m, @], tER.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V]i=0 = vo € Hpey.

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, 1) := v(Z(s,1),1) is

V(s,t) = %[7‘(‘ cosh(71/6)—ssinh(7z/6)]*vo(s), s € [—m, @], tER.

This yields the linear instability result for the truncated problem:

Lemma

For every vo € Héer ! global solution v € C (R,Héer) to (truncO).
If vo is odd, then the global solution satisfies

1
5”"0HL2€7"/6 < |v()llz < [Ivoll 2™, > 0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ Vit 20, [(2 — 7] =0y, >0,

. (1inO)
V’,:() =V € Héer'
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
V’,:() =V € Héer'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
v’,:() =V € Héer'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in lemr
> Bounded Perturbation Theorem:

Ao + 8;1 is the generator of C%-semigroup on ILIII,er
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
v’[:() =V € Héer'

Generalized Meth. of Char. Treat 9. 'v as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Hg,er

> Bounded Perturbation Theorem:
Ao + 8{' is the generator of C%-semigroup on H[1>er

Lemma

For every vy € H;er 3! global solutionv € C (R,Héer) to (1inO).
If vy is odd, then the solution satisfies
Clvoll2e™® < [v(@)ll2 < IIvollp2e™®, > 0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
v’[:() =V € H;er'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Hg,er

> Bounded Perturbation Theorem:
Ao + 8;1 is the generator of C%-semigroup on HII,er

Lemma
For every vg € H;er 3! global solutionv € C (R,Héer) to (1inO).
If vy is odd, then the solution satisfies

Clvoll2e™® < [v(@)ll2 < IIvollp2e™®, > 0.

Conclusion: The reduced Ostrovsky equation is linearly unstable.

Dmitry Pelinovsky, McMaster University Instability of peaked periodic waves 15/23



Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?
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Nonlinear instability
Does linear instability of the peaked periodic wave U, imply

nonlinear instability?

> True in finite dimensional case
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Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?

> True in finite dimensional case
> In infinite dimensions:

v =Av+ F(v)

A is a linear operator generating a C°-semigroup in Banach space
X and F is strongly continuous in X

If A has positive spectrum {R\ > 0},

then v = 0 is nonlinearly unstable. [Shatah & Strauss *00]
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Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?

> True in finite dimensional case
> In infinite dimensions:

v =Av+ F(v)

A is a linear operator generating a C°-semigroup in Banach space
X and F is strongly continuous in X
If A has positive spectrum {R\ > 0},
then v = 0 is nonlinearly unstable. [Shatah & Strauss *00]
> Here: A = 9,L but
o(L)

A¢0  A=0

so we do not know whether the spectral assumption is satisfied.
> We need a different approach!
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Nonlinear instability

Consider an orbit {U,(z — a), a € [—m, x|} of the peaked wave U..
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Nonlinear instability

Consider an orbit {U.(z — a), a € [—m, x|} of the peaked wave U..

Definition

The travelling wave U is said to be orbitally stable if for every € > 0,
there exists 0 > 0 such that
for every uy € le)er satisfying [jup — U||H1§er < 4,

there exists a unique global solution u € C(R, chr) to

{ Up + Uy = 8;114, t>0, (redO)
uli=o = uo,

such that for every ¢ > 0,

inf ||u(t,-) = U(- — a)HHéer <e.

a€l—m,m]

Otherwise, the periodic wave U is said to be orbitally unstable.
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Nonlinear instability
We consider decomposition of the solution u € ngr
u(t,x) = Us(x —ct —a(t)) + v(t,x — ct — a(t)),
for a co-periodic perturbation v satisfying the orthogonality condition

<8xU*, V>L2 - O
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Nonlinear instability

We consider decomposition of the solution u € ngr
u(t,x) = Us(x —ct —a(t)) + v(t,x — ct — a(t)),
for a co-periodic perturbation v satisfying the orthogonality condition

<axU*, V>L2 - O

Such a decomposition always exists and is unique by an application

of the inverse function theorem.
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Nonlinear instability
We consider decomposition of the solution u € ngr
u(t,x) =Us(x —ct —a(t)) +v(t,x — ct — a(t)), (OxUs,v)p2 =0,
for a co-periodic perturbation v satisfying (CPv):

{ v+ 18, [(22 — W] +vaw = 07 v + d (1) (8.U + O.v),
V]i=0 = vo,
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Nonlinear instability

We consider decomposition of the solution u € ngr
u(t,x) =Us(x —ct —a(t)) +v(t,x — ct — a(t)), (OxUs,v)p2 =0,
for a co-periodic perturbation v satisfying (CPv):

{ v+ 18, [(22 — W] +vaw = 07 v + d (1) (8.U + O.v),
V]i=0 = vo,

Using the orthogonality condition we obtain an evolution equation

for the translation parameter a:

0,U,0;Lv),»—(0;U,vO.v
{ a/(t) — 7< Z l>L < v ‘)LZ > 0’

||01UH22+<8:U782V>L2 ’ (CPa)
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Nonlinear instability

We consider decomposition of the solution u € ngr
u(t,x) =Us(x —ct —a(t)) +v(t,x — ct — a(t)), (OxUs,v)p2 =0,
for a co-periodic perturbation v satisfying (CPv):

{ v+ 18, [(22 — W] +vaw = 07 v + d (1) (8.U + O.v),
V]i=0 = vo,

Using the orthogonality condition we obtain an evolution equation

for the translation parameter a:

0,U,0;Lv),»—(0;U,vO.v
{ a/(t) — 7< Z l>L < v ‘)LZ > 0’

||01UH22+<8:U782V>L2 ’ (CPa)

For local existence, we need v € ngr with s > 3/2.
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Nonlinear instability

Theorem (Orbital instability)

There exists € > 0 such that for every small § > 0,

there exists vy € chr satisfying

[voll,, <6
s.t. the unique solution v € C([0, T],ngr) to (CPv)—(CPa) satisfies
V(E)lle = €

for somet; € (0,T) withT = O(6~ "), a € C([0,T],R) and s > 3/2.

Dmitry Pelinovsky, McMaster University Instability of peaked periodic waves 19/23



Nonlinear instability — Proof

> Write (CPv)

{ v+ 10, [(22 — 7)) +vdv = 07y + d (1) (0. Us + 9.v),
v|t:0 = Vo,

as the inhomogeneous evolution equation
vi=Av+ F(v)

2

where A := Ay + 0, ! generates the C%-semigroup in Lper

and F(v) : Lger — Lger is continuous.
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Nonlinear instability — Proof

> Write (CPv)

{ e éa [(Zz - WZ)V] +v0v = a;]v +d'(1)(0.Ux + 0.v),
V|i=0 = Vo,

as the inhomogeneous evolution equation
vi=Av+ F(v)

2

where A := Ay + 0, ! generates the C%-semigroup in Lper

and F(v) : Lger — Lger is continuous.

> Every solution v to (CPv) satisfies the integral formulation

v(t) = S(t)vo + /Ol S(t—s)F(s)ds, t€]0,T].
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(t)vo + / S(t— $)F(s)ds, 1€ [0,T].
0
> Using bounds from linear theory

CHVO||Lgcrem/6 < HS(1>V0||L;;Cr < ||V0\|Lgu€m/6
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(1)vo +/ S(t—s)F(s)ds, t€]0,T].
0
> Using bounds from linear theory

Cllvoll 2. e™/® < IS(t)voll 2. < |Ivoll 2, €™/

per per per

> we obtain
t
()l = Cllvoll2e™ — /O 0| ()| df

> Using the translation equation (CPa) for a(r), we obtain that for
any fixed € > 0 there exists #; € [0, 7] such that

()2, = €e™°C(8) > &, 1€[n,T],
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(1)vo +/ S(t—s)F(s)ds, t€]0,T].
0
> Using bounds from linear theory

Cllvoll 2. e™/® < IS(t)voll 2. < |Ivoll 2, €™/

per per per

> we obtain
t
()l = Cllvoll2e™ — /O 0| ()| df

> Using the translation equation (CPa) for a(r), we obtain that for
any fixed € > 0 there exists #; € [0, 7] such that
()2, = €e™°C(8) > &, 1€[n,T],
> This yields orbital instability of U..
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Summary

> Periodic traveling waves of the reduced Ostrovsky equation

(u; + uy), = u.
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> The smooth periodic waves are spectrally stable for any p € N.
[Geyer & P., LMP 2017]

> The peaked periodic wave is linearly and nonlinearly unstable
for p = 1. [Geyer & P., SIMA 2018]
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