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Introduction

�Motivations
◦Modeling of photonic crystals in one, two and three dimensions

◦ Control of linear transmission properties in stop bands

◦ Persistence and time-evolution of gap solitons in band gaps

�Plan of the talk
1 Formal reductions of Maxwell equations to coupled-mode equations

2 Well-posedness of linear boundary value PDE problems (2-D)

3 Linearized stability of gap solitons (1-D)

4 Justification of coupled-mode equations (1-D)
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Photonic crystals in 1-D, 2-D, and 3-D

◦ Linear Maxwell equations

∇2E− n2

c2

∂2E

∂t2
= ∇ (∇ · E) , ∇ ·

(
n2E

)
= 0

◦ Three-dimensional vectors E = (Ex, Ey, Ez) and x = (x, y, z)

◦ n = n(x) is the periodic refractive index with n(x + a) = n(x)

◦ c is the speed of light
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Photonic band gaps in 1-D and 2-D

◦ Existence of Bloch waves for arbitrary smooth n(x) (Kuchment, 1993)

E(x, t) = Ψ(x)ei(k·x−ωt),

◦ k = (kx, ky, kz) is the wave vector

◦ ω = ω(k) is the wave frequency

◦Ψ(x + a) = Ψ(x) is the periodic envelope
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Low-contrast 3-D photonic crystals

◦ Small periodicity of the refractive index

n(x) = 1 + ε
∑

(n,m,l)∈Z3

αn,m,le
i(nk1+mk2+lk3)x

◦ ε is small parameter

◦ k1,2,3 are reciprocal lattice vectors
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Concept of resonances

◦ The incident wave E = ekei(k·x−ωt) with k = kin, where

k · ek = 0, ω2 = c2
(
k2
x + k2

y + k2
z

)

◦ Transmitted waves E = ekei(k·x−ωt) with k = k
(n,m,l)
out in

k
(n,m,l)
out = kin + nk1 + mk2 + lk3, (n, m, l) ∈ Z3.

◦ The transmitted waves are resonant to the incident wave if

ω(k
(n,m,l)
out ) = ω(kin) for some (n, m, l) ∈ Z3
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Resonances in 3-D cubic crystals

◦ The cubic crystal structure

x1,2,3 = ae1,2,3, k1,2,3 =
2π

a
e1,2,3,

where e1,2,3 are unit vectors in R3 and a > 0.

◦ The set of resonances in low-contrast cubic crystal

S =
{

(n, m, l) ∈ Z3 : n(n + p) + m(m + q) + l(l + r) = 0
}

where (p, q, r) ∈ R3 in kin = π
a(p, q, r).

◦ The set S is finite-dimensional and non-empty with (n, m, l) = (0, 0, 0)(
n +

p

2

)2
+

(
m +

q

2

)2
+

(
l +

r

2

)2
< ∞
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Particular 1-D and 2-D resonances

◦ Graphical solution

◦ Analytical solutions

◦ 1-D resonance p = q = 0, r ∈ Z
◦ 2-D resonance (p, q) ∈ Z2, r = 0

◦ 2-D oblique resonance (p, q) ∈ R2, r = 0
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Formal derivation of coupled-mode equations

◦ Perturbation series expansions in powers of ε:

E(x, t) = E0(x, t) + εE1(x, t) + O(ε2).

◦ Bloch waves are plane waves for ε = 0:

E0(x, t) =

N∑
j=1

Aj(X, T )ekj
ei(kjx−ωt),

◦ (X, T ) are slow normalized variables:

X =
εx

k
, T =

εt

ω
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Formal derivation of coupled-mode equations

◦ Inhomogeneous equation with resonant terms:

∇2E1 −
n2

0

c2

∂2E1

∂t2
= F(E0),

◦ Solvability conditions from orthogonality of F(E0) to resonant terms

i

(
∂Aj

∂T
+

(
kj

k
· ∇X

)
Aj

)
+

∑
k 6=j

aj,kAk = 0, j = 1, ..., N,

◦ A system of semi-linear hyperbolic PDEs in a bounded domain in X
subject to boundary and initial conditions.
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Example: Two waves

S = {(0, 0, 0), (0, 0,−r)}, r ∈ N

i

(
∂A+

∂T
+

∂A+

∂Z

)
+ αA− = β(|A+|2 + 2|A−|2)A+,

i

(
∂A−
∂T

− ∂A−
∂Z

)
+ αA+ = β(2|A+|2 + |A−|2)A−
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Example: Four waves

S = {(0, 0, 0), (−p,−q, 0), (−p, 0, 0), (0,−q, 0)}, (p, q) ∈ N2

i

(
∂A+

∂T
+

∂A+

∂X
+

∂A+

∂Y

)
+ αA− + β (B+ + B−) = 0,

i

(
∂A−

∂T
− ∂A−

∂X
− ∂A−

∂Y

)
+ αA+ + β (B+ + B−) = 0,

i

(
∂B+

∂T
+

∂B+

∂X
− ∂B+

∂Y

)
+ β (A+ + A−) + αB− = 0,

i

(
∂B−

∂T
− ∂B−

∂X
+

∂B−

∂Y

)
+ β (A+ + A−) + αB+ = 0,
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Related Mathematical Problems

◦Well-posedness of the Sommerfeld (radiation) boundary-value problem
for stationary transmission (D.Agueev, M.Sc. thesis, 2004)

◦ Existence, stability and propagation of gap solitons, extensions to the
relativistic Dirac equations (M. Chugunova, Ph.D. thesis, in progress)

◦ Rigorous justification of the nonlinear coupled-mode equations for gap
solitons (G. Schneider, in progress)

◦ Derivation of coupled-mode equations for highly-contrast materials
with narrow gaps (open project)
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Project 1 : well-posedness of transmission problems

◦ Stationary transmission of four waves

A±(X, T ) = a±(X + Y )e−iΩT , B±(X, T ) = b±(X − Y )e−iΩT

◦ The four-wave PDE problem:

i
∂a+

∂x
+ Ωa+ + αa− + β (b+ + b−) = 0,

−i
∂a−
∂x

+ αa+ + Ωa− + β (b+ + b−) = 0,

i
∂b+

∂y
+ β (a+ + a−) + Ωb+ + αb− = 0,

−i
∂b−
∂y

+ β (a+ + a−) + αb+ + Ωb− = 0.
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Stationary transmission of four waves

◦ Boundary-value problem on rectangle:

D = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ H},
subject to

a+(0, y) = α+(y), a−(L, y) = 0, b+(x, 0) = 0, b−(x, H) = 0
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Dispersion relation of stationary transmission

◦ Dispersion relation Ω = Ω(Kx, Ky) for the double Fourier transform

with (Kx, Ky) ∈ R2:

(Ω2 − α2 −K2
x)(Ω2 − α2 −K2

y)− 4β2(Ω− α)2 = 0.

◦When α2 > 4β2, no real-valued roots (Kx, Ky) exist for Ω = 0 (stop
band)

◦When α2 < 4β2, there exist two curves on the (Kx, Ky)-plane, which
correspond to the real-valued roots (spectral band).

◦ The case Ω = 0 is considered for simplicity.
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Linear analysis of stationary transmission

◦ Separation of variables:

a+(x, y) = u+(x)wa(y), a−(x, y) = u−(x)wa(y)

b+(x, y) = wb(x)v+(y), b−(x, y) = wb(x)v−(y),

where

v+(y) + v−(y) = µwa(y), u+(x) + u−(x) = −λwb(x),

and (λ, µ) are arbitrary.

◦ Separated boundary conditions:

u+(0) = 1, u−(L) = 0

v+(0) = 0, v−(H) = 0.
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Linear analysis of stationary transmission

◦ The inhomogeneous ODE system for (u+, u−):(
i∂x α
α −i∂x

) (
u+

u−

)
= βΓ−1

(
1 1
1 1

) (
u+

u−

)

◦ The homogeneous ODE system for (v+, v−):(
i∂y α
α −i∂y

) (
v+

v−

)
= βΓ

(
1 1
1 1

) (
v+

v−

)
,

◦ Γ = λ/µ is eigenvalue to be found from the homogeneous system
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Linear analysis of stationary transmission

◦ The spectrum of Γ = (α2 + k2)/(2αβ) is defined by roots(
k − α

k + α

)2

e−2ikH = 1

◦ All roots are simple and located in the first and third open quadrants.
For each root, there exists a unique solution for (u+, u−).
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Linear analysis of stationary transmission

◦ The set of eigenfunctions vj(y) = v+(y)+v−(y) for roots kj is orthog-
onal with respect to ∫ H

0
vi(y)vj(y)dy = δi,j

◦ Any C1([0, H ]) function α+(y) is uniquely represented by the series of
eigenfunctions,

α+(y) =
∑
all kj

cjvj(y), cj =

∫ H

0
α+(y)vj(y)dy,

which converges uniformly on 0 < y < H .

◦ Explicit Fourier series solutions for a±(x, y) and b±(x, y) follow from
the method of separation of variables.
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Example: constant incident wave

◦ Boundary conditions

a+(0, y) = 1, a−(L, y) = 0, b+(x, 0) = 0, b−(x, H) = 0

◦ Coefficients of decomposition

cj =
4iα

kj[H(k2
j − α2) + 2iα]

◦ The decomposition in series of eigenfunctions,

1 =
∑
all kj

cjvj(y), 0 < y < H.
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Low transmittance and moderate diffractance

Solution surfaces for the stop band.
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High transmittance and diffractance

Solution surfaces for the spectral band.
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Project 2: existence and stability of gap solitons

General symmetric 1-D coupled-mode system:{
i(ut + ux) + v = ∂ūW (u, ū, v, v̄)
i(vt − vx) + u = ∂v̄W (u, ū, v, v̄)

◦W is invariant with respect to the gauge transformation:
(u, v) 7→ eiα(u, v), for all α ∈ R

◦W is symmetric with respect to the interchange: (u, v) 7→ (v, u)

◦W is analytic in its variables near u = v = 0, such that W = O(4)

◦ The quartic part of the potential function W is given by

W =
a1

2
(|u|4+|v|4)+a2|u|2|v|2+a3(|u|2+|v|2)(vū+v̄u)+

a4

2
(vū+v̄u)2

where (a1, a2, a3, a4) are parameters
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General characterization of 1-D gap solitons

Stationary solutions of the coupled-mode system:{
ust(x, t) = u0(x + s)eiωt+iθ

vst(x, t) = v0(x + s)eiωt+iθ

◦ (s, θ) ∈ R2 are arbitrary parameters and −1 < ω < 1

◦ If |u0|, |v0| → 0 as |x| → ∞, then u0 = v̄0

◦ Analytical expressions are available for homogeneous functions W

u0 =

√
2(1− ω)

(cosh βx + i
√

µ sinh βx)
, µ =

1− ω

1 + ω
, β =

√
1− ω2

◦ Explicit gap solitons are stationary solutions. Traveling gap solitons
are only available implicitly except few special examples.
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Linearized stability problem for 1-D gap solitons

◦ Standard linearization, e.g.

u(x, t) = eiωt
(
u0(x) + U1(x)eλt

)
◦ Eigenvalue problem

HωU = iλσU, U ∈ C4,

where
Hω = D(∂x) + D2W [u0(x)]

and D(∂x) is the four-component Dirac operator in 1-D

D =


ω − i∂x 0 −1 0

0 ω + i∂x 0 −1
−1 0 ω + i∂x 0
0 −1 0 ω − i∂x


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Block-diagonalization of the stability problem

◦ There exists an orthogonal similarity transformation S in C4:

S−1HωS =

(
H+ 0
0 H−

)
, S−1σHωS = σ

(
0 H−

H+ 0

)
where H± are two-by-two Dirac operators in 1-D

H± =

(
ω − i∂x ∓1
∓1 ω + i∂x

)
+

(
2|u0|2 u2

0
ū2

0 2|u0|2
)

,

◦ The linearized stability problem takes the 2-by-2 form:

σ3H−σ3H+V1 = γV1, σ3H+σ3H−V2 = γV2,

where γ = −λ2.
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Numerical results on unstable eigenvalues

◦ Chebyshev interpolation with N polynomials

◦ The advantages of block-diagonalization

N Tblock Tfull
100 1.656 1.984
200 11.219 12.921
400 130.953 207.134

800 997.843 1.583 · 103

1200 3.608 · 103 6.167 · 103

2500 7.252 · 103 12.723 · 103

◦ Parameter continuation in ω on parallel processors
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Eigenvalues and instability bifurcations
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Project 3: justification of coupled-mode system

◦ A simple (toy) problem:(
ω2 + ∂2

x + εW (x)
)

U(x) = σ|U |2U,

where ε is small parameter, σ = ±1, W (x+2π) = W (x) is real-valued,
and U(x) is complex-valued.

◦ Let W (x) =
∑

m∈Z eimx and U(x) =
∑

m∈Z umeimx in the space

‖U‖2
l2s(Z)

=
∑
m∈Z

(1 + m2)s|um|2 < ∞,

for some s ≥ 0. The Fourier representation corresponds to the periodic
solutions U(x + 2π) = U(x).

◦ The differential problem is equivalent to the nonlinear lattice system

LU = −εW ? U + σU ? Ū ? U,

where ? is the convolution operator and L is diagonal operator with
entries Lm,m = ω2 −m2 on m ∈ Z.
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Fixed-point iterations

◦ The convolution operators map l2s(Z) to itself for s > 1
2.

◦When ω ∈ R\Z, the nonlinear lattice system has a unique trivial
solution U = 0 in a local neighborhood of ε = 0.

◦When ω2 = n2+εΩ for some n ∈ Z, the nonlinear lattice system has a
non-trivial solution for U ∈ l2s(Z) with s > 1

2 in a local neighborhood
of U = 0 and ε = 0 if and only if there exists a nontrivial solution for
(a, b) ∈ C2 of the bifurcation equations

(Ω + w0)a + wnb− σ(|a|2 + 2|b|2)a = εAε(a, b)

(Ω + w0)b + w−na− σ(2|a|2 + |b|2)b = εBε(a, b),

where
max{|Aε|, |Bε|} ≤ C(|a| + |b|).

The system of bifurcation equations is the coupled-mode system for
stationary periodic solutions.
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Methods of analysis

◦ Lyapunov–Schmidt reductions

Ker(L) = Span (en, e−n) ⊂ l2s(Z),

such that
U =

√
ε [aen + be−n + g]

and
g ∈ Ker(L)⊥ = {g ∈ l2s(Z′) : gn = g−n = 0}.

◦ Operator (L+ εW?) is continuously invertible on g ∈ Ker(L)⊥, such
that there exists a unique map gε = εGε(a, b), where

‖Gε‖l2s ≤ C(|a| + |b|).

◦ Bifurcation equations follow from projection of the lattice system to
Ker(L).
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Extensions

◦ Bifurcations of antiperiodic solutions U(x + 2π) = −U(x) occurs at
ω = n

2 for any n ∈ Z.

◦ The method can be extended for gap soliton solutions in

‖U(x)‖2
Hs(R) =

∫
R

(
1 + k2

)s
|Û(k)|2dk < ∞

for 1
2 < s < 3

2.

◦ In two dimensions, bifurcations of periodic and antiperiodic solutions
can be proved with this technique in l2s(Z) with s > 1. Bifurcations of
2D gap soliton solutions can not be proved as the bounds s > 1 and
s < 1 become contradictory.

◦ Time evolution of gap solitons can be studied on finite time intervals
as in H. Uecker & G. Schneider (2001)
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Summary

Obtained results:

• Well-posedness of the radiation boundary-value problem

• Analytical solutions for linear stationary transmission

• Approximations of eigenvalues of stability problems

• Full analysis of stability and bifurcations of gap solitons

• Rigorous justification of coupled-mode equations

Open problems:

• Bifurcations of nonlinear stationary solutions

• Modeling of gap solitons in 2-D coupled-mode equations

• Reductions of Maxwell equations beyond the coupled-
mode theory
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