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Section 1. My work with Guido Schneider

• Humboldt Research Fellowship: 2006-2007

• Humboldt FollowUp Visits: 2011 and 2015

• Oberwolfach Workshops: 2013 and 2017

• Humboldt Research Award (part of): 2022-2023

15 research articles on the subjects of justification of amplitude equations in
periodic potentials and lattices, short-pulse equations, nonlinear PDEs on metric
graphs, and more recently, on existence of modulating traveling waves (breathers).
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Section 2. Broken translational symmetry

The PDE with the translational symmetry u(t, x)→ u(t, x+ x0), ∀x0 ∈ R:

∂tu(t, x) = ∂2
xu(t, x) + f

(
u(t, x)

)
, x ∈ R.

Lattice differential equations are ODEs on a spatial lattice with the step size h:

d

dt
uj(t) = h−2

(
uj−1(t)− 2uj(t) + uj+1(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

Spatial inhomogeneity can be modeled with spatially dependent potentials

∂tu(t, x) = ∂2
xu(t, x) + f

(
u(t, x)

)
+ V (x)u(t, x), x ∈ R.
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Example: TW in PDEs

Consider the continuous Nagumo equation,

∂tu = ∂2
xu+ u(a− u)(u− 1), a ∈ (0, 1).

Travelling wave u(x, t) = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

There exists a heteroclinic
connection between stable
equilibrium states 0 and 1:

φ(ξ) = 1
2 + 1

2 tanh
(

1
4

√
2 ξ
)
,

c(a) = 1√
2
(1− 2a).
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Example: TW in LDEs

Consider the discrete Nagumo equation,

d
dtUj(t) = 1

h2 [Uj+1(t) + Uj−1(t)− 2Uj(t)] + Uj(t)(a− Uj(t))(Uj(t)− 1), j ∈ Z.

Travelling front solutions Uj(t) = φ(j + ct) must satisfy:

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + φ(ξ)(a− φ(ξ))(φ(ξ)− 1),

subject to
lim

ξ→−∞
φ(ξ) = 0, lim

ξ→+∞
φ(ξ) = 1.

• When c 6= 0, this is a differential advance-delay equation.

• When c = 0, this is an advance-delay equation.

• The limit c→ 0 is a singular perturbation theory.
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Numerical results for heteroclinic connections

Travelling waves for the discrete Nagumo LDE connecting 0→ 1.
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Propagation failure

Plot of the wave speed c versus a for the discrete Nagumo LDE:

If a∗ <
1
2, we say that TW suffers from propagation failure or pinning of stationary

solutions to lattice sites.
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Example with no propagation failure

Consider the discrete Nagumo equation with a modified cubic nonlinearity:

d

dt
Uj =

1

h2
[Uj−1 + Uj+1 − 2Uj] +

1

2
Uj(2a− Uj+1 − Uj−1)(Uj − 1).

Explicit solutions available:

Uj(t) =
1

2
+

1

2
tanh

(
arcsinh(

1

4

√
2h)(j + ct)

)
, c(a) =

(1− 2a)

4 arcsinh(1
4

√
2h)

.

No propagation failure; smooth wave profile.
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Why does pinning occur?

Consider LDEs for c = 0 with variables pj = φ(j) and rj = φ(j + 1):

pj+1 = rj
rj+1 = −pj + 2rj − h2rj(a− rj)(rj − 1).

Two fixed point (0, 0) and (1, 1) are saddles. Generally, two heteroclinic orbits
exist for a = 1

2 (symmetric case):

p
(s)
−j = 1− p(s)

j , p
(b)
−j+1 = 1− p(b)

j ,

called site-symmetric and bond-symmetric fronts.
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Why does pinning occur?

For a = 1
2, site-symmetric (orange) and bond-symmetric (black) solutions:
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Why does pinning occur?

For a < 1
2, the distance between nodes decreases. At a = a∗ <

1
2, two branches of

stationary front solutions coincide and annihilate via a saddle-node bifurcation.
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How can pinning be avoided?

For the system

pj+1 = rj
rj+1 = −pj + 2rj − 1

2h
2rj(2a− rj+1 − rj−1)(rj − 1)

with the smooth profile at a = 1
2, we have

Site-symmetric and bond-symmetric solutions are connected by a continuous
branch of “translationally invariant” standing waves.

Such solution is continued as TW solution under some technical assumptions
[H.J. Hupkes, D.P, B. Sandstede, Proc AMS 139 (2011) 3537–3551]
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Section 3. Pinning of Turing bifurcations in graphons

Two distinct nodes of a graph i and j are connected with probability aij ∈ [0, 1],

P(ãij = 1) = aij, P(ãij = 0) = 1− aij, (1)

with ãji = ãij. The graph has 2N nodes.

We denote the adjacency matrix by ÃN = (ãij)−N+1≤i,j≤N in the random case
and by AN = (aij)−N+1≤i,j≤N in the deterministic case. The corresponding
linear operators acting on u = (uj)−N+1≤j≤N are denoted by

L̃Nu :=
1

2N
ÃNu− D̃Nu, LNu :=

1

2N
ANu−DNu,

where D̃N and DN are diagonal matrices called degree matrices, e.g.

(D̃N)ii :=
1

2N

N∑
j=−N+1

ãij, (DN)ii :=
1

2N

N∑
j=−N+1

aij.
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Small-world graph as an example of Cayley graphs

Figure 1: Adjacency matrix in the deterministic (left) and random (right) cases.

Fix p ∈ [0, 1], r ∈ (0, 1
2), and define

S(x) =

{
1− p, |x| ≤ r,
p, r < |x| ≤ 1

2.

The small-world graph is generated by the discrete convolution with

aij := Si−j.

This has a long history since Watts–Strogatz (1998) and has been used in
Medvedev (2014) and Medvedev–Tang (2015).
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Swift–Hohenberg equation

The main equation of motion is the Swift–Hohenberg equation on the graphon:

• Random: u̇ = −
(
L̃N − κ

)2

u+ γu− u3

• Deterministic: u̇ = −
(
LN − κ

)2
u+ γu− u3,

where κ and γ are parameters.

With proper choice of AN = (aij)−N+1≤i,j≤N and with Eãij = aij, both models
converge as N →∞ to the continuous Swift–Hohenberg equation
(Medvedev, 2014)

∂tu = − (L− κ)
2
u+ γu− u3, x ∈ T,

where T is the unit torus and

(Lf)(x) =

∫
T
S(x− y) [f(y)− f(x)] dy =: (Af)(x)−Df(x).

The Swift–Hohenberg is nonlocal and translationally invariant.
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Turing bifurcations

The limiting Swift–Hohenberg equation,

∂tu = − (L− κ)
2
u+ γu− u3, x ∈ T,

is well-posed for u ∈ C1([0,∞), L∞(T)) if S ∈ L1(T).

Eigenvalues of L in L2(T) are real if S is even on T

λk =

∫
T
S(x)e−2πikxdx−D, k ∈ Z.

Let κ = λ1 = λ−1 and γ be a small parameter. Then, the center manifold theory
gives the existence of the Turing bifurcation (Iooss–Haragus, 2011).

Theorem 1. There exists γ0 > 0 and C0 > 0 such that for every γ ∈ (0, γ0)
there exists a non-trivial time-independent solution uγ(·+ δ) of the continuous
SHE, where uγ is an even function satisfying

sup
x∈T

∣∣∣∣uγ(x)−
2
√
γ

√
3

cos(2πx)

∣∣∣∣ ≤ C0

√
γ3, (2)

and δ ∈ T is an arbitrary translational parameter. The orbit {uγ(·+ δ)}δ∈T is
asymptotically stable in the time evolution in L∞(T).
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Why to consider Turing bifurcations on graphons?

This has a long history in physics literature: Asllani et al. (2014), Hutt et al.
(2022), Kouvaris et al. (2015), Nakao-Mikhailov (2010), Wolfrum (2012), see also
tutorial of M.Porter–J.Gleeson (2016).

A mathematical study started from the paper of J. Bramburger–M. Holtzer
(2023), where bifurcation on graphons was studied based on bifurcations in the
continuous SHE.

In our work [Medvedev–P, JNLS 34 (2024) 88], we clarify more precisely how the
translational symmetry is broken and how pinnning of patterns is determined.

Our strategy is to “upgrade” normal forms consequently: from continuous SHE,
to the discrete deterministic SHE, and to the discrete random SHE.
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Turing bifurcations for discrete graphs

The continuous SHE on T admits the following symmetries:

• the spatial translation x 7→ x+ h, ∀h ∈ R due to periodicity,

• the spatial reflection x 7→ −x due to even S,

• the sign reflection u 7→ −u due to odd nonlinearity.

The discrete deterministic SHE on ZN := Z/(2NZ) admits

• the discrete spatial translation j 7→ j +m, ∀m ∈ ZN due to periodicity,

• the spatial reflection j 7→ −j due to even {Sj}j∈ZN ,

• the sign reflection u 7→ −u due to odd nonlinearity.

The discrete random SHE on {−N + 1, . . . , N} admits only

• the sign reflection u 7→ −u due to odd nonlinearity.

Hence, the question is how pinning of Turing bifurcation occurs.
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Normal form for the continuous SHE

Starting with
∂tu = − (L− λ1)

2
u+ γu− u3, x ∈ T,

use Fourier series
u(t, x) =

∑
k∈Z

ak(t)e
2πikx

and use the center manifold parameterization

a1 = A, a−1 = Ā, am = Ψm(A, Ā), a−m = Ψ̄m(A, Ā), m ∈ {3, 5, · · · }.

Due to symmetries of the continuous SHE, the amplitude equations are
transformed to the normal form (Iooss–Haragus, 2011):

Ȧ = AP1(|A|2),

where P1 is a C∞ function in |A|2 with γ-dependent real-valued coefficients such
that P1(|A|2) = γ − 3|A|2 +O(|A|4).
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Turing pattern for the continuous SHE

The time-independent solution of the normal form is

Aγ,δ :=

√
γ
√

3
[1 +O(γ)] e2πiδ,

where δ ∈ T is arbitrary parameter.

The orbit is asymptotically stable since all but one eigenvalues of the linearized
operator are in the left half-plane.

The simple zero eigenvalue represents the translational symmetry. This creates
difficulties in the persistence argument from the continuous to discrete cases,
when the continuous translational symmetry is destroyed.
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Center manifold for the discrete deterministic SHE

We have now

u̇j = −[(LN − λN1 )2u]j + γuj − u3
j , j ∈ ZN := Z/(2NZ),

where

[LNu]j =
1

2N

∑
l∈ZN

Sj−lul −

 1

2N

∑
l∈ZN

Sl

uj, j ∈ ZN .

We use discrete Fourier transform

uj(t) =
∑
k∈ZN

ak(t)e
iπkj
N , j ∈ ZN ,

and the center manifold parameterization

a1 = A, a−1 = Ā, am = Ψm(A, Ā), a−m = Ψ̄m(A, Ā), m ∈ {3, 5, · · · }.
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Normal form for the discrete deterministic SHE

However, the finite discrete lattice implies that

[
Ae

iπkj
N

]2N+1

= A2N+1e
iπkj
N and

[
Āe
−iπkj
N

]2N−1

= Ā2N−1e
iπkj
N .

Due to the discrete group of symmetries, the amplitude equations are transformed
to the normal form (Chossat–Lauterbach, 2000):

Ȧ = AQ1(|A|2, A2N , Ā2N) + Ā2N−1R1(|A|2, A2N , Ā2N),

where Q1 and R1 are C∞ functions in |A|2, A2N , Ā2N with γ-dependent
real-valued coefficients such that, if N ≥ 3,

Q1(|A|2, A2N , Ā2N) = γ − 3|A|2 +O(|A|4)

and
R1(|A|2, A2N , Ā2N) = rN +O(|A|2),

where rN 6= 0 for every N ≥ 3.
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Turing pattern for the discrete deterministic SHE

After separation of variables with A = ρeiθ, we get{
ρ̇ = ρ[γ − 3ρ2 +O(ρ4)] + cos(2Nθ)ρ2N−1[rN +O(ρ2)],

θ̇ = − sin(2Nθ)ρ2N−2[rN +O(ρ2)].

There exist 4N time-independent solutions with θk = kπ
2N ∈ [0, 2π) and

0 ≤ k ≤ 4N − 1, for which

Aγ,δk =

√
γ
√

3
[1 +O(γ)] e

iπk
2N .

Stability is given by the linearized normal form:{
ρ̇1 = −2γρ1 +O(γ2),

θ̇1 = ∓
(
γ
3

)N−1
[rN +O(γ)] θ1,

(2N) states are asymptotically stable and (2N) states are unstable with exactly
one real positive eigenvalues.

All eigenvalues are nonzero but one eigenvalue is very small of the size O(γ1−N).
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Main theorem for the discrete deterministic SHE

Theorem 2. There exists γ0 > 0 and C0 > 0 such that for every γ ∈ (0, γ0) and
every integer N ≥ 3 there exist two non-trivial time-independent solutions
uNγ , v

N
γ ∈ RZN of the discrete SHE, where uNγ is symmetric about j = 0 and

satisfies

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N

)∣∣∣∣ ≤ C0

√
γ3.

and vGγ is symmetric about the mid-point between j = 0 and j = 1 and satisfies

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N
− π

2N

)∣∣∣∣ ≤ C0

√
γ3.

One of the two solutions is asymptotically stable in the time evolution of the
discrete SHE in C1(R,RZN) and the other one is unstable. These solutions
generate (2N) asymptotically stable and (2N) unstable solutions on ZN via the
discrete group of spatial translations.
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Center manifold for the discrete random SHE

We have now

u̇j = −[(L̃N − λN1 )2u]j + γuj − u3
j , j ∈ ZN := Z/(2NZ),

where

L̃N =
1

2N
ÃN − D̃N , with (D̃N)ii :=

1

2N

N∑
j=−N+1

ãij

We use discrete Fourier transform (u
F−→ a)

uj(t) =
∑
k∈ZN

ak(t)e
iπkj
N , j ∈ ZN ,

and the center manifold parameterization

a1 = A, a−1 = Ā, am = Ψm(A, Ā), a−m = Ψ̄m(A, Ā), m ∈ {0, 2, 3, · · · }.

With probability of at least 1−O(25−N) (Guedon–Vershunin, 2016),

max
−N+1≤j,k≤N

|F−1(L̃N − LN)F| ≤ CN−1/2.
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Normal form for the discrete random SHE

Due to proximity, we can introduce a new small parameter µ := CN−1/2. The
amplitude equations are transformed to the normal form without any symmetries:

Ȧ = F1(A, Ā),

where

F1(A, Ā) = (γ + µα1)A+ µα2Ā

+ (−3 + µβ1)|A|2A+ µβ2A
3 + µβ3|A|2Ā+ µβ4Ā

3 + . . .

+ [rN +O(µ)]Ā2N−1 + . . .

For fixed (small) γ ∈ (0, γ0), there is sufficiently small µ (sufficiently large N)
such that

γ + µα1 > 0, −3 + µβ1 < 0, rN +O(µ) 6= 0.
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Turing pattern for the discrete random SHE

After separation of variables with A = ρeiθ, we get
ρ̇ = [γ + µα1 + µα2 cos(2θ)]ρ

+[−3 + µβ1 + µβ2 cos(2θ) + µβ3 cos(2θ) + µβ4 cos(4θ)]ρ3 +O(ρ5),

θ̇ = −µα2 sin(2θ) + µ[β2 sin(2θ)− β3 sin(2θ)− β4 sin(4θ)]ρ2 + . . .
−[rN +O(µ)]ρ2N−2 sin(2Nθ) +O(ρ2N).

There exists only one positive root of the first equation for every θ ∈ [0, 2π):∣∣∣∣ρ− √γ√3

∣∣∣∣ ≤ C(γ + µγ−1)
√
γ,

For this root, the second equation becomes

− µα2 sin(2θ) + µ[β2 sin(2θ)− β3 sin(2θ)− β4 sin(4θ)]ρ2 + . . .

− [rN +O(µ)]ρ2N−2 sin(2Nθ) +O(ρ2N) = 0,

with at least 4 roots and at most 4N roots on [0, 2π) (rN 6= 0).
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Main theorem for the discrete random SHE

Theorem 3. Fix γ ∈ (0, γ0). There exist N0 ≥ 3 such that with probability of
1−O(5−N), for every N ≥ N0 there exist at least 4 and at most 4N values of
δ such that the discrete SHE admits time-independent solutions u ∈ RZN

satisfying

sup
j∈ZN

∣∣∣∣uj − 2√
3

√
γ cos

(
πj

N
− δ
)∣∣∣∣ ≤ C0

√
γ3,

where the constant C0 > 0 is independent of N ≥ N0 and γ ∈ (0, γ0).

Remark 4. In the generic situation when all roots of the phase equation are
simple, half of time-independent solutions are asymptotically stable and the
other half is unstable.

Remark 5. Due to the sign reflection symmetry u 7→ −u, half of solutions are
related to the other half by the sign reflection.
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Numerical illustrations of Turing patterns

Numerical solutions of the small-world graph with N = 400. Initial guess:

uj =
2√
3

√
γ cos

(
πj

N
− δ
)
.

Figure 2: Red for deterministic SHE and blue for its random counterpart.
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Numerical illustrations of the drift

Numerical solutions of the deterministic SHE with N = 5. Two initial guesses
with different δ (red, cyan) and their nearly-final states (blue,black). The right
panel shows the drift due to broken continuous translational symmetry.
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Numerical illustrations of a random number of Turing patterns

Numerical solutions of the random SHE with N = 5. Five different initial guesses
with different δ (a) and their nearly-final states in three different realizations
(b,c,d). Only stable steady states are obtained in pairs (two, four, six).

a 0 0.2 0.4 0.6 0.8 1x
-0.1

0

0.1

u

b 0 0.2 0.4 0.6 0.8 1x

-0.2

-0.1

0

0.1

0.2

u

c 0 0.2 0.4 0.6 0.8 1x

-0.2

-0.1

0

0.1

0.2

u

d 0 0.2 0.4 0.6 0.8 1x

-0.2

-0.1

0

0.1

0.2

u

33



Section 4. Pinning of solitary waves in potentials

Consider the NLS equation in a small bounded potential:

i∂tψ = −∂2
xψ + εV (x)ψ ± |ψ|2ψ,

where V ∈W 2,∞(R) ∩ L1(R) and ε� 1 is small.

• Bright solitons (focusing case): stable pinning at the minimum of V and
unstable pinning at the maximum of V (Kapitula, 2001).

• Black solitons (defocusing case): unstable pinning at any extremal point of V
(Kevrekidis–P, 2008)

• Domain walls (coupled NLS case): stable pinning at the maximum of V and
unstable pinning at the minimum of V (Dror-Malomed-Zeng 2011,
Alama–Bronsard–Contreras–P 2015)
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Lugiato-Lefever equation with two pumping forces

The main model for electromagnetic field inside a ring-shaped cavity:

i∂tψ = −d∂2
xψ + (ζ − iµ)ψ − |ψ|2ψ + if0 + if1ei(k1x−ν1t), (x, t) ∈ T× R,

where d is dispersion, ζ is frequency detuning, µ is damping, f0 is amplitude of
the main force, and f1ei(k1x−ν1t) is the second force.

In the limit f1 � f0, the main model can be reduced to the LL equation with a
small bounded potential:

i∂tu = −d∂2
xu+ iεV (x)∂xu+ (ζ − iµ)u− |u|2u+ if0, (x, t) ∈ T× R

Huanfa Peng (IPQ, KIT).
Bengel–P–Reichel [SIMA 56 (2024) 3679].
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Persistence

Let u0 ∈ H2
per(T,C) be a non-constant solution of the stationary equation

−du′′ + (ζ − iµ)u− |u|2u+ if0 = 0, x ∈ T.

Assume that it is non-degenerate in the sense that the kernel of the linearized
operator

Lϕ := −dϕ′′ + (ζ − iµ− 2|u0|2)ϕ− u2
0ϕ̄, ϕ ∈ H2

per(T,C)

consists only of Span{u′}.
Theorem 6. Let V ∈ C1

per(T,R) and u0 ∈ H2
per(T,C) be non-constant and

non-degenerate. If σ0 is a simple zero of the function

σ 7→ Veff(σ) := Re

∫ π

−π
iV (x+ σ)u′0φ̄

∗
0 dx

then there exists a continuous curve (−ε∗, ε∗) 3 ε→ u(ε) ∈ H2
per(T,C)

consisting of stationary solutions with ‖u(ε)− u0(· − σ0)‖H2 ≤ Cε, C > 0.

In the limit where u0 is highly localized around 0 compared to the potential V
(e.g. the limit d→ 0), we have Veff(σ) ≈ V (σ).
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Spectral stability

Linearization with

u(x) + v(x, t) = u1(x) + iu2(x) + v1(x, t) + iv2(x, t)

yields the linearized system for v = (v1, v2) such that

∂tv = L̃u,εv

with
L̃u,ε = JAu − I(µ− εV (x)∂x)

with

J :=

(
0 1
−1 0

)
, I :=

(
1 0
0 1

)

Au :=

(
−d∂2

x + ζ − (3u2
1 + u2

2) −2u1u2

−2u1u2 −d∂2
x + ζ − (u2

1 + 3u2
2)

)
.

ε = 0: spectral and asymptotic stability by Delcey–Haragus (2018),
Hakkaev–Stanislavova–Stefanov (2019), Stanislavova–Stefanov (2019),
Haragus–Johnson–Perkins (2021), Haragus–Johnson–Perkins–de Rijk (2021).
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Spectral stability

Stability analysis suggests exchange of stabilities, e.g. the transcritical bifurcation.

Theorem 7. Assume that u0 ∈ H2
per(T,C) is orbitally asymptotically stable with

σ(L̃u0,0) ⊂ {z ∈ C : Rez ≤ −ξ} ∪ {0}.

and that σ0 is a simple zero of Veff, that is, V ′eff(σ0) 6= 0. Then there exists
ε0 > 0 such that on the solution branch (−ε0, ε0) 3 ε→ u(ε) ∈ H2

per(T,C) with
u(0) = uσ0 the solutions u(ε) are spectrally stable for V ′eff(σ0) · ε > 0 and
spectrally unstable for V ′eff(σ0) · ε < 0.

Moreover, spectrally stable solutions are also asymptotically stable
[Bengel–P–Reichel (2024)].

38



Numerically computed bifurcation diagram for ε = 0

;

Left: d > 0. Right: d < 0.

Mandel–Reichel (2017)

39



Numerically computed bifurcation diagram for ε 6= 0

[ht]

[ht]

Up: d > 0. Down: d < 0.
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Pinning in the external potential

Up: d > 0. Down: d < 0.

41



Section 5. Conclusion

• Broken translational symmetry transforms a continuous family of solutions to a
finite number of solutions pinned to some exceptional spatial points.

• This phenomenon is generic in lattice differential equations and in PDEs with
spatially dependent potentials.

• Existence and stability of pinned states can be studied with dynamical system
methods (normal forms, Lyapunov–Schmidt reductions, perturbation theory).

Happy birthday, Guido!

New discoveries in nonlinear science!
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