Photonic crystals, coupled-mode equations, and gap solitons

Dmitry Pelinovsky

Institute of Mathematics, University of Stuttgart, Germany
Department of Mathematics, McMaster University, Canada

References:
D.Agueev, D.P., SIAM J. Appl. Math. 65, 1101 (2005)
M.Chugunova, D.P., SIAM J.Appl.Dyn.Syst. 5, 66 (2006)
D.P., G. Schneider, in preparation (2007)

Colloquium in Applied Mathematics, ETH Zurich, November 29, 2006

Motivations

- Modeling of photonic crystals in one, two and three dimensions
- Control of linear transmission properties in stop bands
- Persistence and time-evolution of gap solitons in band gaps

- Plan of the talk

1 Formal reductions of Maxwell equations to coupled-mode equations
2 Well-posedness of linear boundary value PDE problems (2-D)
3 Linearized stability of gap solitons (1-D)
4 Justification of coupled-mode equations (1-D)

- Linear Maxwell equations

$$
\nabla^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\nabla(\nabla \cdot \mathbf{E}), \quad \nabla \cdot\left(n^{2} \mathbf{E}\right)=0
$$

- Three-dimensional vectors $\mathbf{E}=\left(E_{x}, E_{y}, E_{z}\right)$ and $\mathbf{x}=(x, y, z)$
- $n=n(\mathbf{x})$ is the periodic refractive index with $n(\mathbf{x}+\mathbf{a})=n(\mathbf{x})$
$\circ c$ is the speed of light

- Existence of Bloch waves for arbitrary smooth $n(\mathbf{x})$ (Kuchment, 1993)

$$
\mathbf{E}(\mathbf{x}, t)=\mathbf{\Psi}(\mathbf{x}) e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)},
$$

$\circ \mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ is the wave vector
$\circ \omega=\omega(\mathbf{k})$ is the wave frequency
$\circ \boldsymbol{\Psi}(\mathbf{x}+\mathbf{a})=\boldsymbol{\Psi}(\mathbf{x})$ is the periodic envelope

- Small periodicity of the refractive index

$$
n(\mathbf{x})=1+\epsilon \sum_{(n, m, l) \in \mathbb{Z}^{3}} \alpha_{n, m, l} e^{i\left(n \mathbf{k}_{1}+m \mathbf{k}_{2}+l \mathbf{k}_{3}\right) \mathbf{x}}
$$

- ϵ is small parameter
- $\mathbf{k}_{1,2,3}$ are reciprocal lattice vectors
- The incident wave $\mathbf{E}=\mathbf{e}_{\mathbf{k}} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}$ with $\mathbf{k}=\mathbf{k}_{\text {in }}$, where

$$
\mathbf{k} \cdot \mathbf{e}_{\mathbf{k}}=0, \quad \omega^{2}=c^{2}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)
$$

- Transmitted waves $\mathbf{E}=\mathbf{e}_{\mathbf{k}} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}$ with $\mathbf{k}=\mathbf{k}_{\text {out }}^{(n, m, l)}$ in

$$
\mathbf{k}_{\text {out }}^{(n, m, l)}=\mathbf{k}_{\text {in }}+n \mathbf{k}_{1}+m \mathbf{k}_{2}+l \mathbf{k}_{3}, \quad(n, m, l) \in \mathbb{Z}^{3} .
$$

- The transmitted waves are resonant to the incident wave if

$$
\omega\left(\mathbf{k}_{\text {out }}^{(n, m, l)}\right)=\omega\left(\mathbf{k}_{\text {in }}\right) \quad \text { for some }(n, m, l) \in \mathbb{Z}^{3}
$$

- The cubic crystal structure

$$
\mathbf{x}_{1,2,3}=a \mathbf{e}_{1,2,3}, \quad \mathbf{k}_{1,2,3}=\frac{2 \pi}{a} \mathbf{e}_{1,2,3}
$$

where $\mathbf{e}_{1,2,3}$ are unit vectors in \mathbb{R}^{3} and $a>0$.

- The set of resonances in low-contrast cubic crystal

$$
S=\left\{(n, m, l) \in \mathbb{Z}^{3}: n(n+p)+m(m+q)+l(l+r)=0\right\}
$$

where $(p, q, r) \in \mathbb{R}^{3}$ in $\mathbf{k}_{\text {in }}=\frac{\pi}{a}(p, q, r)$.

- The set S is finite-dimensional and non-empty with $(n, m, l)=(0,0,0)$

$$
\left(n+\frac{p}{2}\right)^{2}+\left(m+\frac{q}{2}\right)^{2}+\left(l+\frac{r}{2}\right)^{2}<\infty
$$

- Graphical solution

- Analytical solutions
- 1-D resonance $p=q=0, r \in \mathbb{Z}$
- 2-D resonance $(p, q) \in \mathbb{Z}^{2}, r=0$
- 2-D oblique resonance $(p, q) \in \mathbb{R}^{2}, r=0$
- Perturbation series expansions in powers of ϵ :

$$
\mathbf{E}(\mathbf{x}, t)=\mathbf{E}_{0}(\mathbf{x}, t)+\epsilon \mathbf{E}_{1}(\mathbf{x}, t)+\mathrm{O}\left(\epsilon^{2}\right) .
$$

- Bloch waves are plane waves for $\epsilon=0$:

$$
\mathbf{E}_{0}(\mathbf{x}, t)=\sum_{j=1}^{N} A_{j}(\mathbf{X}, T) \mathbf{e}_{\mathbf{k}_{j}} e^{i\left(\mathbf{k}_{j} \mathbf{x}-\omega t\right)}
$$

$\circ(\mathbf{X}, T)$ are slow normalized variables:

$$
\mathbf{X}=\frac{\epsilon \mathbf{x}}{k}, \quad T=\frac{\epsilon t}{\omega}
$$

- Inhomogeneous equation with resonant terms:

$$
\nabla^{2} \mathbf{E}_{1}-\frac{n_{0}^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}}=\mathbf{F}\left(\mathbf{E}_{0}\right)
$$

- Solvability conditions from orthogonality of $\mathbf{F}\left(\mathbf{E}_{0}\right)$ to resonant terms

$$
i\left(\frac{\partial A_{j}}{\partial T}+\left(\frac{\mathbf{k}_{j}}{k} \cdot \nabla_{X}\right) A_{j}\right)+\sum_{k \neq j} a_{j, k} A_{k}=0, \quad j=1, \ldots, N
$$

- A system of semi-linear hyperbolic PDEs in a bounded domain in \mathbf{X} subject to boundary and initial conditions.

$$
S=\{(0,0,0),(0,0,-r)\}, r \in \mathbb{N}
$$

$$
i\left(\frac{\partial A_{+}}{\partial T}+\frac{\partial A_{+}}{\partial Z}\right)+\alpha A_{-}=\beta\left(\left|A_{+}\right|^{2}+2\left|A_{-}\right|^{2}\right) A_{+}
$$

$$
i\left(\frac{\partial A_{-}}{\partial T}-\frac{\partial A_{-}}{\partial Z}\right)+\alpha A_{+}=\beta\left(2\left|A_{+}\right|^{2}+\left|A_{-}\right|^{2}\right) A_{-}
$$

$$
S=\{(0,0,0),(-p,-q, 0),(-p, 0,0),(0,-q, 0)\},(p, q) \in \mathbb{N}^{2}
$$

$$
\begin{aligned}
& i\left(\frac{\partial A_{+}}{\partial T}+\frac{\partial A_{+}}{\partial X}+\frac{\partial A_{+}}{\partial Y}\right)+\alpha A_{-}+\beta\left(B_{+}+B_{-}\right)=0, \\
& i\left(\frac{\partial A_{-}}{\partial T}-\frac{\partial A_{-}}{\partial X}-\frac{\partial A_{-}}{\partial Y}\right)+\alpha A_{+}+\beta\left(B_{+}+B_{-}\right)=0, \\
& i\left(\frac{\partial B_{+}}{\partial T}+\frac{\partial B_{+}}{\partial X}-\frac{\partial B_{+}}{\partial Y}\right)+\beta\left(A_{+}+A_{-}\right)+\alpha B_{-}=0, \\
& i\left(\frac{\partial B_{-}}{\partial T}-\frac{\partial B_{-}}{\partial X}+\frac{\partial B_{-}}{\partial Y}\right)+\beta\left(A_{+}+A_{-}\right)+\alpha B_{+}=0,
\end{aligned}
$$

- Well-posedness of the Sommerfeld (radiation) boundary-value problem for stationary transmission (D.Agueev, M.Sc. thesis, 2004)
- Existence, stability and propagation of gap solitons, extensions to the relativistic Dirac equations (M. Chugunova, Ph.D. thesis, in progress)
- Rigorous justification of the nonlinear coupled-mode equations for gap solitons (G. Schneider, in progress)
- Derivation of coupled-mode equations for highly-contrast materials with narrow gaps (open project)
- Stationary transmission of four waves

$$
A_{ \pm}(\mathbf{X}, T)=a_{ \pm}(X+Y) e^{-i \Omega T}, \quad B_{ \pm}(\mathbf{X}, T)=b_{ \pm}(X-Y) e^{-i \Omega T}
$$

- The four-wave PDE problem:

$$
\begin{aligned}
i \frac{\partial a_{+}}{\partial x}+\Omega a_{+}+\alpha a_{-}+\beta\left(b_{+}+b_{-}\right) & =0 \\
-i \frac{\partial a_{-}}{\partial x}+\alpha a_{+}+\Omega a_{-}+\beta\left(b_{+}+b_{-}\right) & =0 \\
i \frac{\partial b_{+}}{\partial y}+\beta\left(a_{+}+a_{-}\right)+\Omega b_{+}+\alpha b_{-} & =0 \\
-i \frac{\partial b_{-}}{\partial y}+\beta\left(a_{+}+a_{-}\right)+\alpha b_{+}+\Omega b_{-} & =0
\end{aligned}
$$

- Boundary-value problem on rectangle:

$$
\mathcal{D}=\{(x, y): 0 \leq x \leq L, 0 \leq y \leq H\}
$$

subject to

$$
a_{+}(0, y)=\alpha_{+}(y), \quad a_{-}(L, y)=0, \quad b_{+}(x, 0)=0, \quad b_{-}(x, H)=0
$$

- Dispersion relation $\Omega=\Omega\left(K_{x}, K_{y}\right)$ for the double Fourier transform with $\left(K_{x}, K_{y}\right) \in \mathbb{R}^{2}$:

$$
\left(\Omega^{2}-\alpha^{2}-K_{x}^{2}\right)\left(\Omega^{2}-\alpha^{2}-K_{y}^{2}\right)-4 \beta^{2}(\Omega-\alpha)^{2}=0
$$

- When $\alpha^{2}>4 \beta^{2}$, no real-valued roots $\left(K_{x}, K_{y}\right)$ exist for $\Omega=0$ (stop band)
- When $\alpha^{2}<4 \beta^{2}$, there exist two curves on the $\left(K_{x}, K_{y}\right)$-plane, which correspond to the real-valued roots (spectral band).
- The case $\Omega=0$ is considered for simplicity.
- Separation of variables:

$$
\begin{aligned}
a_{+}(x, y) & =u_{+}(x) w_{a}(y), & & a_{-}(x, y)=u_{-}(x) w_{a}(y) \\
b_{+}(x, y) & =w_{b}(x) v_{+}(y), & & b_{-}(x, y)=w_{b}(x) v_{-}(y),
\end{aligned}
$$

where

$$
v_{+}(y)+v_{-}(y)=\mu w_{a}(y), \quad u_{+}(x)+u_{-}(x)=-\lambda w_{b}(x)
$$

and (λ, μ) are arbitrary.

- Separated boundary conditions:

$$
\begin{gathered}
u_{+}(0)=1, \quad u_{-}(L)=0 \\
v_{+}(0)=0, \quad v_{-}(H)=0 .
\end{gathered}
$$

- The inhomogeneous ODE system for $\left(u_{+}, u_{-}\right)$:

$$
\left(\begin{array}{cc}
i \partial_{x} & \alpha \\
\alpha & -i \partial_{x}
\end{array}\right)\binom{u_{+}}{u_{-}}=\beta \Gamma^{-1}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{u_{+}}{u_{-}}
$$

- The homogeneous ODE system for $\left(v_{+}, v_{-}\right)$:

$$
\left(\begin{array}{cc}
i \partial_{y} & \alpha \\
\alpha & -i \partial_{y}
\end{array}\right)\binom{v_{+}}{v_{-}}=\beta \Gamma\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{v_{+}}{v_{-}}
$$

$\circ \Gamma=\lambda / \mu$ is eigenvalue to be found from the homogeneous system

- The spectrum of $\Gamma=\left(\alpha^{2}+k^{2}\right) /(2 \alpha \beta)$ is defined by roots

$$
\left(\frac{k-\alpha}{k+\alpha}\right)^{2} e^{-2 i k H}=1
$$

- All roots are simple and located in the first and third open quadrants. For each root, there exists a unique solution for $\left(u_{+}, u_{-}\right)$.

- The set of eigenfunctions $v_{j}(y)=v_{+}(y)+v_{-}(y)$ for roots k_{j} is orthogonal with respect to

$$
\int_{0}^{H} v_{i}(y) v_{j}(y) d y=\delta_{i, j}
$$

- Any $C^{1}([0, H])$ function $\alpha_{+}(y)$ is uniquely represented by the series of eigenfunctions,

$$
\alpha_{+}(y)=\sum_{\text {all } k_{j}} c_{j} v_{j}(y), \quad c_{j}=\int_{0}^{H} \alpha_{+}(y) v_{j}(y) d y
$$

which converges uniformly on $0<y<H$.

- Explicit Fourier series solutions for $a_{ \pm}(x, y)$ and $b_{ \pm}(x, y)$ follow from the method of separation of variables.
- Boundary conditions

$$
a_{+}(0, y)=1, \quad a_{-}(L, y)=0, \quad b_{+}(x, 0)=0, \quad b_{-}(x, H)=0
$$

- Coefficients of decomposition

$$
c_{j}=\frac{4 i \alpha}{k_{j}\left[H\left(k_{j}^{2}-\alpha^{2}\right)+2 i \alpha\right]}
$$

- The decomposition in series of eigenfunctions,

$$
1=\sum_{\text {all } k_{j}} c_{j} v_{j}(y), \quad 0<y<H
$$

Solution surfaces for the stop band.

High transmittance and diffractance

Solution surfaces for the spectral band.

General symmetric 1-D coupled-mode system:

$$
\left\{\begin{array}{l}
i\left(u_{t}+u_{x}\right)+v=\partial_{\bar{u}} W(u, \bar{u}, v, \bar{v}) \\
i\left(v_{t}-v_{x}\right)+u=\partial_{\bar{v}} W(u, \bar{u}, v, \bar{v})
\end{array}\right.
$$

- W is invariant with respect to the gauge transformation: $(u, v) \mapsto e^{i \alpha}(u, v)$, for all $\alpha \in \mathbb{R}$
- W is symmetric with respect to the interchange: $(u, v) \mapsto(v, u)$
- W is analytic in its variables near $u=v=0$, such that $W=O(4)$
- The quartic part of the potential function W is given by

$$
W=\frac{a_{1}}{2}\left(|u|^{4}+|v|^{4}\right)+a_{2}|u|^{2}|v|^{2}+a_{3}\left(|u|^{2}+|v|^{2}\right)(v \bar{u}+\bar{v} u)+\frac{a_{4}}{2}(v \bar{u}+\bar{v} u)^{2}
$$

where $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ are parameters

Stationary solutions of the coupled-mode system:

$$
\left\{\begin{array}{l}
u_{\mathrm{st}}(x, t)=u_{0}(x+s) e^{i \omega t+i \theta} \\
v_{\mathrm{st}}(x, t)=v_{0}(x+s) e^{i \omega t+i \theta}
\end{array}\right.
$$

$\circ(s, \theta) \in \mathbb{R}^{2}$ are arbitrary parameters and $-1<\omega<1$

- If $\left|u_{0}\right|,\left|v_{0}\right| \rightarrow 0$ as $|x| \rightarrow \infty$, then $u_{0}=\bar{v}_{0}$
- Analytical expressions are available for homogeneous functions W

$$
u_{0}=\frac{\sqrt{2(1-\omega)}}{(\cosh \beta x+i \sqrt{\mu} \sinh \beta x)}, \quad \mu=\frac{1-\omega}{1+\omega}, \quad \beta=\sqrt{1-\omega^{2}}
$$

- Explicit gap solitons are stationary solutions. Traveling gap solitons are only available implicitly except few special examples.
- Standard linearization, e.g.

$$
u(x, t)=e^{i \omega t}\left(u_{0}(x)+U_{1}(x) e^{\lambda t}\right)
$$

- Eigenvalue problem

$$
H_{\omega} \mathbf{U}=i \lambda \sigma \mathbf{U}, \quad \mathbf{U} \in \mathbb{C}^{4}
$$

where

$$
H_{\omega}=D\left(\partial_{x}\right)+D^{2} W\left[u_{0}(x)\right]
$$

and $D\left(\partial_{x}\right)$ is the four-component Dirac operator in 1-D

$$
D=\left(\begin{array}{cccc}
\omega-i \partial_{x} & 0 & -1 & 0 \\
0 & \omega+i \partial_{x} & 0 & -1 \\
-1 & 0 & \omega+i \partial_{x} & 0 \\
0 & -1 & 0 & \omega-i \partial_{x}
\end{array}\right)
$$

- There exists an orthogonal similarity transformation S in \mathbb{C}^{4} :

$$
S^{-1} H_{\omega} S=\left(\begin{array}{cc}
H_{+} & 0 \\
0 & H_{-}
\end{array}\right), \quad S^{-1} \sigma H_{\omega} S=\sigma\left(\begin{array}{cc}
0 & H_{-} \\
H_{+} & 0
\end{array}\right)
$$

where $H_{ \pm}$are two-by-two Dirac operators in 1-D

$$
H_{ \pm}=\left(\begin{array}{cc}
\omega-i \partial_{x} & \mp 1 \\
\mp 1 & \omega+i \partial_{x}
\end{array}\right)+\left(\begin{array}{cc}
2\left|u_{0}\right|^{2} & u_{0}^{2} \\
\bar{u}_{0}^{2} & 2\left|u_{0}\right|^{2}
\end{array}\right)
$$

- The linearized stability problem takes the 2-by-2 form:

$$
\sigma_{3} H_{-} \sigma_{3} H_{+} \mathbf{V}_{1}=\gamma \mathbf{V}_{1}, \quad \sigma_{3} H_{+} \sigma_{3} H_{-} \mathbf{V}_{2}=\gamma \mathbf{V}_{2}
$$

where $\gamma=-\lambda^{2}$.

- Chebyshev interpolation with N polynomials
- The advantages of block-diagonalization

N	$T_{\text {block }}$	$T_{\text {full }}$
100	1.656	1.984
200	11.219	12.921
400	130.953	207.134
800	997.843	$1.583 \cdot 10^{3}$
1200	$3.608 \cdot 10^{3}$	$6.167 \cdot 10^{3}$
2500	$7.252 \cdot 10^{3}$	$12.723 \cdot 10^{3}$

- Parameter continuation in ω on parallel processors

- A simple (toy) problem:

$$
\left(\omega^{2}+\partial_{x}^{2}+\epsilon W(x)\right) U(x)=\sigma|U|^{2} U
$$

where ϵ is small parameter, $\sigma= \pm 1, W(x+2 \pi)=W(x)$ is real-valued, and $U(x)$ is complex-valued.

- Let $W(x)=\sum_{m \in \mathbb{Z}} e^{i m x}$ and $U(x)=\sum_{m \in \mathbb{Z}} u_{m} e^{i m x}$ in the space

$$
\|\mathbf{U}\|_{l_{s}^{2}(\mathbb{Z})}^{2}=\sum_{m \in \mathbb{Z}}\left(1+m^{2}\right)^{s}\left|u_{m}\right|^{2}<\infty
$$

for some $s \geq 0$. The Fourier representation corresponds to the periodic solutions $U(x+2 \pi)=U(x)$.

- The differential problem is equivalent to the nonlinear lattice system

$$
\mathcal{L} \mathbf{U}=-\epsilon \mathbf{W} \star \mathbf{U}+\sigma \mathbf{U} \star \overline{\mathbf{U}} \star \mathbf{U}
$$

where \star is the convolution operator and \mathcal{L} is diagonal operator with entries $\mathcal{L}_{m, m}=\omega^{2}-m^{2}$ on $m \in \mathbb{Z}$.

- The convolution operators map $l_{s}^{2}(\mathbb{Z})$ to itself for $s>\frac{1}{2}$.
- When $\omega \in \mathbb{R} \backslash \mathbb{Z}$, the nonlinear lattice system has a unique trivial solution $\mathbf{U}=\mathbf{0}$ in a local neighborhood of $\epsilon=0$.
- When $\omega^{2}=n^{2}+\epsilon \Omega$ for some $n \in \mathbb{Z}$, the nonlinear lattice system has a non-trivial solution for $\mathbf{U} \in l_{s}^{2}(\mathbb{Z})$ with $s>\frac{1}{2}$ in a local neighborhood of $\mathbf{U}=\mathbf{0}$ and $\epsilon=0$ if and only if there exists a nontrivial solution for $(a, b) \in \mathbb{C}^{2}$ of the bifurcation equations

$$
\begin{aligned}
\left(\Omega+w_{0}\right) a+w_{n} b-\sigma\left(|a|^{2}+2|b|^{2}\right) a & =\epsilon A_{\epsilon}(a, b) \\
\left(\Omega+w_{0}\right) b+w_{-n} a-\sigma\left(2|a|^{2}+|b|^{2}\right) b & =\epsilon B_{\epsilon}(a, b)
\end{aligned}
$$

where

$$
\max \left\{\left|A_{\epsilon}\right|,\left|B_{\epsilon}\right|\right\} \leq C(|a|+|b|)
$$

The system of bifurcation equations is the coupled-mode system for stationary periodic solutions.

- Lyapunov-Schmidt reductions

$$
\operatorname{Ker}(\mathcal{L})=\operatorname{Span}\left(\mathbf{e}_{n}, \mathbf{e}_{-n}\right) \subset l_{s}^{2}(\mathbb{Z})
$$

such that

$$
\mathbf{U}=\sqrt{\epsilon}\left[a \mathbf{e}_{n}+b \mathbf{e}_{-n}+\mathbf{g}\right]
$$

and

$$
\mathbf{g} \in \operatorname{Ker}(\mathcal{L})^{\perp}=\left\{\mathbf{g} \in l_{s}^{2}\left(\mathbb{Z}^{\prime}\right): \quad g_{n}=g_{-n}=0\right\}
$$

- Operator $(\mathcal{L}+\epsilon \mathbf{W} \star)$ is continuously invertible on $\mathbf{g} \in \operatorname{Ker}(\mathcal{L})^{\perp}$, such that there exists a unique map $\mathbf{g}_{\epsilon}=\epsilon \mathbf{G}_{\epsilon}(a, b)$, where

$$
\left\|\mathbf{G}_{\epsilon}\right\|_{l_{s}^{2}} \leq C(|a|+|b|) .
$$

- Bifurcation equations follow from projection of the lattice system to $\operatorname{Ker}(\mathcal{L})$.
- Bifurcations of antiperiodic solutions $U(x+2 \pi)=-U(x)$ occurs at $\omega=\frac{n}{2}$ for any $n \in \mathbb{Z}$.
- The method can be extended for gap soliton solutions in

$$
\|U(x)\|_{H^{s}(\mathbb{R})}^{2}=\int_{\mathbb{R}}\left(1+k^{2}\right)^{s}|\hat{U}(k)|^{2} d k<\infty
$$

for $\frac{1}{2}<s<\frac{3}{2}$.

- In two dimensions, bifurcations of periodic and antiperiodic solutions can be proved with this technique in $l_{s}^{2}(\mathbb{Z})$ with $s>1$. Bifurcations of 2D gap soliton solutions can not be proved as the bounds $s>1$ and $s<1$ become contradictory.
- Time evolution of gap solitons can be studied on finite time intervals as in H. Uecker \& G. Schneider (2001)

Obtained results:

- Well-posedness of the radiation boundary-value problem
- Analytical solutions for linear stationary transmission
- Approximations of eigenvalues of stability problems
- Full analysis of stability and bifurcations of gap solitons
- Rigorous justification of coupled-mode equations

Open problems:

- Bifurcations of nonlinear stationary solutions
- Modeling of gap solitons in 2-D coupled-mode equations
- Reductions of Maxwell equations beyond the coupledmode theory

