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The generalized reduced Ostrovsky equation
(ur + uPuy)y = u,
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Introduction

The generalized reduced Ostrovsky equation
(ur + uPuy)y = u,
where u is a real-valued function of (x, ) and p € N.

> For p = 1, the equation arises as 5 — 0 from the Ostrovsky
equation

(ut + uuy, + B”xxx)x =yu

derived in the context of long gravity waves in a rotating fluid, as
a generalization of the KdV equation (y = 0). [Ostrovsky, 1978]

> For p = 2, the equation arises from the modified equation
(ut + uzux + /Buxxx>x =u

derived from Euler’s equations in the context of internal waves
[Grimshaw et al., 1998].
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where p € N and u is a real-valued function of (x, ).

> Local well-posedness in H* for s > 3/2. [Stefanov et. al., 2010]

> Solutions break in finite time for sufficiently large initial data.
[Liu & P. & Sakovich 2009, 2010 forp = 1,p = 2.]
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
where p € N and u is a real-valued function of (x, ).

> Local well-posedness in H* for s > 3/2. [Stefanov et. al., 2010]
> Solutions break in finite time for sufficiently large initial data.
[Liu & P. & Sakovich 2009, 2010 forp = 1,p = 2.]

> Global solutions exist for sufficiently small initial data.
[Stefanov et. al., 2010 for p > 4,
P & Sakovich 2010 for p = 2,

Grimshaw & P. 2014 for p = 1]
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The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
in the physically relevant cases: p = 1,2

> The equations can be transformed to an integrable equation of
Klein—Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]
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> The equations can be transformed to an integrable equation of
Klein—Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

> For p = 1: explicit periodic traveling waves exist;
smooth solutions in terms of Jacobi elliptic functions
[Grimshaw & Helfrich & Johnson 2012],
peaked solutions with parabolic shape [Ostrovsky, 1978]
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
in the physically relevant cases: p = 1,2

> The equations can be transformed to an integrable equation of
Klein—Gordon type by a solution-dependent coordinate change.
[Vakhnenko & Parkes, 1998], [Kraenkel & Leblond & Manna 2014]

> For p = 1: explicit periodic traveling waves exist;
smooth solutions in terms of Jacobi elliptic functions
[Grimshaw & Helfrich & Johnson 2012],
peaked solutions with parabolic shape [Ostrovsky, 1978]

> For p = 2: the equation is different from the short-pulse equation
derived from Maxwell’s equations. [Schifer & Wayne, 2004]
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> Spectral stability of smooth periodic traveling waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]
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co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

> Nonlinear stability for smooth periodic traveling waves for
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> Part I: Stability of smooth periodic waves for arbitrary p € N.
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Introduction

The generalized reduced Ostrovsky equation
(uy + uPuy)y = u,
in the physically relevant cases: p = 1,2

> Spectral stability of smooth periodic traveling waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

> Nonlinear stability for smooth periodic traveling waves for
subharmonic perturbations. [Johnson & P., 2016]

Goals:
> Part I: Stability of smooth periodic waves for arbitrary p € N.
> Part II: Instability of the limiting peaked periodic wave for p = 1.
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Traveling wave solutions

We are interested in existence and stability of traveling wave solutions
of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and ¢ > 0 is the
wave speed. The wave profile U is 2T-periodic.

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 6/33



Traveling wave solutions

We are interested in existence and stability of traveling wave solutions
of the form
u(x,t) = U(x — ct),

where z = x — ct is the travelling wave coordinate and ¢ > 0 is the
wave speed. The wave profile U is 2T-periodic.

The wave profile U satisfies the boundary-value problem

d o dU B U(-T) = U(T),
" <(c— U )dz> U@ =0 ), } (ODE)

where ffT U(t)dt = 0, i.e. the periodic waves have zero mean.
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Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T .
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Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T.

Using u(t,x) = U(z) + v(z)e™, where z = x — ct, the spectral stability
problem for a perturbation of the wave profile U is given by

with the self-adjoint linear operator

L="Py (02 +c—U)Py: L2 (=T, T) = L2 (~T,T).
2
per

Py : Lger — Lger is the projection operator that sets mean to zero.

Here Lger denote the space of L7, functions with zero mean and
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Part I - Stability of smooth periodic solutions

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T.

Using u(t,x) = U(z) + v(z)e™, where z = x — ct, the spectral stability
problem for a perturbation of the wave profile U is given by

with the self-adjoint linear operator

L="Py (02 +c—U)Py: L2 (=T, T) = L2 (~T,T).

per

2

Here 12., denote the space of Ly, functions with zero mean and

per

Py : Lger — Lger is the projection operator that sets mean to zero.

Definition

The travelling wave is spectrally stable with respect to co-periodic
perturbations if the spectral problem 0,Lv = Av with v € Hfl)er(—T ,T)
has no eigenvalues A\ ¢ iR.
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Stability - course of action

> Construct a Lyapunov-type functional:

Flu] = Hu] + cQlul,
where

R TP 1 ’ 2
(energy) H[u]——gllax MHL?M_W/_T” dx

1
(momentum) Q[u] = 5“””22
per
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Stability - course of action

> Construct a Lyapunov-type functional:

Flu] = Hu] + cQlul,
where

R TP 1 ’ 2
(energy) H[u]——gllax M||Lger—m/_ru dx

1
(momentum) Q[u] = 5“””22
per

> A traveling wave U is a critical point of F[u|, i.e. SF[U] = 0.

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 8/33



Stability - course of action

> Construct a Lyapunov-type functional:

Flu] = Hu] + cQlul,
where

R TP 1 ’ 2
(energy) H[u]——gllax M||Lger—m/_ru dx

1
(momentum) Q[u] = 5“””22
per

> A traveling wave U is a critical point of F[u|, i.e. SF[U] = 0.

> The Hessian of F[u] is the operator L, i.e. §>F[U]v = 3(Lv,v).
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Stability - course of action

> Construct a Lyapunov-type functional:

Flu] = Hu] + cQlul,
where

R TP 1 ’ 2
(energy) H[u]——gllax MHL?M_W/_T” dx

1
(momentum) Q[u] = 5“””22
per

> A traveling wave U is a critical point of F[u|, i.e. SF[U] = 0.
> The Hessian of F[u] is the operator L, i.e. §>F[U]v = 3(Lv,v).
> We will show that

a traveling wave U is a constrained minimizer of
the energy H|[u] with fixed momentum Q[u].

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves

8/33



Stability - course of action

> The constraint of fixed momentum Q[u] := 1||u||?, = g is equivalent
per

to restricting the self-adjoint linear operator L to the subspace

UL — {V c L}%er(_T7 T) : <U, V>L1%er = 0}

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 9/33



Stability - course of action

> The constraint of fixed momentum Q[u] := 1||u||?, = g is equivalent
per

to restricting the self-adjoint linear operator L to the subspace

UL — {V c L}%er(_T7 T) : <U, V>L1%er = 0}

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves 9/33



Stability - course of action

> The constraint of fixed momentum Q[u] := 1||u||?, = g is equivalent
per

to restricting the self-adjoint linear operator L to the subspace
Ut = {v € l',ger(—T, T): (U, V>L§er = 0}

» Claim: The operator L|;. has a simple zero eigenvalue and a positive
spectrum bounded away from zero.
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Stability - course of action

> The constraint of fixed momentum Q[u] := 1||u||?, = g is equivalent
per

to restricting the self-adjoint linear operator L to the subspace
Ut = {v € l',ger(—T, T): (U, V>L§er = 0}

» Claim: The operator L|;. has a simple zero eigenvalue and a positive
spectrum bounded away from zero.

> Hamilton-Krein index theory for the spectral problem

states that [Haragus & Kapitula, 08]

# unstable EV of 0,L < # negative EV of L.
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Stability - course of action

> The constraint of fixed momentum Q[u] := 1||u||?, = g is equivalent
per

to restricting the self-adjoint linear operator L to the subspace
Ut = {v € l',ger(—T, T): (U, V>L§er = 0}

» Claim: The operator L|;. has a simple zero eigenvalue and a positive
spectrum bounded away from zero.

> Hamilton-Krein index theory for the spectral problem

states that [Haragus & Kapitula, 08]
# unstable EV of 0,L < # negative EV of L.

> Result: the smooth periodic wave U is stable. [Geyer & P., LMP *17]
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Existence of periodic traveling waves

Let c > 0 and p € N. A function U is a smooth periodic solution of

d% ((c - UP)‘ZZJ) L U=0 (ODE)
iff (u,v) = (U, U’) is a periodic orbit £ of the planar system
u =v,
. —u+puw™h?
YT e
which has the first integral
E(u,v) = 1(c —uP)V? P ;u’H‘2
’ 2 2 p+2 '

Note that ¢ — U(z)? > 0 for every z if U is smooth.
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Existence of periodic traveling waves

Let c > 0 and p € N. A function U is a smooth periodic solution of

d du

J— —_ p — =

- ((c ur) dz) +TU=0 (ODE)
if and only if (u,v) = (U, U’) is a periodic orbit g of the planar
system with first integral E(u,v) = $(c — u”)*? + Su® — #u”*z.

There exists a smooth family of periodic solutions U € H;;gr of (ODE)
parametrized by the energy E € (0, E,).
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Monotonicity of energy-to-period map
For every ¢ > 0 and p € N the period function
1 d
T:(0,E) — R, E»—>T(E):§/ &
YE

is strictly monotonically decreasing: T'(E) < 0

R T —— ¥
=\
1l B0«
NS ==
RN AR ==

Classical monotonicity criteria do not apply. [Chicone, Schaaf, 1980’s]

Our proof is inspired by [Mafiosas & Villadelprat, 2009].
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Monotonicity of energy-to-period map T(E) = % e d7”

Recall the first integral

E(u,v) = Bu)V*+A(u), B(u):= =(c—u’)*, A(u):=
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Monotonicity of energy-to-period map T(E) = L iy

2 YE V
Recall the first integral
E(,v) = B2 4A®W), B) = ~(c—0)?, A(u) = Sid— —— i+
’ ’ T2 ’ T2 p+2 '

Since E is constant along an orbit g, we find that

M”@=/F@W”/A@@-

v
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Monotonicity of energy-to-period map T(E) = % e %

Recall the first integral

1

E(u,v) = B(u)v2+A(u), B(u) : E(cfu”)z, Au) :

Since E is constant along an orbit g, we find that

2ET(E) = / B(u)vdu + / EA(u)du.

v

To resolve the singularity, note that

dv fli:f B (u)v? + A’ (u)

du € 2B(u)y
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Monotonicity of energy-to-period map T(E) =

Since E is constant along an orbit vg, we find that
du

2ET(E) = / EB(u)vde— / EA(M) :

To resolve the singularity, note that
dv  B'(u)? +A'(u)

Then OZL d(g(u)v):LLg’(u)vdu+LEg(u)dv
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1

Monotonicity of energy-to-period map T'(E) = 5

Since E is constant along an orbit vg, we find that
du

2ET(E) = / EB(u)vde— / EA(M) :

To resolve the singularity, note that
dv  B'(u)? +A'(u)

Then OZL d(g(u)v):/wg’(u)vdu+[mg(u)dv

and choosing ¢ = 27A we find
d
0 :/ G(u)vdu — / AL,
VE VE v

[Grau, Manosas & Villadelprat, "11]
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Monotonicity of energy-to-period map T(E) = L iy

2 YE V
Recall the first integral
E(,v) = B2 4A®W), B) = ~(c—0)?, A(u) = Sid— —— i+
' ' T2 ’ T2 p42 '

Since E is constant along an orbit g, we find that
d
2ET(E) = / B(u)vdu + / A(u) o / (B(u) + G(u)) vdu.
VE VE v VE

Taking the derivative w.r.t. E we obtain

p w’  du
T'(E) = — — <0.
(E) 4(2+p)E/7E(c—u1’)v <
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Monotonicity of energy-to-period map T(E) = L ez

2 YE V
Recall the first integral
E(,v) = B2 4A®W), B) = ~(c—0)?, A(u) = Sid— —— i+
' ' T2 ’ T2 p42 '

Since E is constant along an orbit g, we find that
d
2ET(E) = / B(u)vdu + / A(u) o / (B(u) + G(u)) vdu.
VE VE v VE

Taking the derivative w.r.t. E we obtain

p w’  du
T'(E) = — — <0.
(E) 4(2+p)E/7E(c—u1’)v <

The period function is strictly monotone!
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Operator L restricted to constrained space

» Claim: The operator L|;;. has a simple zero eigenvalue and a
positive spectrum bounded away from zero.
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Operator L restricted to constrained space

» Claim: The operator L|;;. has a simple zero eigenvalue and a
positive spectrum bounded away from zero.

This is true if the following two conditions hold:
[Vakhitov-Kolokolov, 1975], [Grillakis—Shatah—Strauss, 1987]

> L has exactly one negative eigenvalue,
a simple zero eigenvalue with eigenvector 0, U,
and the rest of its spectrum is positive and bounded away from 0

> (L7'U,U) = _%HUHiger(—T,T) < 0, where the period 7 is fixed.

We show that these conditions hold using the fact that the
energy-to-period map T'(E) is strictly monotone.
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Spectral properties of the operator L
Recall the self-adjoint linear operator

L="Py(0:7+c—UP)Py: Ly(~T,T) = L2 (=T, T).

per per
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Spectral properties of the operator L

Recall the self-adjoint linear operator
L="Py (02 +c—U)Py: L2 (=T, T) = L2 (-T,T).
When E — 0, then U — 0, T(E) — T(0) = /cm, and
L— Ly=Py (0% +c) Py.
o(Lo) = {c(1 —n=2),n € Z\ {0}} all eigenvalues are double.

E=0 (L)
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Spectral properties of the operator L

Recall the self-adjoint linear operator
L="Py (02 +c—U)Py: L2 (=T, T) = L2 (-T,T).
When E — 0, then U — 0, T(E) — T(0) = /cm, and
L— Ly=Py (0% +c) Py.

o(Ly) = {c(1 —n"2),n € Z\ {0}} all eigenvalues are double.

E=0 N - (L)
L0 ¢
E>?/\} o (L)
A¢0  A=0

When E > 0 the double zero eigenvalue splits into a simple negative
eigenvalue and a simple zero eigenvalue of L.
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Spectral properties of the operator L

Consider the eigenvalue problem

(8;2+C—U1’)v:)\v, vel?

per

(~T,T).

Zero eigenvalue Ay = 0:
> 0,U is an eigenvector for \y: Lo, U =0
> Ug is also a solution of the spectral equation for Ao = O:

Op(ODE) <= Ug + 9?[(c — UP)Ug] =0
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Spectral properties of the operator L

Consider the eigenvalue problem

(8;2+C—U1’)v:)\v, vel?

per

(~T,T).

Zero eigenvalue Ay = 0:
> 0,U is an eigenvector for \y: Lo, U =0
> Ug is also a solution of the spectral equation for Ao = O:

Op(ODE) <= Ug + 9?[(c — UP)Ug] =0

Differentiating the BC U(£T(E); E) = 0 w.r.t. E yields
OrU(=T(E);E) — T'(E) 8.U(—T(E); E) = 9pU(T(E); E) + T'(E) 8.U(T(E); E) .
———— ————
20 20
Since T'(E) # 0 the solution Ug is not 2T (E)-periodic!

~ the zero eigenvalue is simple, i.e. Ker(L) = span{U._}.
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Spectral properties of the operator L

Sign condition — 4 | U”%Ser(*T,T)

Here the monotonicity 7’(E) < 0 also plays a role.

112

For fixed c, the map E — T is monotonically decreasing for
E € (0,E.) with T(0) = mc'/2,

For fixed T, the map ¢ — E is monotonically increasing for
¢ € (co, cx) with ¢y = T? /72,

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves

< 0, where the period T is fixed.

16 /33



Summary - Part I

> We consider smooth periodic traveling waves u(x, ) = U(x — ct)
of the generalized reduced Ostrovsky equation

(uy + uPuy)y = u.

> The spectral stability problem is given by

> For every p € N and every ¢ for which smooth U exists, the
operator L|;;. has a simple zero eigenvalue and a positive spectrum
bounded away from zero.
> Hamilton-Krein index theory implies
# unstable EV of 0.L < #negative EV of L|;1

» Result: the smooth periodic traveling waves U are spectrally
stable. [Geyer & P., LMP "17]
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Part 1T - Peaked periodic wave

We now consider the peaked periodic traveling waves of the reduced

Ostrovsky equation (p = 1)
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Part 1T - Peaked periodic wave
Some results for periodic waves of other equations:

> KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]
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> KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]

> Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

> Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]
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Part 1T - Peaked periodic wave

Some results for periodic waves of other equations:
> KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et. al. 2009,2010]
> Camassa-Holm equation: both smooth and peaked are stable
[Constantin & Strauss, 2000], [Lenells, 2005]

> Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

> Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2018]
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Peaked periodic wave

The 27 periodic traveling wave solutions U(z) satisfy the BVP
[c—U@IU(2) +(0:'U)(2) =0, z€ (-7,
{ U(~) = Um),
where z =x — ctand ["_U(z)dz = 0.
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Peaked periodic wave

The 27 periodic traveling wave solutions U(z) satisfy the BVP
e = U@ U'(e) + (0, '0)(2) =0, z€(-mm)
U(=m) = U(m),

where z =x — ctand ["_U(z)dz = 0.

Lemma (Existence of smooth periodic traveling waves)

There exists ¢« > 1 such that for every ¢ € (1, c,), the BVP admits a
unique smooth periodic wave U satisfying U(z) < c for z € [—7, 7].

== Ll
= 4
Wi i
\Q\\\\ ,/;/‘ \\-‘.: . N
N
N Q ff/,\:‘:\g
W7 7=

b RN

VAV,
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile
372 — 2
18 7

\ 1/

N

U.(z) = z € [—m, 7],
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U.(z) = TR z € [-m, 7],

which can be periodically continued.

\\ //\\ //\ T / \\ / /\\ //J
\\./// AN ¢/ \I_/ \\\/’/ \\\_/,/
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U.(z) = T

z€ [—7'[', 7T]7
which can be periodically continued.

N

ANV VANV AN,

N

> The peaked periodic wave U, € m,m) fors < 3/2:

per(

I’l

o 2(—
Z 3n2 cos(nz),

n=1
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U.(z) = T

z€ [—7'[', 7T]7
which can be periodically continued.

\ ﬁ / ' / /
\ / \\ /\ x / \ /\\ //

ANV VANV AN,

N

> The peaked periodic wave U, € Hpe,

o 2(—1)"
Z 2 cos(nz),

n=1

> Ui(z) < cx forz € (—m,7), Up(£m) = ¢4, and Ul (£7) =

Dmitry Pelinovsky, McMaster University Instablity of peaked periodic waves

(—m,7) fors < 3/2:

+7/3.
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Peaked periodic wave

For ¢ = ¢, := 72 /9 there exists a solution with parabolic profile

372 — 72

U(z) = TR z € [-m, 7],

which can be periodically continued.

LA A )

/

,

/

/
\ 7 \ / \ / \
VANV VANV

Lemma

The peaked periodic wave U, is the unique solution with a jump
discontinuity in the derivative at 7 = +£.
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Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —cx)v] =071y, >0,
V’l:() = Vo,
or equivalently

v, = 0,Lv, where L= P (6;2 + v — Us) Py : 2 2

per per*
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Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —cx)v] =071y, >0,
V’l:() = Vo,
or equivalently

Vv, = aZLv’ where L = PO (6;2 + Ccx — U*) PO : Lger - Lger‘
Lemma
The spectrum of the self-adjoint operator L is o(L) = {\_} U [0, %2}

o(L)

A0 A=0
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Spectral stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —cx)v] =071y, >0,
V’l:() = Vo,
or equivalently

ve = 0O:Lv, where L= Po (62_2 +C — U*) Py : Ll%er - Lger'
Lemma
The spectrum of the self-adjoint operator L is o(L) = {A\_} U [0, %2} .

o(L)

A0 A=0

The spectral stability problem can not be solved by applying standard
energy methods due to the lack of coercivity.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —ci)v] =071y, >0, (1inO)

V]i=0 = vo.

Goal: show that the peaked periodic wave is linearly unstable.
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Linear stability of the peaked periodic wave

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:

{ v+ 0, [(Us(z) —ci)v] =071y, >0, (1inO)

V|i=0 = vo.
Goal: show that the peaked periodic wave is linearly unstable.

Definition

The travelling wave U is linearly stable if
for every vy € Héer satisfying (U, vg);2 = 0,
there exists a unique global solution v € C(R, Hfl)er) to (linO) s.t.

||V(l‘)”1-11;er < C||V0||ngr, t>0.

Otherwise, it is said to be linearly unstable.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V=0 =vp € le,er.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V=0 =vp € le,er.

Method of characteristics. The family of char. curves z = Z(s, t) can
be solved explicitly and the solution of V(s,1) := v(Z(s,1),1) is

V(s, 1) = %[7‘(‘ cosh(71/6)—ssinh(7z/6)]*vo(s), s € [—m, @], tER.
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Linear instability of the peaked periodic wave

> Step 1: The truncated problem

{ vi+ 0. [(2—7*)v] =0, >0,

. (truncO)
V]i=0 = vo € Hpey.

Method of characteristics. The family of char. curves z = Z(s, t) can
be solved explicitly and the solution of V (s, 1) := v(Z(s,1),1) is

V(s, 1) = i[w cosh(71/6)—ssinh(7z/6)]*vo(s), s € [—m, @], tER.

2
0
This yields the linear instability result for the truncated problem:

Lemma

For every vo € Héer ! global solution v € C (R,Héer) to (truncO).
If vo is odd, then the global solution satisfies

mt/6
)

1
§|’V0HL2€7"/6 < Iv®llz < lvollzze t>0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
V’,:() =V € Héer'
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
V’,:() =V € Héer'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
v’,:() =V € Héer'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in le,er
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(22 — 7] =07 v, >0,

: (linO)
v’,:() =V € Héer'

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in lemr

> Bounded Perturbation Theorem:

Ao + 8;1 is the generator of C%-semigroup on L2

per
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(Z —ﬂz)v} =0-v, >0,

(linO)
v ’ =0 =Vvo €EH éer

Generalized Meth. of Char. Treat 9. 'v as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Hg,er

> Bounded Perturbation Theorem:
Ao+ 0 !'is the generator of C°-semigroup on Lper

Lemma

For everyvg € H per Al global solution v € C(R, Héer) to (1inO).
If vy is odd, then the solution satisfies

Clvoll2e™ < v@)ll2 < [Ivoll2e™®, &> 0.
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Linear instability of the peaked periodic wave

> Step 2: The full evolution problem

{ v+ 20, [(Z —ﬂz)v} =0-v, >0,

(linO)
v ’ =0 =Vvo €EH ;er

Generalized Meth. of Char. Treat 9 1y as a source term in (1inO).

> truncated problem v, = Agv has a unique global solution in Hg,er

> Bounded Perturbation Theorem:
Ao + 8Z is the generator of C%-semigroup on Lper

Lemma
For every vy € H, per Al global solution v € C(R, Héer) to (1inO).
If vy is odd, then the solution satisfies

Clvoll2e™ < v@)ll2 < [Ivoll2e™®, &> 0.

Conclusion: The reduced Ostrovsky equation is linearly unstable.
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Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?
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Nonlinear instability
Does linear instability of the peaked periodic wave U, imply

nonlinear instability?

> True in finite dimensional case
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Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?

> True in finite dimensional case
> In infinite dimensions:

v =Av+ F(v)

A is a linear operator generating a C°-semigroup in Banach space
X and F is strongly continuous in X

If A has positive spectrum {R\ > 0},

then v = 0 is nonlinearly unstable. [Shatah & Strauss *00]
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Nonlinear instability

Does linear instability of the peaked periodic wave U, imply
nonlinear instability?

> True in finite dimensional case
> In infinite dimensions:

v =Av+ F(v)

A is a linear operator generating a C°-semigroup in Banach space
X and F is strongly continuous in X
If A has positive spectrum {R\ > 0},
then v = 0 is nonlinearly unstable. [Shatah & Strauss *00]
> Here: A = 9,L but
o(L)

A¢0  A=0

so we do not know whether the spectral assumption is satisfied.
> We need a different approach!
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Nonlinear instability

Consider an orbit {U,(z — a), a € [—m, x|} of the peaked wave U..
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Nonlinear instability

Consider an orbit {U.(z — a), a € [—m, x|} of the peaked wave U..

Definition

The travelling wave U is said to be orbitally stable if for every € > 0,
there exists 0 > 0 such that
for every uy € le)er satisfying [jup — U||H1§er < 4,

there exists a unique global solution u € C(R, chr) to

{ Up + Uy = 8;114, t>0, (redO)
uli=o = uo,

such that for every ¢ > 0,

inf ||u(t,-) = U(- — a)HHéer <e.

a€l—m,m]

Otherwise, the periodic wave U is said to be orbitally unstable.
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Nonlinear instability

> We consider decomposition of the solution u € le)er

u(t,x) = Us(x —ct — a(t)) + v(t,x — ct — a(r)),

for a co-periodic perturbation v € ngr with s > 3/2 satisfying
the orthogonality condition

<8xU*, V>L2 = 0
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Nonlinear instability

> We consider decomposition of the solution u € Hg)er

u(t,x) = Us(x —ct —a(t)) + v(t,x — ct — a(1)),

for a co-periodic perturbation v € ngr with s > 3/2 satisfying
the orthogonality condition

<axU*, V>L2 = 0

Such a decomposition always exists and is unique by an
application of the inverse function theorem.
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Nonlinear instability

> We consider decomposition of the solution u € le)er

u(t,x) =Us(x —ct —a(t)) + v(t,x — ct — a(t)), (O:Us,v);2 =0,

for a co-periodic perturbation v € H3,, with s > 3/2 satisfying

per

{ v+ 18, [(22 = W] +v0w = 07 + & (1) (3.Us + Oyv),
V|=0 = Vo,

(CPv)
where z = x — ¢t — a(t).
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Nonlinear instability

> We consider decomposition of the solution u € le)er

u(t,x) =Us(x —ct —a(t)) + v(t,x — ct — a(t)), (O:Us,v);2 =0,

for a co-periodic perturbation v € H3,, with s > 3/2 satisfying

per

{ v+ 18, [(22 = W] +v0w = 07 + & (1) (3.Us + Oyv),

V[=0 = vo,
(CPv)
where z = x — ¢t — a(t).
> Using the orthogonality condition we obtain an evolution
equation for the translation parameter a:
’ (0:U,0:Lv) ;2 —(0.U,v0.v) 2
al(t)=— - t>0
(?) [0:U112,+(0:U,0:v) 2 ' (CPa)
a(0)=0
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Nonlinear instability

Theorem (Orbital instability)

There exists € > 0 such that for every small § > 0,

there exists vy € chr satisfying

[voll,, <6
s.t. the unique solution v € C([0, T],ngr) to (CPv)—(CPa) satisfies
V(E)lle = €

for somet; € (0,T) withT = O(6~ "), a € C([0,T],R) and s > 3/2.
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Nonlinear instability — Proof

> Write (CPv)

{ v+ 10, [(22 — 7)) +vdv = 07y + d (1) (0. Us + 9.v),
v|t:0 = Vo,

as the inhomogeneous evolution equation
vi=Av+ F(v)

2

where A := Ay + 0, ! generates the C%-semigroup in Lper

and F(v) : Lger — Lger is continuous.
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Nonlinear instability — Proof

> Write (CPv)

{ e éa [(Zz - WZ)V] +v0v = a;]v +d'(1)(0.Ux + 0.v),
V|i=0 = Vo,

as the inhomogeneous evolution equation
vi=Av+ F(v)

2

where A := Ay + 0, ! generates the C%-semigroup in Lper

and F(v) : Lger — Lger is continuous.

> Every solution v to (CPv) satisfies the integral formulation

v(t) = S(t)vo + /Ol S(t—s)F(s)ds, t€]0,T].
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(t)vo + / S(t— $)F(s)ds, 1€ [0,T].
0
> Using bounds from linear theory

CHVO||Lgcrem/6 < HS(1>V0||L;;Cr < ||V0\|Lgu€m/6
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(1)vo +/ S(t—s)F(s)ds, t€]0,T].
0
> Using bounds from linear theory

Cllvoll 2. e™/® < IS(t)voll 2. < |Ivoll 2, €™/

per per per

> we obtain
t
()l = Cllvoll2e™ — /O 0| ()| df

> Using the translation equation (CPa) for a(r), we obtain that for
any fixed € > 0 there exists #; € [0, 7] such that

()2, = €e™°C(8) > &, 1€[n,T],
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Nonlinear instability — Proof

> Every solution v of (CPv) satisfies the integral formulation
t
v(t) = S(1)vo +/ S(t—s)F(s)ds, t€]0,T].
0
> Using bounds from linear theory

Cllvoll 2. e™/® < IS(t)voll 2. < |Ivoll 2, €™/

per per per

> we obtain
t
()l = Cllvoll2e™ — /O 0| ()| df

> Using the translation equation (CPa) for a(r), we obtain that for
any fixed € > 0 there exists #; € [0, 7] such that
()2, = €e™°C(8) > &, 1€[n,T],
> This yields orbital instability of U..
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Summary

> Periodic traveling waves of the reduced Ostrovsky equation

(u; + uy), = u.

)
iy N\
Vi i &
H{@MINGE - -9)
NS\
W\ 17757 A S
17777 \ /,
NN \l ///6////// <
W, AN

> The smooth periodic waves are spectrally stable for any p € N.
[Geyer & P., LMP 2017]

> The peaked periodic wave is linearly and nonlinearly unstable
for p = 1. [Geyer & P., SIMA 2018]

A AA |
N
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Further questions

> Periodic traveling waves of the reduced Ostrovsky equation

= u.

i I
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> Are the smooth periodic waves transversally stable?
> Are they stable w.r.t. subharmonic perturbations?
> Is the peaked periodic wave unstable for p = 27
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Further questions

> Periodic traveling waves of the reduced Ostrovsky equation

(u + vPuy) = u.
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> Are the smooth periodic waves transversally stable?
> Are they stable w.r.t. subharmonic perturbations?
> Is the peaked periodic wave unstable for p = 27

Thank you for your attention!
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