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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

d

dt
uj(t) = α

(
uj−1(t)− 2uj(t) + uj+1(t)

)
+ f

(
uj(t)

)
, j ∈ Z.

If α = h−2 � 1, LDE can be seen as a discretization with step size h of PDE

∂tu(t, x) = ∂2xu(t, x) + f
(
u(t, x)

)
, x ∈ R.

• Many physical models have a discrete spatial structure → LDEs.

• Main theme: qualitative differences between PDEs and LDEs.
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Signal Propagation through Nerves

One is interested in the potential Uj at the node sites.

Axon

U0U-1 U1

Signals appear to ”hop” from one node to the next [Lillie, 1925].
Ignoring recovery, one arrives at the LDE, called the discrete Nagumo equation
[Keener and Sneyd, 1998]

d
dtUj(t) = Uj+1(t) + Uj−1(t)− 2Uj(t) + g(Uj(t); a), j ∈ Z.
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Bistable nonlinearity g given by

g(u; a) = u(a− u)(u− 1).
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Traveling front solutions

In the continuum limit, the discrete Nagumo equation becomes the continuous
Nagumo equation,

∂tu = ∂2xu+ u(a− u)(u− 1).

Travelling wave u(x, t) = φ(x+ ct) satisfies:

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

We are interested in the front solutions connecting stable equilibrium states 0 and
1 (heteroclinic orbits). These solutions satisfy the boundary conditions,

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→+∞

φ(ξ) = 1.
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Exact solutions

Recall the travelling wave ODE

cφ′(ξ) = φ′′(ξ) + φ(ξ)
(
a− φ(ξ)

)(
φ(ξ)− 1

)
,

subject to
lim

ξ→−∞
φ(ξ) = 0, lim

ξ→+∞
φ(ξ) = 1.

Explicit solutions available:

φ(ξ) = 1
2 + 1

2 tanh
(
1
4

√
2 ξ
)
,

c(a) = 1√
2
(1− 2a).
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Travelling fronts in LDE

Back to the Nagumo LDE

d
dtUj(t) = 1

h2
[Uj+1(t) + Uj−1(t)− 2Uj(t)] + Uj(t)(a− Uj(t))(Uj(t)− 1), j ∈ Z.

Travelling front solutions Uj(t) = φ(j + ct) must satisfy:

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + φ(ξ)(a− φ(ξ))(φ(ξ)− 1),

subject to
lim

ξ→−∞
φ(ξ) = 0, lim

ξ→+∞
φ(ξ) = 1.

• When c 6= 0, this is a differential advance-delay equation.

• When c = 0, this is an advance-delay equation.

• The limit c→ 0 is a singular perturbation theory.
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Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0→ 1.
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Propagation failure

Typical wave speed c versus a plot for the discrete Nagumo LDE:

We can have either a∗ = 1
2 or a∗ <

1
2.

If a∗ <
1
2, we say that LDE suffers from propagation failure.

Propagation failure widely studied; pioneed by [Keener].
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Propagation failure

Consider travelling wave MFDE with saw-tooth nonlinearity

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + g

(
φ(ξ); a

)
,

subject to
lim

ξ→−∞
φ(ξ) = 0, lim

ξ→+∞
φ(ξ) = 1.

Propagation failure for all h > 0
[Cahn, Mallet-Paret, Van Vleck] (1999)

Linear analysis with Fourier series.
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Propagation failure

Consider travelling wave MFDE with zig-zag bistable nonlinearity

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + g

(
φ(ξ); a

)
,

subject to
lim

ξ→−∞
φ(ξ) = 0, lim

ξ→+∞
φ(ξ) = 1.

There exist countably many h for which
there is no propagation failure.
[Elmer] (2006)
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Propagation failure for the Klein–Gordon equation

In a similar context of the Klein-Gordon equation,

utt = uxx + g(u ; a),

many researchers were looking for other discretizations of g that admit a
continuous (“translationally invariant”) branch of stationary solutions
[Speight](1999); [Kevrekidis](2003); [Barashenkov, Oxtoby, Pelinovsky](2005);
[Dmitriev, Kevrekidis, Yoshikawa](2005).

Main Question: Does the existence of continuous (“translationally invariant”)
stationary solutions imply the existence of continuously differentiable traveling
solutions?

The Answer is NO for the discrete Klein–Gordon equation.
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Example

The discrete Nagumo equation

cφ′(ξ) = 1
h2

[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + g
(
φ(ξ); a

)
g(u; a) =

2(1− u)u(u− a)(1 + h2(1 + au))

(1 + h2(1− u)u)(1 + h2(1− a)a)
,

admits an exact traveling front solution,

φ(z) =
1

2
(1 + tanh(bz − s)), b =

arcsinh(h)

h
, c =

2a− 1

b(1 + h2(1− a)a)
, s ∈ R.

If a = 1
2, then c = 0, and the stationary front is “translationally invariant”

φ(z) = tanh(bz − s) with arbitrary parameter s ∈ R (the same for KG equation).

We can see that stationary front becomes a traveling front without a propagation
failure.

Question: Is this a coincidence?

12



Formulation of the problem

Recall the differential advance-delay equation for travelling waves:

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + φ(ξ)

(
a− φ(ξ)

)(
φ(ξ)− 1

)
.

When c = 0, we can restrict to ξ ∈ Z and obtain a difference equation.

With pj = φ(j) and rj = φ(j + 1), we find

pj+1 = rj
rj+1 = −pj + 2rj − h2rj(rj − a)(1− rj).

Two fixed point (0, 0) and (1, 1) are saddles. Generally, two heteroclinic orbits
exist for a = 1

2 (symmetric case):

p
(s)
−j = −p(s)j , p

(b)
−j+1 = −p(b)j ,

called site-symmetric and bond-symmetric fronts.
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Formulation of the problem

For a = 1
2, site-symmetric (orange) and bond-symmetric (black) solutions:
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Formulation of the problem

For a < 1
2, the distance between nodes decreases. At a = a∗ <

1
2, two branches of

stationary front solutions coincide and annihilate via a saddle-node bifurcation.

15



Formulation of the problem

Special discretizations of g may also involve multiple lattice sites:

d

dt
Uj =

1

h2
[Uj−1 + Uj+1 − 2Uj] +

1

2
Uj(Uj+1 + Uj−1 − 2a)(1− Uj).

Explicit solutions available:

Uj(t) =
1

2
+

1

2
tanh

(
arcsinh(

1

4

√
2h)(j + ct)

)
, c(a) =

(1− 2a)

4 arcsinh(14
√

2h)
.

No propagation failure; smooth wave profile.
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Formulation of the problem

Smooth standing wave profile at a = 1
2 correspond to:

Site-symmetric and bond-symmetric solutions are connected by a continuous
branch of “translationally invariant” standing waves.

Main Question: What happens to manifolds when a 6= 1
2?

Do intersections disappear (no prop failure) or survive (prop failure)?
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Lattice point of view

Let us write LDE as:
d

dt
U(t) = F(U(t) ; a),

with U(t) ∈ `∞ and F : `∞ × [0, 1]→ `∞.

Travelling waves Uj(t) = φ(j + ct) satisfy the differential advance-delay equation,

cφ′(ξ) = G
(
φ(ξ − 1), φ(ξ), φ(ξ + 1) ; a

)

Suppose at a = 1
2 we have a smooth solution p(ξ) to

0 = G
(
p(ξ − 1), p(ξ), p(ξ + 1) ; a =

1

2

)
, ξ ∈ R.

Then for every ϑ ∈ R, we have equilibrium solution p(ϑ) ∈ `∞ to our LDE:

F
(
p(ϑ) ;

1

2

)
= 0, p

(ϑ)
j = p(ϑ+ j).
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Invariant Manifold

Recall p(ϑ) ∈ `∞ with p
(ϑ)
j = p(ϑ+ j).

Notice that
p(ϑ) = T p(ϑ+1),

where T : `∞ → `∞ is right-shift operator (T u)j = uj−1.

Combining these equilibria gives
a smooth manifold

M
(
a =

1

2

)
= {p(ϑ)}ϑ∈R.

Based on spectral stability of equilibria p(ϑ) [Chow, Mallet-Paret, Shen, 1998] and
comparison principles, we can prove that the manifold M(a = 1

2) is normally
hyperbolic.
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Invariant Manifold - Scenario #1

Possible scenario #1 for persistence of M(a) with a 6= 1
2:

=⇒

No equilibria survive; M(a) is orbit of travelling wave. No Propagation Failure.
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Invariant Manifold - Scenario #2

Possible scenario #2 for persistence of M(a) with a 6= 1
2:

=⇒

One or more equilibria survive. Propagation Failure.
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Dynamics at M(a)

Angular coordinate θ measures position along M(a). Dynamics at M(a) for
a ≈ 1

2 is given by

d

dt
θ = (a− 1

2
)Ψ(θ) +O

( ∣∣∣∣a− 1

2

∣∣∣∣2 ),
in which Ψ(θ) given by

Ψ(ϑ) =
∑
j∈Z

q
(ϑ)
j ∂aG

(
p
(ϑ)
j−1, p

(ϑ)
j , p

(ϑ)
j+1 ; a =

1

2

)
.

Here q(ϑ) is adjoint eigenvector; i.e. solves L(ϑ)∗q(ϑ) = 0.

Known: q
(ϑ)
j > 0 for all j ∈ Z and ϑ ∈ R. So ∂aG < 0 guarantees no prop failure.
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Example 1

No prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + (uj − a)

(
uj−1(1− uj+1) + uj+1(1− uj−1)

)
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Example 2

No prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + (uj − a)

(
uj−1(1− uj+1) + uj+1(1− uj−1)

)
−5

4(a− 1
2) sin(2πuj).

Here ∂aG may have both signs, but (numerically) Ψ(θ) < 0 for all θ.
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Example 3

Do have prop failure for LDE

d
dtuj = uj−1 + uj+1 − 2uj + 4uj(1− uj)(uj−1 + uj+1 − 2a)

−5(a− 1
2) sin(2πuj)(

6
5 + 8

5uj).

Numerically computed: Ψ(θ = 0) < 0 < Ψ(θ = 1
2).
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Differential advance-delay equation point of view

Let us write the traveling wave problem as

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + g

(
φ(ξ); a

)
,

with φ(ξ) ∈ H1(R) and g : H1(R)× [0, 1]→ H1(R).

Differential advance-delay operator Lc : H1(R)→ L2(R) is

(Lcψ)(z) := −cψ′(ξ) +
1

h2
[ψ(ξ + h) + ψ(ξ − h)− 2ψ(ξ)] + g′

(
φ(ξ); a

)
ψ(ξ),

Under the same assumptions, we have at a = 1
2,

Ker(L0) = span
{
ϕ′(ξ)eiκmξ

}
m∈Z , κ =

2π

h
,

where ϕ(ξ) is the stationary front solution for c = 0 and a = 1
2.

D.P., Journal of Dynamics and Differential Equations 23, 167–183 (2011)
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Differential advance-delay equation point of view

Perturbation theory for small c 6= 0 and a = 1
2 gives:

a unique real eigenvalue λc such that

λc = O(c2) as c→ 0.

the corresponding eigenfunction χc ∈ H1(R) such that

‖χc − ϕ′‖L2 ≥ C > 0 as c→ 0.

a countable set of simple eigenvalues

λ(m)
c = λc − iκmc, χ(m)

c (ξ) = χc(ξ)e
iκmξ, m ∈ Z.
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Numerical approximations for small c

(L0ψ)(z) :=
1

h2
[ψ(ξ+h)+ψ(ξ−h)−2ψ(ξ)]+

2(2− 3sech2(bξ)− h2sech4(bξ))
(1 + h2sech2(bξ))2

ψ(ξ),
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Numerical approximations for small c

λc = O(c2), ‖χc − ϕ′‖L2 = O(1), as c→ 0.
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Numerical approximations for small c

(Lc − λcI)ψ = fc : 〈θc, fc〉L2 = 0,

where θc is the eigenvector of the adjoint operator L∗c.
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Projection method

Differential advance-delay equation,

cφ′(ξ) =
1

h2
[φ(ξ + h) + φ(ξ − h)− 2φ(ξ)] + g

(
φ(ξ); a

)
,

The decomposition

φ(z) = ϕ(z) + ψ(z), 〈ϕ′, ψ〉L2 = 0

is not sufficient because of the singular behavior ‖ψ‖H1 = O(c−1) as c→ 0.

If ϕ(z) is a solution and g(z+ h) = g(z) is any C1 function such that ‖g′‖L∞ < 1,
then ϕ̃(z̃) is also a solution of the advanced-delay equation with c = 0, where

z = z̃ − g(z̃) ⇒ dz̃

dz
= 1 +

∑
m∈Z

bme
iκmz.

Coefficients {bm}m∈Z can be chosen to remove singular projections and to prove
c(a) = c1(a− 1

2) +O
(
a− 1

2

)
.
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