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B Motivations

o Modeling of photonic crystals in one, two and three dimensions

o Control of linear transmission properties in stop bands

o Persistence and time-evolution of gap solitons in band gaps

B Plan of the talk

1 Formal reductions of Maxwell equations to coupled-mode equations
2 Well-posedness of linear boundary value PDE problems (2-D)

3 Linearized stability of gap solitons (1-D)

4 Justification of coupled-mode equations (1-D)
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o Linear Maxwell equations
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o Three-dimensional vectors E = (Ey, By, E;) and x = (z,y, 2)
o n = n(x) is the periodic refractive index with n(x + a) = n(x)

o ¢ is the speed of light
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o Existence of Bloch waves for arbitrary smooth n(x) (Kuchment, 1993)
E(x,t) = W(x)e!Kx—wt),

ok = (kz, ky, k) is the wave vector

o w = w(k) is the wave frequency

o W(x +a) = ¥(x) is the periodic envelope
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o Small periodicity of the refractive index
nx)=1+e Z Qo ot(nki+mko+iks)x
(n,m,l)eZ?
o € 1s small parameter

o kj 9 3 are reciprocal lattice vectors



o The incident wave E = ekei(k'x_w@ with k = k;,, where

k- -e=0, wQZCZ(k%—Fkg—Fkg)

o Transmitted waves B = ekei(k'x_w@ with k = k(()?l’tm’l) in
KU g 4onky + mko + ks, (n,m, 1) € 75,

o The transmitted waves are resonant to the incident wave if

w(k(n’m’l)) — w(ky,) for some (n,m,l) € Z°

out



o The cubic crystal structure

2T
X123 =a0ae123, Kjo3= €123,

where ej 9 3 are unit vectors in R3 and a > 0.

o The set of resonances in low-contrast cubic crystal
S = {(n,m,l) eZ’: nin+p) +mm+q)+1(l+7) :O}
where (p, ¢, ) € R? in ky, = Z(p, q,7).

o The set S is finite-dimensional and non-empty with (n, m, ) = (0,0, 0)

B+ (me )+ (14g)
(n+2) + m+2 + l+2 < 00



o Graphical solution

o Analytical solutions

o 1-D resonance p =q =0, r € Z
5 2-D resonance (p,q) € Z?, r =0
o 2-D oblique resonance (p, q) € RZ2 r=0



o Perturbation series expansions in powers of e€:

E(x,t) = Eo(x,t) + €B1(x,t) + O(é?).

o Bloch waves are plane waves for e = 0:

N
EO(X7 t) = Z Aj(X, T)ekjei(ij—uﬂf)7
j=1

o (X, T) are slow normalized variables:

eX €t
X=— T=—
k'’ W



o Inhomogeneous equation with resonant terms:
n% 0°Eq

V2E, —
! 2 Ot2

= F(E),

o Solvability conditions from orthogonality of F(Eq) to resonant terms

OA; k. .
(aT—i-(k] VX> ) Z ]k’Ak_O 17=1,.... N,

k#j

o A system of semi-linear hyperbolic PDEs in a bounded domain in X
subject to boundary and initial conditions.
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o Well-posedness of the Sommerfeld (radiation) boundary-value problem
for stationary transmission (D.Agueev, M.Sc. thesis, 2004)

o Existence, stability and propagation of gap solitons, extensions to the
relativistic Dirac equations (M. Chugunova, Ph.D. thesis, in progress)

o Rigorous justification of the nonlinear coupled-mode equations for gap
solitons (G. Schneider, in progress)

o Derivation of coupled-mode equations for highly-contrast materials
with narrow gaps (open project)



o Stationary transmission of four waves

A:I:(X,T) = CL:|:<X -+ Yv)e—iQT7 Bi(X,T) _ bj:(X . Y>6—iQT

o The four-wave PDE problem:

0a+

8:1:

—z%a—x_—kozmr + Qa— + G (by +b_) =0,

b

@y

Ob_
—za—y + B (a++a—)+abr +Qb_ = 0.

+ Qa4 +aa— + B (b4 +0-) = 0,

+ B (a++a—)+Qby +ab_ =0,



o Boundary-value problem on rectangle:
D={(z,y): 0<z<L 0<y<H}
subject to

CL+(O, y) — a+(y>7 CL_(L, y) = 0, b_|_<517, O) = 0, b_(SE, H) =0



o Dispersion relation 2 = (K, K) for the double Fourier transform
with (K5, Ky)) € R*:

(QF —a® — K) (@ — o” — K})) — 48°(Q — a)* = 0.

o When o > 43%, no real-valued roots (K, K;) exist for = 0 (stop
band)

5 When o < 432, there exist two curves on the (K, Ky)-plane, which
correspond to the real-valued roots (spectral band).

o The case {2 = 0 is considered for simplicity.



o Separation of variables:
a(z,y) =ur(@)wa(y),  a-(2,y) = u-(2)wa(y)
bi(z,y) = wy(x)or(y),  b-(x,y) = wp(x)v-(y),
where
vi(y) +o-(y) = pwaly),  utl(z) +u—(z) = —Awpy(),
and (A, p) are arbitrary.

o Separated boundary conditions:

u+(0) =1, u—(L)=0
v4(0) =0, v—(H)=0.



o The inhomogeneous ODE system for (u4,u—):
10y« U+ \ 111 Ut
(a —i@x) (u_>_5F (11 U_
o The homogeneous ODE system for (v, v_):

() () = () 02)

oI"= A/ is eigenvalue to be found from the homogeneous system



o The spectrum of I' = (a® + k?)/(2a8) is defined by roots

)
k—a\" aikH _
kE+ «

o All roots are simple and located in the first and third open quadrants.
For each root, there exists a unique solution for (u4,u_).




o The set of eigenfunctions v;(y) = v4(y) +v—(y) for roots k; is orthog-
onal with respect to

H
/O 0i(y)o;(y)dy = 6

o Any C1(]0, H]) function a4 (y) is uniquely represented by the series of
eigenfunctions,

H
arr)= 3 cuily), o= /O oy (4)0;()dy,

all kj

which converges uniformly on 0 < y < H.

o Explicit Fourier series solutions for a+(x,y) and b4 (x,y) follow from
the method of separation of variables.



o Boundary conditions

a+(0,y) =1, a—(L,y)=0, by(r,0)=0, b_(z,H)=0

o Coefficients of decomposition
dicy

kj[H (k5 — a?) + 2ial

Cj:

o The decomposition in series of eigenfunctions,

1 = chvj(y), 0<y<H.
all k‘j



Solution surfaces for the stop band.



Solution surfaces for the spectral band.



General symmetric 1-D coupled-mode system:

i(u + ug) + v =0zW(u,u,v,0)
i(vr — vg) + u = W (u, u,v,0)

o W is invariant with respect to the gauge transtormation:
(u,v) — e'*u,v), for all « € R
o W is symmetric with respect to the interchange: (u,v) — (v, u)

o W is analytic in its variables near v = v = 0, such that W = O(4)

o The quartic part of the potential function W is given by

|2 a 2

a
W = %(\u|4+]v\4)+a2]u\2|v +a3(|u|2+|v|2)(vu+vu)+§4(vu+vu)

where (a1, a9, as, ay) are parameters



Stationary solutions of the coupled-mode system:

ust(,t) = ug(x + s)ewi+it

vt (1) = vz + 5)e' Wi
o (s,0) € R? are arbitrary parameters and —1 < w < 1
o If |ug), |vg] — 0 as |x| — oo, then ug = v

o Analytical expressions are available for homogeneous functions W

V2(1 — w) 1 —w
un = o
! (cosh Bz + i, /psinh fz)’ SRR +w’

1 — w?

o Explicit gap solitons are stationary solutions. Traveling gap solitons
are only available implicitly except few special examples.



o Standard linearization, e.g.
u(z,t) = ! (ug(x) + Ul(a:)e)‘t)
o Eigenvalue problem

H, U =i\U, UeC

where

H,, = D(d,) + D*Wlug(z)]

and D(0;) is the four-component Dirac operator in 1-D

/w—z’@x 0 —1 0 \
D 0 w+id, 0O —1
B —1 0 w+10y 0

\ 0 -1 0 w—id, )



o There exists an orthogonal similarity transformation S in c*:

1 (H+ 0 1 B 0 H_
S HwS—(O H_>’ S anS—O(H+ O)

where H4 are two-by-two Dirac operators in 1-D
w—10; Fl 2upl? w3
Hy = . 0
+ ( F1 w+z@x) " ( ﬂ% 2lupl® )
o The linearized stability problem takes the 2-by-2 form:

osH_o3H V] =~vVy, osHio3H Vo =~vVo,
where v = —)\2.



o Chebyshev interpolation with N polynomials

o The advantages of block-diagonalization

N Thock  1han

100 |1.656 1.984

200 111.219 12.921
400 1130.953  207.134
300 1997.843 1.583-10°
1200 13.608 - 10° 6.167 - 10°
250017.252 - 103 12.723 - 103

o Parameter continuation in w on parallel processors
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o A simple (toy) problem:
(w2 02 GW(:C)) U(z) = o|U|U,

where € is small parameter, 0 = +1, W(z+27) = W (x) is real-valued,
and U(x) is complex-valued.

oLet W(z) =Y, cp €™ and U(x) = 3., c7 ume"™ in the space

2 2 2
Ul = 3 0 ) < o
me,
for some s > 0. The Fourier representation corresponds to the periodic

solutions U(x + 2m) = U(x).

o The differential problem is equivalent to the nonlinear lattice system
LU=-eW+«U+cUxUxU,

where * is the convolution operator and L is diagonal operator with

entries Ly m = w?—m?onmeZ



o The convolution operators map [2(Z) to itself for s > %

o When w € R\Z, the nonlinear lattice system has a unique trivial
solution U = 0 in a local neighborhood of € = 0.

o When w? = n?+€Q for some n € Z, the nonlinear lattice system has a
non-trivial solution for U € [2(Z) with s > % in a local neighborhood
of U = 0 and € = 0 if and only if there exists a nontrivial solution for

(a,b) € C? of the bifurcation equations

(Q + wp)a + wpb — o(|al® + 2|b]*)a = €Ac(a,b)
(2 + wy)b + w_na — o(2]al® + |b]*)b = eBe(a,b),

where

max{|Ae|, [Be|} < C(]al + [b]).

The system of bifurcation equations is the coupled-mode system for
stationary periodic solutions.



o Lyapunov—Schmidt reductions
Ker(£) = Span (en, e_p) C 12(Z),
such that
U — \/E [CLen _|_ be—n —|_ g]

and
geKer(L)-={gel’!(Z): gn=g_n=0%

L

o Operator (£ + eWx) is continuously invertible on g € Ker(L£)--, such

that there exists a unique map ge = €Ge(a, b), where

|Gellz < C(lal +[0]),

o Bifurcation equations follow from projection of the lattice system to

Ker(L).



o Bifurcations of antiperiodic solutions U(x + 27) = —U(x) occurs at
w = 5 for any n € Z.

o The method can be extended for gap soliton solutions in

S A
U@ e ) = /R (14 #)°10(k)Pak < oo
for % <s< %

o In two dimensions, bifurcations of periodic and antiperiodic solutions
can be proved with this technique in I2(Z) with s > 1. Bifurcations of
2D gap soliton solutions can not be proved as the bounds s > 1 and
s < 1 become contradictory:.

o Time evolution of gap solitons can be studied on finite time intervals

as in H. Uecker & G. Schneider (2001)



Obtained results:

e Well-posedness of the radiation boundary-value problem
e Analytical solutions for linear stationary transmission

e Approximations of eigenvalues of stability problems

e Full analysis of stability and bifurcations of gap solitons

e Rigorous justification of coupled-mode equations

Open problems:

e Bifurcations of nonlinear stationary solutions
e Modeling of gap solitons in 2-D coupled-mode equations

e Reductions of Maxwell equations beyond the coupled-
mode theory



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



