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Ostrovsky equation in a physical context

The Korteweg–De Vries equation (1895) governs dynamics of
small-amplitude long waves in a fluid:

ut + uux + βuxxx = 0,

where u is a real-valued function of (x, t). It arises from expansion of
the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).
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ut + uux + βuxxx = 0,

where u is a real-valued function of (x, t). It arises from expansion of
the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).

The Kadomtsev–Petviasvhili equation (1970) models diffraction:

(ut + uux + βuxxx)x + uyy = 0,

as follows from:

ω2 = c2(k2 + p2) + β(k2 + p2)2 + · · · ⇒ ω − ck =
β

2c
k3 +

p2

2ck
+ · · ·
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where u is a real-valued function of (x, t). It arises from expansion of
the dispersion relation for linear waves ei(kx−ωt):

ω2 = c2k2 + βk4 +O(k6) ⇒ ω − ck =
1
2c
βk3 +O(k5).

The Ostrovsky equation (1978) models rotation:

(ut + uux + βuxxx)x = γ2u,

as follows from:

ω2 = γ2 + c2k2 + βk4 + · · · ⇒ ω − ck =
β

2c
k3 +

γ2

2ck
+ · · ·
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The reduced Ostrovsky equation

As β → 0, we obtain the reduced Ostrovsky equation

(ut + uux)x = u,

also studied by [Hunter, 1990] and [Vakhnenko, 1998]

For internal or interfacial waves, the reduced modified Ostrovsky
equation is more relevant [Grimshaw, 1985]:

(ut + u 2ux)x = u.

Note the difference from the short-pulse equation derived as a model
for propagation of pulses with few cycles [Schäfer, Wayne 2004]:

(ut − u 2ux)x = u.
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Plan of my talk

Consider the generalized reduced Ostrovsky equation

(ut + u pux)x = u, p ∈ N.

. Cauchy problem in Sobolev spaces:
. Local solutions with zero mass constraint
. Global smooth solutions
. Wave breaking in a finite time

. Existence of periodic traveling waves:
. A family of smooth periodic waves
. A peaked periodic wave at the terminal point
. No cusped periodic waves

. Stability of periodic traveling waves:
. Spectral stability of smooth waves
. Spectral and linear instability of peaked waves
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Cauchy problem in Sobolev spaces

Consider Cauchy problem for the reduced Ostrovsky equation{
(ut + u pux)x = u,
u|t=0 = u0.

. Local well-posedness for u0 ∈ Hs with s > 3/2
[Stefanov et. al., 2010]

. Zero mass constraint is necessary in the periodic domain:∫ π
−π u0(x)dx = 0.

. Local solutions break in finite time for large initial data.
[Liu & P. & Sakovich 2009, 2010 for p = 1, p = 2]

. Global solutions exist for small initial data.
[Grimshaw & P. 2014 for p = 1]
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Global solutions for small initial data

Theorem (Grimshaw & P., 2014)

Let u0 ∈ H3 such that 1− 3u′′0(x) > 0 for all x. There exists a unique
solution u(t) ∈ C(R,H3) with u(0) = u0.

This result is based on the preliminary works:
. Hone & Wang (2003) obtained Lax pair{

3λψxxx + (1− 3uxx)ψ = 0,
ψt + λψxx + uψx − uxψ = 0,

. Kraenkel, LeBlond, & Manna (2014) showed equivalence to the
Bullough–Dodd (Tzitzeica) equation

∂2V
∂t∂z

= e−2V − eV .
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Conserved quantities for the reduced Ostrovsky equation

Brunelli & Sakovich (2013) found bi-infinite sequence of conserved
quantities for the reduced Ostrovsky equation:

· · ·

E−1 =

∫
R

(
1
3

u3 + (∂−1
x u)2

)
dx,

E0 =

∫
R

u2dx

E1 =

∫
R

[
(1− 3uxx)

1/3 − 1
]

dx,

E2 =

∫
R

(uxxx)
2

(1− 3uxx)7/3 dx

· · ·
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Characteristic variable for the reduced Ostrovsky equation

Start with local solutions u ∈ C([0,T],H3) to

(ut + uux)x = u, x ∈ R, t ∈ [0,T].

Let x = x(ξ, t) satisfy x = ξ +
∫ t

0 U(ξ, t′)dt′ with u(x, t) = U(ξ, t).
The transformation ξ → x is invertible if

φ(ξ, t) :=
∂x
∂ξ

= 1 +

∫ t

0
Uξ(ξ, t′)dt′ 6= 0.

Let us introduce f (x, t) = (1− 3uxx)
1/3 = F(ξ, t). Then,

F(ξ, t)φ(ξ, t) = F0(ξ)

and
∂2

∂t∂ξ
log(F) =

1
3

F0(ξ)(F2 − F−1).
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Towards global existence

. If 1− 3u′′0(x) > 0 for all x ∈ R, then F0(x) > 0. Setting

z := −1
3

∫ ξ

0
F0(ξ

′)dξ′, F(ξ, t) := e−V(z,t),

yields the Tzitzéica equation

∂2V
∂t∂z

= e−2V − eV .

. A local solution V ∈ C([0,T],H1(R)) to the Tzitzéica equation
follows from a local solution u ∈ C([0,T],H3(R)):

V(z, t) = −1
3

log (1− 3uxx(x, t)) .
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Towards global existence

. The H1 norm of V ∈ C([0,T],H1(R)) is bounded by the
conserved quantities

Q1 =

∫
R

(
2eV + e−2V − 3

)
dz, Q2 =

∫
R

(
∂V
∂z

)2

dz.

. Together with the invertible coordinate transformation

uxx(x, t) =
1
3

(
1− e−3V(z,t)

)
and conserved quantities

E0 =

∫
R

u2dx, E2 =

∫
R

(uxxx)
2

(1− 3uxx)7/3 dx

this controls the H3 norm of u ∈ C([0,T],H3(R)).
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.
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per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.

Theorem (Hunter, 1990)

Let u0 ∈ C1
per and define

inf
x∈S

u′0(x) = −m and sup
x∈S
|u0(x)| = M.

If m3 > 4M(4 + m), a smooth solution u(t, x) breaks in a finite time.
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Wave breaking for large initial data

Lemma
Let u0 ∈ H2

per. The local solution u ∈ C([0,T),H2
per) blows up in a

finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 =∞ if and only if

lim
t↑T

inf
x

ux(t, x) = −∞, while lim
t↑T

sup
x
|u(t, x)| <∞.

Theorem (Liu, P. & Sakovich, 2010)
Assume that u0 ∈ H2

per. The solution breaks if

either
∫
S
(u′0(x))

3 dx < −
(

3
2
‖u0‖L2

)3/2

, (1)

or ∃x0 : u′0(x0) < −1 (‖u0‖L∞ + T1‖u0‖L2)
1
2 . (2)
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Proof of the sufficient condition (1)

Direct computation gives

d
dt

∫
S

u3
x dx = −2

∫
S

u4
x dx + 3

∫
S

uu2
x dx

≤ −2‖ux‖4
L4 + 3‖u‖L2‖ux‖2

L4 .

By Hölder’s inequality, we have

|V(t)| ≤ ‖ux‖3
L3 ≤ ‖ux‖3

L4 , V(t) =
∫
S

u3
x(t, x) dx < 0.

Let Q0 = ‖u‖2
L2 = ‖u0‖2

L2 and V(0) < −
(3

2 Q0
) 3

2 . Then,

dV
dt
≤ −2

(
|V|

2
3 − 3Q0

4

)2

+
9Q2

0
8
,

There is T <∞ such that V(t)→ −∞ as t ↑ T .
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Proof of the sufficient condition (2)

Introduce characteristic variables for ut + uux = ∂−1
x u:

x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain{
Ẋ(t) = U,
X(0) = ξ,

{
U̇(t) = G,
U(0) = u0(ξ),

Let V(ξ, t) = ux(t,X(ξ, t)). Then

V̇ = −V2 + U ⇒ V̇ ≤ −V2 + (‖u0‖L∞ + t‖u0‖L2)

There is T <∞ such that V(t)→ −∞ as t ↑ T .
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Numerical simulations

By using a pseudospectral method based on Fourier series:

∂

∂t
ûk = −

i
k

ûk −
ik
2
F
[(
F−1û

)2
]

k
, k 6= 0, t > 0,

where the initial condition is

u0(x) = a cos(x) + b sin(2x),
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Evolution of the cosine initial data
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Figure: Solution surface u(t, x) (left) and infx∈S ux(t, x) versus t (right) for
a = 0.005, b = 0.
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Evolution of the cosine initial data
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Figure: Solution surface u(t, x) (left) and infx∈S ux(t, x) versus t (right) for
a = 0.05, b = 0.

Conjecture: The smooth solution breaks in a finite time if u0 ∈ H3

yields sign-indefinite 1− 3u′′0(x).
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Smooth traveling wave solutions

Traveling wave solutions are solutions of the form

u(x, t) = U(x− ct),

where z = x− ct is the travelling wave coordinate and c is the wave
speed. The wave profile U is 2T-periodic for fixed c.

The wave profile U satisfies the boundary-value problem

d
dz

(
(c− Up)

dU
dz

)
+ U(z) = 0,

U(−T) = U(T),
U′(−T) = U′(T),

}
(ODE)

where
∫ T
−T U(z)dz = 0, i.e. the periodic waves have zero mean.
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ODE technique

Let c > 0 and p ∈ N. A function U is a smooth periodic solution of

d
dz

(
(c− Up)

dU
dz

)
+ U = 0 (ODE)

iff (u, v) = (U,U′) is a periodic orbit γE of the planar system u′ = v,

v′ =
−u + pup−1v2

c− up ,

which has the first integral

E(u, v) =
1
2
(c− up)2v2 +

c
2

u2 − 1
p + 2

up+2.

The periodic wave U is smooth iff c− U(z)p > 0 for every z.
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Existence of smooth periodic traveling waves

Let c > 0 and p ∈ N. The first integral is

E(u, v) =
1
2
(c− up)2v2 +

c
2

u2 − 1
p + 2

up+2
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There exists a smooth family of periodic solutions parametrized by
the energy E ∈ (0,Ec), where 2T depends on E.
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Properties of smooth periodic waves

Theorem (Geyer & P., 2017)

For fixed c, the map E 7→ T is decreasing with T(0) = πc1/2.
For fixed T, the map E 7→ c is increasing with c(0) = T2/π2.

The map E 7→ T for fixed c is transferred to the map E 7→ c for fixed
T by the scaling transformation

U(z; c) = c1/pŨ(z̃), z = c1/2z̃, T = c1/2T̃,

where Ũ is a 2T̃-periodic solution of the same (ODE) with c = 1.

0 1 2 3
0

2

4

6

c

T

T = π c
1/2

T = T
1
 c

1/2
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Peaked 2π-periodic wave for p = 1

The 2π periodic traveling wave solutions U(z) satisfy the BVP{
[c− U(z)]U′(z) + (∂−1

z U)(z) = 0, z ∈ (−π, π)

U(−π) = U(π),

where z = x− ct and
∫ π
−π U(z)dz = 0.

Theorem (Existence of smooth periodic waves)

There exists c∗ > 1 such that for every c ∈ (1, c∗), the BVP admits a
unique smooth periodic wave U satisfying U(z) < c for z ∈ [−π, π].
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],
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which can be periodically continued.
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

The peaked periodic wave U∗ ∈ Hs
per(−π, π) for s < 3/2:

U∗(z) =
∞∑

n=1

2(−1)n

3n2 cos(nz),

with U∗(±π) = c∗ and U′∗(±π) = ±π/3.
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

The peaked wave satisfies the border case: 1− 3U′′∗ (z) = 0 for
z ∈ (−π, π).
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Peaked periodic wave for p = 1

For c = c∗ := π2/9 there exists a solution with parabolic profile

U∗(z) :=
3z2 − π2

18
, z ∈ [−π, π],

which can be periodically continued.

Theorem (Geyer & P, 2019)

The peaked periodic wave U∗ is the unique peaked solution with the
jump at z = ±π.
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Other peaked periodic traveling waves ?
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Cusped waves contradict matching conditions for the first integral

E =
1
2
(c− u)2

(
du
dz

)2

+
c
2

u2 − 1
3

u3

A more general proof was given for ut + uux = ∂−r
x u with r > 1:

[Bruell & Dhara, 2019]
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Plan of my talk

Consider the generalized reduced Ostrovsky equation

(ut + u pux)x = u, p ∈ N.

. Cauchy problem in Sobolev spaces:
. Local solutions with zero mass constraint
. Global smooth solutions
. Wave breaking in a finite time

. Existence of periodic traveling waves:
. A family of smooth periodic waves
. A peaked periodic wave at the terminal point
. No cusped periodic waves

. Stability of periodic traveling waves:
. Spectral stability of smooth waves
. Spectral and linear instability of peaked waves
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Summary of stability results

The generalized reduced Ostrovsky equation

(ut + u pux)x = u,

where p ∈ N.

. p = 1, 2: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Hakkaev & Stanislavova & Stefanov, 2017]

. p = 1, 2: Nonlinear stability of smooth periodic waves for
subharmonic perturbations. [Johnson & P., 2016]

. Any p ∈ N: Spectral stability of smooth periodic waves for
co-periodic perturbations. [Geyer & P., 2017]

. p = 1, 2: Linear and spectral instability of the limiting peaked
wave [Geyer & P., 2019]
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Broader picture on stability of peaked periodic waves

. KdV equation: smooth solutions are stable, no peaked solutions
[Deconinck et.al. 2009,2010]

. Whitham equation: small amplitude smooth solutions are stable,
but become unstable as they approach the peaked solution.
[Carter, Kalisch et. al. 2014]

. Camassa-Holm, Degasperis–Procesi, Novikov: peaked waves are
nonlinearly and asymptotically stable
[Constantin & Strauss, 2000], [Lenells, 2005], [Lin, Liu, 2006], ... Really???

. Ostrovsky equation: all smooth solutions are stable,
but the limiting peaked solution is unstable.
[Geyer & P. 2019]
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Spectral stability of smooth periodic waves

We consider co-periodic perturbations of the traveling waves, that is,
perturbations with the same period 2T .

Using u(t, x) = U(z) + v(z)eλt, where z = x− ct, the spectral stability
problem for a perturbation of the wave profile U is given by

∂zLv = λv

with the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T),

where L̇2
per is the L2 space of periodic function with zero mean.

Definition
The travelling wave is spectrally stable with respect to co-periodic
perturbations if the spectral problem ∂zLv = λv with v ∈ H1

per(−T,T)
has no eigenvalues λ /∈ iR.
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Spectral stability - course of action

. Construct an augmented Lyapunov functional:

F[u] := H[u] + cQ[u],
where

(energy) H[u] = −1
2
‖∂−1

x u‖2
L2

per
− 1

(p + 1)(p + 2)

∫ T

−T
up+2dx

(momentum) Q[u] =
1
2
‖u‖2

L2
per

. A traveling wave U is a critical point of F[u], i.e. δF[U] = 0.

. The Hessian of F[u] is the operator L, i.e. δ2F[U]v = 1
2〈Lv, v〉.

Theorem (Geyer & P., 2017)

a traveling wave U is a local constrained minimizer of the energy
H[u] with fixed momentum Q[u].
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Spectral stability - course of action

. The constraint of fixed momentum Q[u] := 1
2‖u‖

2
L2

per
= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}
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Spectral stability - course of action

. The constraint of fixed momentum Q[u] := 1
2‖u‖

2
L2

per
= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}

Indeed,

0 = Q[U + v]− Q[U] =
1
2

∫ T

−T
(U + v)2dz− 1

2

∫ T

−T
U2dz

=

∫ T

−T
U v dz + O(v2)

= 〈U, v〉.
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Spectral stability - course of action

. The constraint of fixed momentum Q[u] := 1
2‖u‖

2
L2

per
= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}

I Claim: The operator L|U⊥ has a simple zero eigenvalue and a positive
spectrum bounded away from zero.
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I Claim: The operator L|U⊥ has a simple zero eigenvalue and a positive
spectrum bounded away from zero.

. Hamilton-Krein index theory for the spectral problem

∂zLv = λv

states that [Haragus & Kapitula, 08]

# unstable EV of ∂zL ≤# negative EV of L|U⊥
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Spectral stability - course of action

. The constraint of fixed momentum Q[u] := 1
2‖u‖

2
L2

per
= q is equivalent

to restricting the self-adjoint linear operator L to the subspace

U⊥ =
{

v ∈ L̇2
per(−T,T) : 〈U, v〉L2

per
= 0
}

I Claim: The operator L|U⊥ has a simple zero eigenvalue and a positive
spectrum bounded away from zero.

. Hamilton-Krein index theory for the spectral problem

∂zLv = λv

states that [Haragus & Kapitula, 08]

# unstable EV of ∂zL ≤# negative EV of L|U⊥

. Result: the smooth periodic wave U is stable.

Dmitry Pelinovsky, McMaster University Smooth and peaked waves 30 / 41



Operator L restricted to constrained space

I Claim: The operator L|U⊥ has a simple zero eigenvalue and a
positive spectrum bounded away from zero.

This is true if the following two conditions hold:
[Vakhitov-Kolokolov, 1975], [Grillakis–Shatah–Strauss, 1987]

. L has exactly one negative eigenvalue,
a simple zero eigenvalue with eigenvector ∂zU,
and the rest of its spectrum is positive and bounded away from 0

. 〈L−1U,U〉 = − d
dc‖U‖

2
L2

per(−T,T) < 0, where the period T is fixed.

Both conditions are proven using strict monotonicity of the
energy-to-period map T(E).
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Spectral properties of the operator L

Recall the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T).
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Spectral properties of the operator L

Recall the self-adjoint linear operator

L = P0
(
∂−2

z + c− Up)P0 : L̇2
per(−T,T)→ L̇2

per(−T,T).

When E → 0, then U → 0, T(E)→ T(0) =
√

cπ, and

L→ L0 = P0
(
∂−2

z + c
)

P0.

σ(L0) = {c(1− n−2), n ∈ Z \ {0}} all eigenvalues are double.
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cπ, and

L→ L0 = P0
(
∂−2

z + c
)

P0.

σ(L0) = {c(1− n−2), n ∈ Z \ {0}} all eigenvalues are double.
 

When E > 0 the double zero eigenvalue splits into a simple negative
eigenvalue and a simple zero eigenvalue of L.
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Spectral properties of the operator L

Consider the eigenvalue problem(
∂−2

z + c− Up) v = λv, v ∈ L̇2
per(−T,T).

Zero eigenvalue λ0 = 0:

. ∂zU is an eigenvector for λ0: L∂zU = 0

. UE is also a solution of the spectral equation for λ0 = 0:

∂E(ODE) ⇐⇒ UE + ∂2
z [(c− Up)UE] = 0

Differentiating the BC U(±T(E);E) = 0 w.r.t. E yields

∂EU(−T(E);E)− T ′(E) ∂zU(−T(E);E)︸ ︷︷ ︸
6=0

= ∂EU(T(E);E) + T ′(E) ∂zU(T(E);E)︸ ︷︷ ︸
6=0

.
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6=0

.

If T ′(E) 6= 0, then UE is not 2T(E)-periodic: Ker(L) = span{Uz}
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6=0

.

As a result, L|U⊥ is positive.
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Spectral instability of the peaked periodic wave: p = 1

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0,

or equivalently

vt = ∂zLv, where L = P0
(
∂−2

z + c∗ − U∗
)

P0 : L̇2
per → L̇2

per,

where L̇2
per is the L2 space of periodic function with zero mean.
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Spectral instability of the peaked periodic wave: p = 1

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0,

or equivalently

vt = ∂zLv, where L = P0
(
∂−2

z + c∗ − U∗
)

P0 : L̇2
per → L̇2

per,

where L̇2
per is the L2 space of periodic function with zero mean.

Lemma
The spectrum of the self-adjoint operator L is σ(L) = {λ−} ∪

[
0, π

2

6

]
.

The spectral stability problem can not be solved by applying standard
energy methods due to the lack of coercivity.
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Spectral instability of the peaked periodic wave: p = 1

Let u = U + v and consider the linearized evolution for a co-periodic
perturbation v to the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0,

or equivalently

vt = ∂zLv, where L = P0
(
∂−2

z + c∗ − U∗
)

P0 : L̇2
per → L̇2

per,

where L̇2
per is the L2 space of periodic function with zero mean.

Domain of ∂zL in L̇2
per is larger than H1

per:

dom(∂zL) =
{

v ∈ L̇2
per : ∂z [(c∗ − U∗)v] ∈ L̇2

per
}
.
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Linear instability of the peaked periodic wave: p = 1

Consider the linearized evolution for a co-periodic perturbation v to
the travelling wave U:{

vt + ∂z [(U∗(z)− c∗)v] = ∂−1
z v, t > 0,

v|t=0 = v0.
(linO)

Definition
The travelling wave U is linearly unstable if there exists
v0 ∈ dom(∂zL) such that the unique global solution
v ∈ C(R, dom(∂zL)) satisfies

‖v(t)‖L2 ≥ Ceλ0t‖v0‖L2 , t > 0.

for some λ0 > 0.
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Linear instability of the peaked periodic wave

. Step 1: The truncated problem{
vt +

1
6∂z
[
(z2 − π2)v

]
= 0, t > 0,

v|t=0 = v0.
(truncO)

Method of characteristics. The characteristic curves z = Z(s, t) are
found explicitly and the solution of V(s, t) := v(Z(s, t), t) is

V(s, t) =
1
π2 [π cosh(πt/6)−s sinh(πt/6)]2v0(s), s ∈ [−π, π], t ∈ R.

This yields the linear instability result for the truncated problem:

Lemma
For every v0 ∈ dom(∂zL) ∃! global solution v ∈ C(R, dom(∂zL)). If
v0 is odd, then the global solution satisfies

1
2
‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.
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Linear instability of the peaked periodic wave

. Step 2: The full evolution problem{
vt +

1
6∂z
[
(z2 − π2)v

]
=∂−1

z v, t > 0,
v|t=0 = v0.

(linO)

Generalized Meth. of Char. Treat ∂−1
z v as a source term in (linO).

. truncated problem vt = A0v has a unique global solution in L̇2
per

. Bounded Perturbation Theorem:
A := A0 + ∂−1

z is the generator of C0-semigroup on L̇2
per

Lemma
For every v0 ∈ dom(∂zL) ∃! global solution v ∈ C(R, dom(∂zL)). If
v0 is odd, then the solution satisfies

C‖v0‖L2eπt/6 ≤ ‖v(t)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.

Conclusion: The peaked periodic wave is linearly unstable.
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Spectral instability of the peaked periodic wave: p = 1

Back to the spectral problem

λv = Av := ∂z [(c∗ − U∗)v] + ∂−1
z v,

with
dom(A) =

{
v ∈ L̇2

per : ∂z [(c∗ − U∗)v] ∈ L̇2
per
}
.

. 0 ∈ σp(A) because U′∗ ∈ dom(A) and AU′∗ = 0.

Theorem (Geyer & P., 2019)

σ(A) =
{
λ ∈ C : −π

6
≤ Re(λ) ≤ π

6

}
.
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Truncated spectral problem

It is natural to consider the truncated spectral problem

λv = A0v := ∂z [(c∗ − U∗)v] ,

with
dom(A0) =

{
v ∈ L̇2

per : ∂z [(c∗ − U∗)v] ∈ L̇2
per
}
.

Lemma
Let A : dom(A) ⊂ X → X and A0 : dom(A0) ⊂ X → X be linear
operators on Hilbert space X with the same domain
dom(A0) = dom(A) such that A− A0 = K is a compact operator in
X. Assume that the intersections σp(A) ∩ ρ(A0) and σp(A0) ∩ ρ(A)
are empty. Then, σ(A) = σ(A0).
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Spectrum of the truncated problem

We want to compute the spectrum of the truncated problem:

λv = A0v :=
1
6
∂z
[
(π2 − z2)v(z)

]
.

Transformation in characteristic variables,

dz
dξ

= 1
6(π

2 − z2) ⇒ z = π tanh
(
πξ

6

)
,

maps it to

µw = B0w := ∂yw(y)− tanh(y)w(y), y ∈ R,

with µ = 6λ/π and dom(B0) = H1(R) ∩ L̇2(R),

L̇2(R) := {w ∈ L2(R) : 〈w, sech(·)〉 = 0}.

No point spectrum, whereas the essential spectrum is located at:

σ(B0) = {µ ∈ C : −1 ≤ Re(µ) ≤ 1} .
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Summary

. Global solutions and wave breaking in the generalized reduced
Ostrovsky equation

(ut + upux)x = u.

. Existence of smooth and peaked periodic waves
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. Smooth periodic waves are spectrally stable for any p ∈ N.
. Peaked wave is spectrally and linearly unstable for p = 1, 2.
. Nonlinear stability or instability of smooth and peaked waves?

Thank you! Questions???
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