SIAM DS-11 Snowbird - May 23, 2011

Propagation Failure in the Discrete Nagumo Equation

Dmitry Pelinovsky
McMaster University, Canada
(Joint work with Hermen Jan Hupkes and Bjorn Sandstede)

- Proceedings of the AMS, in press (2011)

Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

$$
\begin{array}{r}
\frac{d}{d t} u_{j}(t)=\alpha\left(u_{j-1}(t)-2 u_{j}(t)+u_{j+1}(t)\right)+f\left(u_{j}(t)\right), \quad j \in \mathbb{Z} . \\
u_{-4} u_{-3} u_{-2} u_{-1} u_{0} u_{1} u_{2} u_{3} u_{4}
\end{array}
$$

If $\alpha=h^{-2} \gg 1$, LDE can be seen as a discretization with step size h of PDE

$$
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x)+f(u(t, x)), \quad x \in \mathbb{R} .
$$

$$
u(x)
$$

- Many physical models have a discrete spatial structure \rightarrow LDEs.
- Main theme: qualitative differences between PDEs and LDEs.

Signal Propagation through Nerves

One is interested in the potential U_{j} at the node sites.

Signals appear to "hop" from one node to the next [Lillie, 1925].
Ignoring recovery, one arrives at the LDE, called the discrete Nagumo equation [Keener and Sneyd, 1998]

$$
\frac{d}{d t} U_{j}(t)=U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)+g\left(U_{j}(t) ; a\right), \quad j \in \mathbb{Z}
$$

Bistable nonlinearity g given by

$$
g(u ; a)=u(a-u)(u-1) .
$$

Traveling front solutions

In the continuum limit, the discrete Nagumo equation becomes the continuous Nagumo equation,

$$
\partial_{t} u=\partial_{x}^{2} u+u(a-u)(u-1)
$$

Travelling wave $u(x, t)=\phi(x+c t)$ satisfies:

$$
c \phi^{\prime}(\xi)=\phi^{\prime \prime}(\xi)+\phi(\xi)(a-\phi(\xi))(\phi(\xi)-1)
$$

We are interested in the front solutions connecting stable equilibrium states 0 and 1 (heteroclinic orbits). These solutions satisfy the boundary conditions,

$$
\lim _{\xi \rightarrow-\infty} \phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \phi(\xi)=1
$$

Exact solutions

Recall the travelling wave ODE

$$
c \phi^{\prime}(\xi)=\phi^{\prime \prime}(\xi)+\phi(\xi)(a-\phi(\xi))(\phi(\xi)-1)
$$

subject to

$$
\lim _{\xi \rightarrow-\infty} \phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \phi(\xi)=1
$$

Explicit solutions available:

$$
\begin{aligned}
\phi(\xi) & =\frac{1}{2}+\frac{1}{2} \tanh \left(\frac{1}{4} \sqrt{2} \xi\right) \\
c(a) & =\frac{1}{\sqrt{2}}(1-2 a)
\end{aligned}
$$

Travelling fronts in LDE

Back to the Nagumo LDE

$$
\frac{d}{d t} U_{j}(t)=\frac{1}{h^{2}}\left[U_{j+1}(t)+U_{j-1}(t)-2 U_{j}(t)\right]+U_{j}(t)\left(a-U_{j}(t)\right)\left(U_{j}(t)-1\right), j \in \mathbb{Z}
$$

Travelling front solutions $U_{j}(t)=\phi(j+c t)$ must satisfy:

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+\phi(\xi)(a-\phi(\xi))(\phi(\xi)-1)
$$

subject to

$$
\lim _{\xi \rightarrow-\infty} \phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \phi(\xi)=1
$$

- When $c \neq 0$, this is a differential advance-delay equation.
- When $c=0$, this is an advance-delay equation.
- The limit $c \rightarrow 0$ is a singular perturbation theory.

Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting $0 \rightarrow 1$.

Propagation failure

Typical wave speed c versus a plot for the discrete Nagumo LDE:

We can have either $a_{*}=\frac{1}{2}$ or $a_{*}<\frac{1}{2}$.
If $a_{*}<\frac{1}{2}$, we say that LDE suffers from propagation failure.
Propagation failure widely studied; pioneed by [Keener].

Propagation failure

Consider travelling wave MFDE with saw-tooth nonlinearity

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+g(\phi(\xi) ; a)
$$

subject to

$$
\lim _{\xi \rightarrow-\infty} \phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \phi(\xi)=1
$$

Propagation failure for all $h>0$ [Cahn, Mallet-Paret, Van Vleck] (1999)

Linear analysis with Fourier series.

Propagation failure

Consider travelling wave MFDE with zig-zag bistable nonlinearity

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+g(\phi(\xi) ; a),
$$

subject to

$$
\lim _{\xi \rightarrow-\infty} \phi(\xi)=0, \quad \lim _{\xi \rightarrow+\infty} \phi(\xi)=1
$$

There exist countably many h for which there is no propagation failure. [Elmer] (2006)

Propagation failure for the Klein-Gordon equation

In a similar context of the Klein-Gordon equation,

$$
u_{t t}=u_{x x}+g(u ; a)
$$

many researchers were looking for other discretizations of g that admit a continuous ("translationally invariant") branch of stationary solutions [Speight](1999); [Kevrekidis](2003); [Barashenkov, Oxtoby, Pelinovsky](2005); [Dmitriev, Kevrekidis, Yoshikawa](2005).

Main Question: Does the existence of continuous ("translationally invariant") stationary solutions imply the existence of continuously differentiable traveling solutions?

The Answer is NO for the discrete Klein-Gordon equation.

Example

The discrete Nagumo equation

$$
\begin{gathered}
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+g(\phi(\xi) ; a) \\
g(u ; a)=\frac{2(1-u) u(u-a)\left(1+h^{2}(1+a u)\right)}{\left(1+h^{2}(1-u) u\right)\left(1+h^{2}(1-a) a\right)}
\end{gathered}
$$

admits an exact traveling front solution,

$$
\phi(z)=\frac{1}{2}(1+\tanh (b z-s)), \quad b=\frac{\operatorname{arcsinh}(h)}{h}, \quad c=\frac{2 a-1}{b\left(1+h^{2}(1-a) a\right)}, \quad s \in \mathbb{R} .
$$

If $a=\frac{1}{2}$, then $c=0$, and the stationary front is "translationally invariant" $\phi(z)=\tanh (b z-s)$ with arbitrary parameter $s \in \mathbb{R}$ (the same for KG equation).

We can see that stationary front becomes a traveling front without a propagation failure.

Question: Is this a coincidence?

Formulation of the problem

Recall the differential advance-delay equation for travelling waves:

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+\phi(\xi)(a-\phi(\xi))(\phi(\xi)-1)
$$

When $c=0$, we can restrict to $\xi \in \mathbb{Z}$ and obtain a difference equation.
With $p_{j}=\phi(j)$ and $r_{j}=\phi(j+1)$, we find

$$
\begin{aligned}
p_{j+1} & =r_{j} \\
r_{j+1} & =-p_{j}+2 r_{j}-h^{2} r_{j}\left(r_{j}-a\right)\left(1-r_{j}\right)
\end{aligned}
$$

Two fixed point $(0,0)$ and $(1,1)$ are saddles. Generally, two heteroclinic orbits exist for $a=\frac{1}{2}$ (symmetric case):

$$
p_{-j}^{(s)}=-p_{j}^{(s)}, \quad p_{-j+1}^{(b)}=-p_{j}^{(b)}
$$

called site-symmetric and bond-symmetric fronts.

Formulation of the problem

For $a=\frac{1}{2}$, site-symmetric (orange) and bond-symmetric (black) solutions:

Formulation of the problem

For $a<\frac{1}{2}$, the distance between nodes decreases. At $a=a_{*}<\frac{1}{2}$, two branches of stationary front solutions coincide and annihilate via a saddle-node bifurcation.

Formulation of the problem

Special discretizations of g may also involve multiple lattice sites:

$$
\frac{d}{d t} U_{j}=\frac{1}{h^{2}}\left[U_{j-1}+U_{j+1}-2 U_{j}\right]+\frac{1}{2} U_{j}\left(U_{j+1}+U_{j-1}-2 a\right)\left(1-U_{j}\right) .
$$

Explicit solutions available:

$$
U_{j}(t)=\frac{1}{2}+\frac{1}{2} \tanh \left(\operatorname{arcsinh}\left(\frac{1}{4} \sqrt{2} h\right)(j+c t)\right), \quad c(a)=\frac{(1-2 a)}{4 \operatorname{arcsinh}\left(\frac{1}{4} \sqrt{2} h\right)} .
$$

No propagation failure; smooth wave profile.

Formulation of the problem

Smooth standing wave profile at $a=\frac{1}{2}$ correspond to:

Site-symmetric and bond-symmetric solutions are connected by a continuous branch of "translationally invariant" standing waves.

Main Question: What happens to manifolds when $a \neq \frac{1}{2}$?
Do intersections disappear (no prop failure) or survive (prop failure)?

Lattice point of view

Let us write LDE as:

$$
\frac{d}{d t} U(t)=\mathcal{F}(U(t) ; a)
$$

with $U(t) \in \ell^{\infty}$ and $\mathcal{F}: \ell^{\infty} \times[0,1] \rightarrow \ell^{\infty}$.
Travelling waves $U_{j}(t)=\phi(j+c t)$ satisfy the differential advance-delay equation,

$$
c \phi^{\prime}(\xi)=\mathcal{G}(\phi(\xi-1), \phi(\xi), \phi(\xi+1) ; a)
$$

Suppose at $a=\frac{1}{2}$ we have a smooth solution $p(\xi)$ to

$$
0=\mathcal{G}\left(p(\xi-1), p(\xi), p(\xi+1) ; a=\frac{1}{2}\right), \quad \xi \in \mathbb{R}
$$

Then for every $\vartheta \in \mathbb{R}$, we have equilibrium solution $p^{(\vartheta)} \in \ell^{\infty}$ to our LDE:

$$
\mathcal{F}\left(p^{(\vartheta)} ; \frac{1}{2}\right)=0, \quad \quad p_{j}^{(\vartheta)}=p(\vartheta+j)
$$

Invariant Manifold

Recall $p^{(\vartheta)} \in \ell^{\infty}$ with $p_{j}^{(\vartheta)}=p(\vartheta+j)$.
Notice that

$$
p^{(\vartheta)}=\mathcal{T} p^{(\vartheta+1)}
$$

where $\mathcal{T}: \ell^{\infty} \rightarrow \ell^{\infty}$ is right-shift operator $(\mathcal{T} u)_{j}=u_{j-1}$.

Combining these equilibria gives a smooth manifold

$$
\mathcal{M}\left(a=\frac{1}{2}\right)=\left\{p^{(\vartheta)}\right\}_{\vartheta \in \mathbb{R}}
$$

Based on spectral stability of equilibria $p^{(\vartheta)}$ [Chow, Mallet-Paret, Shen, 1998] and comparison principles, we can prove that the manifold $\mathcal{M}\left(a=\frac{1}{2}\right)$ is normally hyperbolic.

Invariant Manifold - Scenario \#1

Possible scenario $\# 1$ for persistence of $\mathcal{M}(a)$ with $a \neq \frac{1}{2}$:

No equilibria survive; $\mathcal{M}(a)$ is orbit of travelling wave. No Propagation Failure.

Invariant Manifold - Scenario \#2

Possible scenario $\# 2$ for persistence of $\mathcal{M}(a)$ with $a \neq \frac{1}{2}$:

One or more equilibria survive. Propagation Failure.

Dynamics at $\mathcal{M}(a)$

Angular coordinate θ measures position along $\mathcal{M}(a)$. Dynamics at $\mathcal{M}(a)$ for $a \approx \frac{1}{2}$ is given by

$$
\frac{d}{d t} \theta=\left(a-\frac{1}{2}\right) \Psi(\theta)+O\left(\left|a-\frac{1}{2}\right|^{2}\right)
$$

in which $\Psi(\theta)$ given by

$$
\Psi(\vartheta)=\sum_{j \in \mathbb{Z}} q_{j}^{(\vartheta)} \partial_{a} \mathcal{G}\left(p_{j-1}^{(\vartheta)}, p_{j}^{(\vartheta)}, p_{j+1}^{(\vartheta)} ; a=\frac{1}{2}\right) .
$$

Here $q^{(\vartheta)}$ is adjoint eigenvector; i.e. solves $L^{(\vartheta) *} q^{(\vartheta)}=0$.
Known: $q_{j}^{(\vartheta)}>0$ for all $j \in \mathbb{Z}$ and $\vartheta \in \mathbb{R}$. So $\partial_{a} \mathcal{G}<0$ guarantees no prop failure.

Example 1

No prop failure for LDE

$$
\frac{d}{d t} u_{j}=u_{j-1}+u_{j+1}-2 u_{j}+\left(u_{j}-a\right)\left(u_{j-1}\left(1-u_{j+1}\right)+u_{j+1}\left(1-u_{j-1}\right)\right)
$$

Example 2

No prop failure for LDE

$$
\begin{gathered}
\frac{d}{d t} u_{j}=u_{j-1}+u_{j+1}-2 u_{j}+\left(u_{j}-a\right)\left(u_{j-1}\left(1-u_{j+1}\right)+u_{j+1}\left(1-u_{j-1}\right)\right) \\
-\frac{5}{4}\left(a-\frac{1}{2}\right) \sin \left(2 \pi u_{j}\right)
\end{gathered}
$$

Here $\partial_{a} \mathcal{G}$ may have both signs, but (numerically) $\Psi(\theta)<0$ for all θ.

Example 3

Do have prop failure for LDE

$$
\begin{gathered}
\frac{d}{d t} u_{j}=u_{j-1}+u_{j+1}-2 u_{j}+4 u_{j}\left(1-u_{j}\right)\left(u_{j-1}+u_{j+1}-2 a\right) \\
-5\left(a-\frac{1}{2}\right) \sin \left(2 \pi u_{j}\right)\left(\frac{6}{5}+\frac{8}{5} u_{j}\right)
\end{gathered}
$$

Numerically computed: $\Psi(\theta=0)<0<\Psi\left(\theta=\frac{1}{2}\right)$.

Differential advance-delay equation point of view

Let us write the traveling wave problem as

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+g(\phi(\xi) ; a)
$$

with $\phi(\xi) \in H^{1}(\mathbb{R})$ and $g: H^{1}(\mathbb{R}) \times[0,1] \rightarrow H^{1}(\mathbb{R})$.
Differential advance-delay operator $L_{c}: H^{1}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is

$$
\left(L_{c} \psi\right)(z):=-c \psi^{\prime}(\xi)+\frac{1}{h^{2}}[\psi(\xi+h)+\psi(\xi-h)-2 \psi(\xi)]+g^{\prime}(\phi(\xi) ; a) \psi(\xi)
$$

Under the same assumptions, we have at $a=\frac{1}{2}$,

$$
\operatorname{Ker}\left(L_{0}\right)=\operatorname{span}\left\{\varphi^{\prime}(\xi) e^{i \kappa m \xi}\right\}_{m \in \mathbb{Z}}, \quad \kappa=\frac{2 \pi}{h}
$$

where $\varphi(\xi)$ is the stationary front solution for $c=0$ and $a=\frac{1}{2}$.
D.P., Journal of Dynamics and Differential Equations 23, 167-183 (2011)

Differential advance-delay equation point of view

Perturbation theory for small $c \neq 0$ and $a=\frac{1}{2}$ gives:
a unique real eigenvalue λ_{c} such that

$$
\lambda_{c}=\mathcal{O}\left(c^{2}\right) \quad \text { as } \quad c \rightarrow 0
$$

the corresponding eigenfunction $\chi_{c} \in H^{1}(\mathbb{R})$ such that

$$
\left\|\chi_{c}-\varphi^{\prime}\right\|_{L^{2}} \geq C>0 \quad \text { as } \quad c \rightarrow 0 .
$$

a countable set of simple eigenvalues

$$
\lambda_{c}^{(m)}=\lambda_{c}-i \kappa m c, \quad \chi_{c}^{(m)}(\xi)=\chi_{c}(\xi) e^{i \kappa m \xi}, \quad m \in \mathbb{Z} .
$$

Numerical approximations for small c

$$
\left(L_{0} \psi\right)(z):=\frac{1}{h^{2}}[\psi(\xi+h)+\psi(\xi-h)-2 \psi(\xi)]+\frac{2\left(2-3 \operatorname{sech}^{2}(b \xi)-h^{2} \operatorname{sech}^{4}(b \xi)\right)}{\left(1+h^{2} \operatorname{sech}^{2}(b \xi)\right)^{2}} \psi(\xi)
$$

Figure 1: Numerical approximation of apectrum of L_{c} for $c=0$ (left) and $c=0.1$ (right).

Numerical approximations for small c

$$
\lambda_{c}=\mathcal{O}\left(c^{2}\right), \quad\left\|\chi_{c}-\varphi^{\prime}\right\|_{L^{2}}=\mathcal{O}(1), \quad \text { as } \quad c \rightarrow 0
$$

Figure 2: Left: convergence of the smallest eigenvalue of L_{c} as $c \rightarrow 0$. The dotted curve shows the power fit with $c^{1.9997}$. Right: the norm $\left\|\chi_{c}-\chi\right\|_{L^{2}}$ versus c for the corresponding eigenvector.

Numerical approximations for small c

$$
\left(L_{c}-\lambda_{c} I\right) \psi=f_{c}: \quad\left\langle\theta_{c}, f_{c}\right\rangle_{L^{2}}=0
$$

where θ_{c} is the eigenvector of the adjoint operator L_{c}^{*}.

Figure 3: Left: the norm $\|\psi\|_{L^{2}}$ versus c. The dotted curve shows the power fit with $c^{-0.9993}$. Right: the solution $\psi(z)$ for $c=0.1$.

Projection method

Differential advance-delay equation,

$$
c \phi^{\prime}(\xi)=\frac{1}{h^{2}}[\phi(\xi+h)+\phi(\xi-h)-2 \phi(\xi)]+g(\phi(\xi) ; a)
$$

The decomposition

$$
\phi(z)=\varphi(z)+\psi(z), \quad\left\langle\varphi^{\prime}, \psi\right\rangle_{L^{2}}=0
$$

is not sufficient because of the singular behavior $\|\psi\|_{H^{1}}=\mathcal{O}\left(c^{-1}\right)$ as $c \rightarrow 0$.
If $\varphi(z)$ is a solution and $g(z+h)=g(z)$ is any C^{1} function such that $\left\|g^{\prime}\right\|_{L^{\infty}}<1$, then $\tilde{\varphi}(\tilde{z})$ is also a solution of the advanced-delay equation with $c=0$, where

$$
z=\tilde{z}-g(\tilde{z}) \quad \Rightarrow \quad \frac{d \tilde{z}}{d z}=1+\sum_{m \in \mathbb{Z}} b_{m} e^{i \kappa m z} .
$$

Coefficients $\left\{b_{m}\right\}_{m \in \mathbb{Z}}$ can be chosen to remove singular projections and to prove $c(a)=c_{1}\left(a-\frac{1}{2}\right)+\mathcal{O}\left(a-\frac{1}{2}\right)$.

