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Introduction

The Camassa-Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx (CH)

models the propagation of unidirectional shallow water waves, where
u = u(t, x) represents the water surface. [Camassa & Holm, 1993]

. small amplitude: BBM equation ut − utxx + 3 u ux = 0

. moderate amplitude: b-family of Camassa-Holm equations
ut − uxxt + (b + 1)uux = buxuxx + uuxxx (b = 2)
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Properties of the Camassa-Holm equation

The local differential equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux + ϕ′ ∗
(

u2 +
1
2

u2
x

)
= 0,

where ϕ := (1− ∂2
x )−1δ0 is the Green function.
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ut + uux + ϕ′ ∗
(

u2 +
1
2

u2
x

)
= 0,

where ϕ := (1− ∂2
x )−1δ0 is the Green function.

The model may feature wave breaking:

‖u(t, ·)‖L∞ <∞, ‖ux(t, ·)‖L∞ →∞ as t→ T <∞
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ut + uux + ϕ′ ∗
(

u2 +
1
2

u2
x

)
= 0,

where ϕ := (1− ∂2
x )−1δ0 is the Green function.

Solutions of the Burgers equation vt + vvx = 0 with v(0, x) = f (x)
feature the same wave breaking:

v(t, x) = f (x− tv(t, x)) ⇒ vx =
f ′(x− tv)

1 + tf ′(x− tv)
.
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Properties of the Camassa-Holm equation

The local differential equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux + ϕ′ ∗
(

u2 +
1
2

u2
x

)
= 0,

where ϕ := (1− ∂2
x )−1δ0 is the Green function.

. locally well-posed in Hs, s > 3/2 [Constantin & Escher, 1998]

. no continuous dependence in Hs, s ≤ 3/2
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

. locally well-posed in H1 ∩W1,∞.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]
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Stability of traveling waves

There exist smooth, peaked and cusped periodic waves [Lenells, 2006]

Some previous stability results:
. Orbital stability for peaked periodic and solitary waves in H1

using variational methods and energy integrals
[Constantin & Strauss, 2000] [Constantin & Molinet, 2001] [Lenells, 2004]

. Orbital stability for smooth periodic and solitary waves in H1

using inverse scattering [Constantin & Strauss, 2002] [Lenells, 2005]

. Instability of peaked periodic and solitary waves in H1 ∩W1,∞

[Natali & Pelinovsky, 2020] [Madiyeva & Pelinovsky, 2021]

. Spectral stability of smooth periodic waves
using dynamical system theory
[Geyer, Martins, Natali, & Pelinovsky, 2022]

. Stability of cusped waves is open.
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Standard approach to spectral stability

. Construct an action functional Λ(u), such that the traveling wave
solution φ is a critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

. Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the number of negative eigenvalues in L2.

. If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then we need to prove that the traveling wave φ is a
constrained minimizer of energy, i.e. L|X0 ≥ 0, where X0 is
constrained by the momentum conservation.

. The traveling wave φ is spectrally stable if L|X0 ≥ 0.
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Standard approach to spectral stability

The standard approach fails for the Camassa–Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx (CH)

. For the smooth periodic waves, the number of negative
eigenvalues of L changes from 1 to 2, depending on parameters.

. For the peaked periodic or solitary waves, the zero eigenvalue of
L is not separated from the continuous spectrum.

The main goal of my talk is to explain how these two problems can be
solved on the case study of the Camassa–Holm equation.
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Bi-Hamiltonian structure of CH

The CH equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

has three conserved quantities

M(u) =

∫ L

0
udx, E(u) =

1
2

∫ L

0
(u2+u2

x)dx, F(u) =
1
2

∫ L

0
(u3+uu2

x) dx.

It can be written in Hamiltonian form in two ways:

ut = JF′(u), J = −(1− ∂2
x )−1∂x

and
mt = JmE′(m), Jm = − (m∂x + ∂xm) ,

where m = u− uxx.
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Traveling waves

Smooth traveling waves of the form u(x, t) = φ(x− ct) satisfy

−cφ′ + cφ′′′ + 3φφ′ = 2φ′φ′′ + φφ′′′.

Standard integration gives

−(c− φ)φ′′ + cφ− 3
2
φ2 +

1
2

(φ′)2 = b, b ∈ R.

Alternative integration, after multiplication by (c− φ), gives

−(c− φ)2(φ′′ − φ) = a, a ∈ R.

Both second-order equations are compatible iff

b =
1
2

(φ′)2 − 1
2
φ2 +

a
c− φ

.
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Existence of periodic waves on the (a, b) parameter plane

0 0.2 0.4 0.6 0.8 1 1.2

-2

-1.5

-1

-0.5

0

0.5

1

Periodic waves exist inside the region between three boundaries:

. Peaked waves correspond to the left boundary: a = 0.

. Solitary waves correspond to the top boundary.

. Constant waves correspond to the right boundary.
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Stability via Standard integration

Standard integration gives

−(c− φ)φ′′ + cφ− 3
2
φ2 +

1
2

(φ′)2 = b,

which is the Euler–Lagrange equation for the action functional:

Λc,b(u) := cE(u)− F(u)− bM(u).

The corresponding linearized operator is L : H2
per ⊂ L2 → L2,

L = Λ′′c,b(φ) = −∂x(c− φ)∂x + (c− 3φ+ φ′′).

σ(L) ⊂ R consists of eigenvalues and 0 ∈ σ(L) since Lφ′ = 0.

How many negative eigenvalues exist in σ(L)?
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Period function

Fix b and write the second-order equation as the system{
x′ = y,
y′ = −1

x V ′(x)− 1
2x y2,

{
x := c− φ,
y := −φ′,

with first integral H(x, y) := 1
2 xy2 + V(x; b).

There is a continuum of periodic orbits γ(a) in {H(x, y) = a} with
the period given by the period function

L(a) =

∫
γ(a)

dx
y
.

L(a) change monotonicity for different b. [Geyer & Villadelprat, 2015]
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Negative eigenvalues in σ(L)

What does it imply for the linearized operator L?

L = Λ′′c,b(φ) = −∂x(c− φ)∂x + (c− 3φ+ φ′′).

We have Lφ′ = 0 and L∂aφ = 0, with v = c1φ
′ + c2∂aφ being a

general solution of Lv = 0.

. L′(a) > 0 : σ(L) = {−λ1,−λ2, 0, . . . }

. L′(a) = 0 : σ(L) = {−λ1, 0, 0, . . . }

. L′(a) < 0 : σ(L) = {−λ1, 0, . . . }
[M. Johnson, 2009] [A. Neves, 2009]

Standard approach to spectral stability is computationally hard.
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Stability via Alternative integration

Alternative integration, after multiplication by (c− φ), gives

−(c− φ)2(φ′′ − φ) = a, a ∈ R.

which can be written as (c− φ)3µ = a(c− φ) for µ := φ− φ′′.

The corresponding linearized operator is K : L2
per → L2

per,

K := (c− φ)3 − 2a(1− ∂2
x )−1, Kµ′ = 0.

σ(K) ⊂ R consists of eigenvalues below minx∈[0,L](c− φ)3 > 0 and
the continuous spectrum in [minx∈[0,L](c− φ)3,maxx∈[0,L](c− φ)3].

How many negative eigenvalues exist in σ(K)?

Dmitry E. Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 13 / 35



Stability via Alternative integration

Alternative integration, after multiplication by (c− φ), gives

−(c− φ)2(φ′′ − φ) = a, a ∈ R.

which can be written as (c− φ)3µ = a(c− φ) for µ := φ− φ′′.

The corresponding linearized operator is K : L2
per → L2

per,

K := (c− φ)3 − 2a(1− ∂2
x )−1, Kµ′ = 0.

σ(K) ⊂ R consists of eigenvalues below minx∈[0,L](c− φ)3 > 0 and
the continuous spectrum in [minx∈[0,L](c− φ)3,maxx∈[0,L](c− φ)3].

How many negative eigenvalues exist in σ(K)?

Dmitry E. Pelinovsky, McMaster University Stability of smooth and peaked periodic waves 13 / 35



Period function

Fix a and write the second-order equation as{
x′ = y,
y′ = x + a

(c−x)2 ,

{
x := φ,
y := φ′,

-2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

with Hamiltonian H(x, y) = 1
2 y2 + V(x; a).

There is a continuum of periodic orbits γ(b) in {H(x, y) = b}.

The period function is defined as

L(b) =

∫
γ(b)

dx
y
.

L′(b) > 0 for all values of a.
[Geyer, Martins, Natali, & Pelinovsky, 2022]
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Negative eigenvalues in σ(K)

What does it imply for the linearized operator K?

K := (c− φ)3 − 2a(1− ∂2
x )−1.

We have Kµ′ = 0 and K∂bµ = 0, where µ := φ− φ′′. Hence,
v = c1µ

′ + c2∂bµ is a general solution of Kv = 0.

For the negative spectrum of K we find

. L′(b) < 0 : σ(K) = {−λ1,−λ2, 0, . . . }

. L′(b) = 0 : σ(K) = {−λ1, 0, 0, . . . }

. L′(b) > 0 : σ(K) = {−λ1, 0, . . . }
Since L′(b) > 0, σ(K) admits only one simple negative eigenvalue.
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Standard approach to spectral stability

. Construct an action functional Λ(u), such that the traveling wave
solution φ is a critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

. Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the number of negative eigenvalues in L2.

. If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then we need to prove that the traveling wave φ is a
constrained minimizer of energy, i.e. L|X0 ≥ 0, where X0 is
constrained by the momentum conservation.

. The traveling wave φ is spectrally stable if L|X0 ≥ 0.
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Constrained minimizers of energy

Recall the three conserved quantities

M(u) =

∫ L

0
udx, E(u) =

1
2

∫ L

0
(u2+u2

x)dx, F(u) =
1
2

∫ L

0
(u3+uu2

x) dx,

and the action functional Λc,b(u) = cE(u)− F(u)− bM(u).

The constrained space is

X0 :=
{

u ∈ L2
per : 〈1, u〉 = 0, 〈φ− φ′′, u〉 = 0

}
.

In variable m := u− uxx for u ∈ H2
per, the constraints become

Y0 :=
{

m ∈ L2
per : 〈1,m〉 = 0, 〈φ,m〉 = 0

}
.

How many negative eigenvalues exist in σ(K|Y0)?
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(u2+u2

x)dx, F(u) =
1
2

∫ L

0
(u3+uu2

x) dx,

and the action functional Λc,b(u) = cE(u)− F(u)− bM(u).

The constrained space is

X0 :=
{

u ∈ L2
per : 〈1, u〉 = 0, 〈φ− φ′′, u〉 = 0
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.
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.
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Constrained minimizers of energy - scalar case

Consider the constrained spectral problem for K|Y0 :

Km = λm− αφ, 〈φ,m〉 = 0,

where α is a Lagrange multiplier.

We can write

m = −α(K − λI)−1φ, λ /∈ σ(K)

and hence 〈φ,m〉 = 〈(K − λI)−1φ, φ〉︸ ︷︷ ︸
=:A(λ)

= 0.

ACH
I
1

i i iiimummyd O
I 1 i

If lim
λ↑0

A(λ) = 〈K−1φ, φ〉 < 0,

then K|Y0 ≥ 0.
[Vakhitov–Kolokolov, 1974]
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Constrained minimizers of energy - vector case

Theorem
Let A(λ) be the matrix-valued function defined by

Aij(λ) := 〈(K − λI)−1vi, vj〉, 1 ≤ i, j ≤ N, λ /∈ σ(K),

where 〈p, vi〉 = 0 for p ∈ Y0 and let A0 := limλ↑0 A(λ). Then,

n(K
∣∣
Y0

) = n(K)− n0 − z0, z(K
∣∣
Y0

) = z(K) + 2z0 + n0 + p0 − N,

where n0, z0, and p0 are the numbers of negative, zero, and positive
eigenvalues of A0 and N = dimY0.

[Pelinovsky, 2011], [Kapitula–Promislow, 2013]
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Sharp condition that K|Y0 ≥ 0

We find that for Y0 =
{

m ∈ L2
per : 〈1,m〉 = 0, 〈φ,m〉 = 0

}
,

A0 =

[
〈K−11, 1〉 〈K−1φ, 1〉
〈K−11, φ〉 〈K−1φ, φ〉

]
=

[
− 1

2a∂cM −∂aM − c
2a∂cM

− 1
2a∂cE −∂aE − c

2a∂cE

]
,

where E and M are momentum and mass functionals as function of
(a, c) along the fixed period curve L(a, b, c) = L.

Since n(K) = 1, then K|Y0 ≥ 0 if and only if

det(A0) =
1
2a

[∂cM∂aE − ∂aM∂cE] ≤ 0 ⇐⇒ d
da

(
E

M2

)
≤ 0.
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Sharp condition d
da

(
E

M2

)
≤ 0 for K|Y0 ≥ 0
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Sharp condition d
da

(
E

M2

)
≤ 0 for K|Y0 ≥ 0
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Existence of peaked periodic waves

Let ϕ(x) be the Green function satisfying (1− ∂2
x )ϕ = δ such that the

CH equation is written as{
ut + uux + ϕ′ ∗

(
u2 + 1

2 u2
x
)

= 0,
u|t=0 = u0.

Green function gives the peaked TW u(x, t) = ϕ(x− ct) with
c = ϕ(0) so that c− ϕ ≥ 0. Hence, K := (c− ϕ)3 − 2a(1− ∂2

x )−1

does not have spectral gap near zero eigenvalue.
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Stability of peaked periodic waves

Theorem (Constantin–Molinet (2001); Lenells (2005))

ϕ is a unique (up to translation) minimizer of F(u) in H1 subject to
E(u) and M(u).

Theorem (Constantin–Strauss (2000); Lenells (2005))

For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·).
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] := ϕ′ ∗
(

u2 +
1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.
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Q[u] := ϕ′ ∗
(

u2 +
1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

Theorem (Natali–P. (2020); Madiyeva–P (2021))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

s.t. the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0 satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] := ϕ′ ∗
(

u2 +
1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

Weak formulation of the unique global conservative solution:∫ ∞
0

∫
R

(
uψt +

1
2

u2ψx − Q[u]ψ

)
dxdt +

∫
R

u0(x)ψ(0, x)dx = 0,

where ψ ∈ C1
c(R+ × R).
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] := ϕ′ ∗
(

u2 +
1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

. If u ∈ H1(R), then Q[u] ∈ C(R).

. If u ∈ H1(R) ∩W1,∞(R), then Q[u] is Lipschitz continuous.
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Instability of peakons

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] := ϕ′ ∗
(

u2 +
1
2

u2
x

)
.

Assume that u0 is piecewise C1 with a single peak.

If u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}) for t ∈ [0,T). Then,
ξ(t) ∈ C1(0,T) and

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− ct− a(t)) + v(t, x− ct− a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = ct + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then,
(ϕ− c)ϕ′ + Q(ϕ) = 0,

da
dt

= v(t, 0),

and

vt = (c−ϕ)vx+(v|x=0−v)ϕ′+(v|x=0−v)vx−ϕ′∗(ϕv+
1
2
ϕ′vx)−Q[v].
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Decomposition near a single peakon

Consider a decomposition:

u(t, x) = ϕ(x− ct− a(t)) + v(t, x− ct− a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = ct + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Due to

[v(0)− v(x)]ϕ′(x)− ϕ′ ∗ ϕv− 1
2
ϕ′ ∗ ϕ′vx = ϕ(x)

∫ x

0
v(y)dy,

the evolution of v(t, x) simplifies to

vt = (c− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v],

where w(t, x) =
∫ x

0 v(t, y)dy.
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Linearized evolution

Truncation of the quadratic terms yields the linearized problem:{
vt = (c− ϕ)vx + ϕw, t > 0,
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy.

Solution with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s), w(t,X(t, s)) = W(t, s).
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Linearized evolution

Truncation of the quadratic terms yields the linearized problem:{
vt = (c− ϕ)vx + ϕw, t > 0,
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy.

The evolution problem splits into{ dX
dt = ϕ(X)− c,
X|t=0 = s,

{ dW
dt = ϕ′(X)W,

W|t=0 = w0(s),

{ dV
dt = ϕ(X)W,

V|t=0 = v0(s).

Since ϕ is Lipschitz, there exists unique characteristic function X(t, s)
for each s ∈ R. The peak location X(t, 0) = 0 is invariant in time.
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Properties of the linearized evolution

Assume v0 ∈ H1(R) ∩ C1(R\{0}). For every t > 0, we proved that

. ‖v(t, ·)‖L∞ ≤ C for some C > 0.

. ‖v(t, ·)‖2
H1 = C+et + C0 + C−e−t for some C+,C0,C−.

It may seem that the growth of ‖v(t, ·)‖2
H1 contradicts to H1 orbital

stability of peakons, but v(t, ·) satisfies the linearized equations of
motion and indicates linear and spectral instability of peakons in H1.
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Illustration of the linear instability
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Figure: The plots of v(t, x) versus x on [−2π, 2π] for different values of t in
the case v0(x) = sin(x).
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Nonlinear evolution

Recall the evolution problem:{
vt = (c− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v], t ∈ (0,T),
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy and Q[v] := ϕ′ ∗
(
v2 + 1

2 v2
x
)
.

Solution with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s), w(t,X(t, s)) = W(t, s).
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Nonlinear evolution

Recall the evolution problem:{
vt = (c− ϕ)vx + ϕw + (v|x=0 − v)vx − Q[v], t ∈ (0,T),
v|t=0 = v0(x),

where w(t, x) =
∫ x

0 v(t, y)dy and Q[v] := ϕ′ ∗
(
v2 + 1

2 v2
x
)
.

The characteristic coordinates X(t, s) satisfies{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s.

Since ϕ is Lipschitz, there exists the unique characteristic function
X(t, s) for each s ∈ R if v(t, ·) remains in H1(R) ∩ C1(R\{0})
The peak location X(t, 0) = 0 is invariant in time.
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Instability theorem

Theorem (Natali–P. (2020); Madiyeva–P (2021))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0
satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).
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For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0
satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).

From the right side of the peak, V0(t) = v(t, 0), U0(t) = vx(t, 0+):

dU0

dt
= U0 + V0 + V2

0 −
1
2

U2
0 − P[v](0), P[v] := ϕ ∗

(
v2 +

1
2

v2
x

)
.
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Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.
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Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

From the equation on the right side of the peak:

dU0

dt
= U0 + V0 + V2

0 −
1
2

U2
0 − P[v](0)

and since P[v] > 0, we have

dU0

dt
≤ U0 + Cε ⇒ U0(t) ≤ [U0(0) + Cε] et
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Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If U0(0) = −2Cε, then

U0(t) ≤ −Cεet,

hence |U0(t0)| ≥ 1 for t0 := − log(Cε).
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Proof of instability

From orbital stability in H1 [A. Constant, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If U0(0) = −2Cε, then

U0(t) ≤ −Cεet,

hence |U0(t0)| ≥ 1 for t0 := − log(Cε).

The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied
if ∀δ > 0, ∃ε > 0 such that(ε

3

)4
+ 2Cε < δ.
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Strong instability theorem

Theorem (Natali–P. (2020); Madiyeva–P (2021))

For every δ > 0, there exist u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the maximal existence time of the unique solution
u ∈ C([0,T),H1 ∩W1,∞) is finite.
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For every δ > 0, there exist u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the maximal existence time of the unique solution
u ∈ C([0,T),H1 ∩W1,∞) is finite.

From the right side of the peak, V0(t) = V(t, 0), U0(t) = U(t,+0):

dU0

dt
= U0 + V0 + V2

0 −
1
2

U2
0 − P[v](0) ≤ U0 −

1
2

U2
0 + Cε.

is controlled by Ricatti differential inequality.
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Strong instability theorem

Theorem (Natali–P. (2020); Madiyeva–P (2021))

For every δ > 0, there exist u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

such that the maximal existence time of the unique solution
u ∈ C([0,T),H1 ∩W1,∞) is finite.

By the ODE comparison theory, U0(t) ≤ U(t), where the
supersolution satisfies

dU
dt

= U − 1
2

U2
+ Cε

with U0(0) = U(0) = −Cε and U(t)→ −∞ as t→ T .
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Concluding remarks

1. Instability of peakons with respect to peaked perturbations is
consistent with local well-posedness for u0 ∈ H1 ∩W1,∞ and
wave breaking in a finite time: ux(t, x)→ −∞ at some x ∈ R.
[De Lellis, Kappeler & Topalov (2007)] [Linares, Ponce, & Sideris (2019)]

2. It follows from the method of characteristics that if v0 ∈ C1(R),
then v(t, ·) /∈ C1(R) for t > 0 due to the single peak at x = ξ(t):

u(t, x) = ϕ(x− ct − a(t)) + v(t, x− ct − a(t)), t ∈ [0,T).

3. The H1 orbital stability results on peakons are misleading as the
perturbations near the peakon are growing in W1,∞ norm.

4. Instability of peakons can be confirmed from the spectral
stability analysis for the b-family of Camassa-Holm equations
[Lafortune & Pelinovsky (2022)]
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Summary

We considered the Camassa–Holm equation

ut + 3uux − utxx = 2uxuxx + uuxxx.

which models small-amplitude waves in shallow fluids.

. Smooth periodic and solitary waves are stable in H1 ∩W1,∞

. Key idea: use alternative Hamiltonian structure

. Linearized operator has only one negative eigenvalue

. TW is constrained minimizer of action functional

. Peaked periodic and solitary waves are unstable in H1 ∩W1,∞

. LWP only holds in H1 ∩W1,∞.

. Perturbations are bounded in H1.

. Perturbations grow in W1,∞.
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