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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.
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If o = h™2 > 1, LDE can be seen as a discretization with step size h of PDE

Opu(t, x) = Ozult,z) + f(u(t, z)), r € R.

e Many physical models have a discrete spatial structure — LDEs.

e Main theme: qualitative differences between PDEs and LDEs.



Signal Propagation through Nerves

One is interested in the potential U; at the node sites.
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Signals appear to "hop” from one node to the next [Lillie, 1925].
lgnoring recovery, one arrives at the LDE, called the discrete Nagumo equation
[Keener and Sneyd, 1998]

LU;(t) = Ujpa(t) + U;—1(t) — 2U05(t) + 9(U;(t);a),  j€Z.
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Traveling front solutions

In the continuum limit, the discrete Nagumo equation becomes the continuous
Nagumo equation,
O = O2u + u(a — u)(u — 1).

Travelling wave u(z,t) = ¢(x + ct) satisfies:

cd' (&) = ¢"(&)+ o(€)(a—(8))(p(€) —1).

We are interested in the front solutions connecting stable equilibrium states 0 and
1 (heteroclinic orbits). These solutions satisfy the boundary conditions,

lim $(€) =0,  lim (&) =1.
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Exact solutions

Recall the travelling wave ODE
cd' (&) = ¢" (&) + d(&) (a— d(€)) (6(&) — 1),

subject to
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Travelling fronts in LDE

Back to the Nagumo LDE

LU;(t) = 25 [Ujga(t) + Uj_1(t) — 2U;(8)] + Us(t) (a — U;(8))(U;(t) — 1), j € Z.

Travelling front solutions U;(t) = ¢(j + ct) must satisfy:

cd'(§) = % [P(§ + 1) + o€ = h) = 20(8)] + ¢(§)(a — ¢(£))(o(E) — 1),

subject to
lim ¢(6) =0, lim (€)= 1.

£E——00 E—+o0
e When ¢ # 0, this is a differential advance-delay equation.
e When ¢ = 0, this is an advance-delay equation.

e The limit ¢ — 0 is a singular perturbation theory.



Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0 — 1.
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Propagation failure

Typical wave speed c versus a plot for the discrete Nagumo LDE:
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We can have either a, = 5 O ay <

1
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If a, < 5, We say that LDE suffers from propagation failure.

Propagation failure widely studied; pioneed by [Keener].



Propagation failure

Consider travelling wave MFDE with saw-tooth nonlinearity

c§'(6) = 5lB(€ +h) + O(€ — ) — 20(6)] + 9(9(€):a),

subject to
lim (€) =0, lim (&) =1.

£E——o0 £E—4o0

Propagation failure for all h > 0
[Cahn, Mallet-Paret, Van Vleck] (1999)

Linear analysis with Fourier series.




Propagation failure

Consider travelling wave MFDE with zig-zag bistable nonlinearity

c§'(6) = 5lB(€ +h) + O(€ — ) — 20(6)] + 9(9(€):a),

subject to

There exist countably many h for which

there is no propagation failure.
[Elmer] (2006)




Propagation failure for the Klein—Gordon equation

In a similar context of the Klein-Gordon equation,
Uty = Ugy T g(u7 a’)v

many researchers were looking for other discretizations of g that admit a
continuous ( “translationally invariant”) branch of stationary solutions
[Speight](1999); [Kevrekidis|(2003); [Barashenkov, Oxtoby, Pelinovsky|(2005);
[Dmitriev, Kevrekidis, Yoshikawa|(2005).

Main Question: Does the existence of continuous ( “translationally invariant™)
stationary solutions imply the existence of continuously differentiable traveling
solutions?

The Answer is NO for the discrete Klein—Gordon equation.



Example

The discrete Nagumo equation

cd'(§) = 33[0(€ + 1) + (€ = h) —26(§)] + g(4(£); a)

(u: 0) = 2(1 — w)u(u — a)(1 + h?(1 + au))
Y= 0T R0 —wu)(1 + 22(1 — a)a)’
admits an exact traveling front solution,

1 arcsinh(h) 2a — 1
= —(1 + tanh(bz — b= = R.
o(2) 2( + tanh(bz — s)), ” e (1T 21 —a)a) s €

If a = % then ¢ = 0, and the stationary front is “translationally invariant”
¢(z) = tanh(bz — s) with arbitrary parameter s € R (the same for KG equation).

We can see that stationary front becomes a traveling front without a propagation
failure.

Question: Is this a coincidence?



Formulation of the problem

Recall the differential advance-delay equation for travelling waves:

B(€) = 15166+ h) + H(€ — ) — 26()] + H(€) (0 — H(E)) (9(6) — 1),

When ¢ = 0, we can restrict to £ € Z and obtain a difference equation.

With p; = ¢(j) and r; = ¢(j + 1), we find

Pj+1 T
riv1 = —pj+2r; —hPri(r; —a)(1—rp).

Two fixed point (0,0) and (1, 1) are saddles. Generally, two heteroclinic orbits
exist for a = 1 (symmetric case):

pl=—p{, pP, =",

called site-symmetric and bond-symmetric fronts.



Formulation of the problem

For a = % site-symmetric (orange) and bond-symmetric (black) solutions:
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Formulation of the problem

For a < % the distance between nodes decreases. At a = a, < % two branches of
stationary front solutions coincide and annihilate via a saddle-node bifurcation.




Formulation of the problem

Special discretizations of g may also involve multiple lattice sites:

d

—U; =
dt 7

1 1
3 WUj—1+ Ujr1 = 2Us) + SUj(Uja + Uj-1 = 20)(1 = U).

Explicit solutions available:

U;(t) = % + %tanh (arcsinh(i\/i h)(j + ct)), cla) = - EM‘C(Slm—h (2;\)5 0
to(€) Ac
§ a
> >
“=3

No propagation failure; smooth wave profile.



Formulation of the problem

Smooth standing wave profile at a = % correspond to:

(1,1)

(0,0)

Site-symmetric and bond-symmetric solutions are connected by a continuous
branch of “translationally invariant” standing waves.

Main Question: What happens to manifolds when a # %?

Do intersections disappear (no prop failure) or survive (prop failure)?



Lattice point of view

Let us write LDE as:

with U(t) € £°° and F : £>° x [0,1] — £°°.

Travelling waves U,(t) = ¢(j + ct) satisfy the differential advance-delay equation,

e6/(§) = G($(€ = 1), 6(6), $(€+ 1) )

1 .
Suppose at a = 5 we have a smooth solution p(§) to

0=G(p(c -~ D).p(O).pE+1);a=3),  EER

Then for every ¥ € R, we have equilibrium solution p(*) € ¢*° to our LDE:

1 |
F (p(m; 5) =0, pi” =p(v + ).



Invariant Manifold

Recall p® € £ with p\”) = p(d + j).

Notice that
p(l‘/‘) _ 7'],(19+1)7

where T : £°° — (> is right-shift operator (Tu); = u;j_;.

Combining these equilibria gives
a smooth manifold

M(a=3) = (#)aer

Based on spectral stability of equilibria p("&) [Chow, Mallet-Paret, Shen, 1998] and

comparison principles, we can prove that the manifold M(a = 3) is normally

2
hyperbolic.



Invariant Manifold - Scenario #1

Possible scenario #1 for persistence of M(a) with a # 3

No equilibria survive; M(a) is orbit of travelling wave. No Propagation Failure.



Invariant Manifold - Scenario #2

Possible scenario #2 for persistence of M(a) with a # 3

One or more equilibria survive. Propagation Failure.



Dynamics at M(a)

Angular coordinate # measures position along M(a). Dynamics at M(a) for

a ~ % is given by :
d 1 1
dte (a 2) (0) + O( |a 5 ),
in which W () given by
9 9)  (9) (9 1
W) = E C];- )aag (pg-_)l,pg- ),pgﬁl; a = 5)

JEZ
Here ¢(?) is adjoint eigenvector; i.e. solves L(P)*q(?) = 0.

Known: qj(-ﬁ) >0 forall j € Z and ¥ € R. So 9,G < 0 guarantees no prop failure.



Example 1

No prop failure for LDE
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Example 2

No prop failure for LDE
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Here 0,G may have both signs, but (numerically) ¥ (#) < 0 for all 6.



Example 3

Do have prop failure for LDE
%Uj = ’LLj_l —+ Uj_|_1 — Q’U,j —+ 4UJ(1 — Uj)(’LLj_l -+ Uj_|_1 — 261,)

—5(a — 3) sin(2mu;) (2 + Su;).
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Numerically computed: ¥(0 = 0) < 0 < ¥ (0 = 3).



Differential advance-delay equation point of view

Let us write the traveling wave problem as

c§'(6) = 5lB(€ +h) + O(€ — ) — 20(6)] + 9(9(€):a),

with ¢(¢) € HY(R) and g : HY(R) x [0,1] — H(R).

Differential advance-delay operator L. : H*(R) — L*(R) is

(L) (2) = —et/(€) + gl (€ + h) + (€ — ) — 20(6)] + o/ (H(€); ) (&),

Under the same assumptions, we have at a = %
/ tkmé 2m
Ker(Lg) = span {¢'()e }mEZ’ =7
where () is the stationary front solution for ¢ = 0 and a = %

D.P., Journal of Dynamics and Differential Equations 23, 167-183 (2011)



Differential advance-delay equation point of view

Perturbation theory for small ¢ # 0 and a = % gives:

a unique real eigenvalue A, such that
Ae=0(c*) as c—0.
the corresponding eigenfunction x. € H'(R) such that
Xe —¢@'||;2>C >0 as ¢— 0.
a countable set of simple eigenvalues

Agm) = A — IKMC, Xgm) (’S) — Xc('g)emmga m € 7.



Numerical approximations for small c
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Figure 1: Numencal approximation of spectrum of L, for e = 0 (left) and ¢ = 0.1 {right}.



Numerical approximations for small c

Ae=0(), lxe—¢'llL2=0(1), as c—0.
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Fipure 2: Left: convergence of the smallest eigenvalue of L. as ¢ — (0. The dotted curve shows
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the power fit with ¢-%%97_ Right: the norm lxe—Xx||z2 versus e for the corresponding eigenvector.



Numerical approximations for small c

(LC—ACI)@D:J‘L: <907fc>L2207

where 6. is the eigenvector of the adjoint operator L.
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Figure 3: Left: the norm |[1||;2 versus ¢. The dotted curve shows the power fit with ¢~ 99993,
Right: the solution #/(2) for e = 0.1.



Projection method

Differential advance-delay equation,

L6 + 1) + 3(€ — h) — 26(6)] + 9(6(6); ).

cd' (&) = 72

The decomposition

6(2) = p(2) +9(2),  (¢/,d)12 =0
is not sufficient because of the singular behavior ||| ;1 = O(c™!) as ¢ — 0.

If ©(2) is a solution and g(z+ h) = g(z) is any C* function such that ||¢'|| .= < 1,
then ¢(2) is also a solution of the advanced-delay equation with ¢ = 0, where

o~ o~ dz TKMZ2
z=z2-g9(2) = %:14—%@7&6 :

Coefficients {b,, }.necz can be chosen to remove singular projections and to prove
cla)=cila—3)+ 0O (a—3).



