Spectral stability of periodic waves in the generalized reduced Ostrovsky equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

IMACS Conference on Nonlinear Evolution Equations Athens, GA, USA, March 29-31, 2017

Based on the joint work with:

- E.R. Johnson (University College London) - J. Diff. Eqs. (2016)
- A. Geyer (Delft University of Technology) - Lett. Math. Phys. (2017)

Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a rotating fluid of a finite depth [Ostrovsky, 1978]:

$$
\left(u_{t}+u u_{x}-\beta u_{x x x}\right)_{x}=\gamma u
$$

where β and γ are real coefficients.
When $\beta=0$ and $\gamma=1$, the Ostrovsky equation is

$$
\left(u_{t}+u u_{x}\right)_{x}=u
$$

and is known under the names of

- the short-wave equation [Hunter, 1990];
- Ostrovsky-Hunter equation [Boyd, 2005];
- reduced Ostrovsky equation [Stepanyants, 2006];
- the Vakhnenko equation [Vakhnenko \& Parkes, 2002].

We will use the terminology of the reduced Ostrovsky equation.

Modified Ostrovsky equation

Internal waves are described by the modified Ostrovsky equation [R.
Grimshaw et al., 1998]:

$$
\left(u_{t}+u^{2} u_{x}-\beta u_{x x x}\right)_{x}=\gamma u
$$

When $\beta=0$ and $\gamma=1$, the modified Ostrovsky equation

$$
\left(u_{t}+u^{2} u_{x}\right)_{x}=u
$$

has been studied by [E.R. Johnson, R. Grimshaw, 2014]

Note that the reduced modified Ostrovsky equation is different from the short-pulse equation derived as a model for propagation of ultra-short pulses with few cycles on the pulse scale [Schäfer, Wayne 2004]:

$$
u_{x t}=u+\left(u^{3}\right)_{x x}
$$

Well-posedness results

Consider the generalized reduced Ostrovsky equation for an integer p :

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u .
$$

We are interested in travelling $2 T$-periodic waves and their stability. All solutions satisfy the constraint $\int_{-T}^{T} u d x=0$.
We denote the L^{2} space of $2 T$-periodic functions with zero mean by $\dot{L}_{\text {per }}^{2}$.

Well-posedness results

Consider the generalized reduced Ostrovsky equation for an integer p :

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

We are interested in travelling $2 T$-periodic waves and their stability. All solutions satisfy the constraint $\int_{-T}^{T} u d x=0$.
We denote the L^{2} space of $2 T$-periodic functions with zero mean by $\dot{L}_{\text {per }}^{2}$.

- Local solutions exist in $\dot{H}_{\text {per }}^{s}$ for $s>\frac{3}{2}$ [A. Stefanov et al. (2010)].
- For sufficiently large initial data, the local solutions break in a finite time [Y. Liu et al. $(2009,2010)$ for $p=1,2]$.
- For sufficiently small initial data in $\dot{H}_{\mathrm{per}}^{2}$, the local solutions are continued globally [D.P.,A.Sakovich (2010) for $p=2$].
- For sufficiently small initial data in $\dot{H}_{\text {per }}^{3}$, the local solutions are continued globally [R. Grimshaw, D.P. (2014) for $p=1$].
- For $p=1$ and $p=2$, the reduced Ostrovsky equation is reduced to an integrable equation of the Klein-Gordon type.

Traveling periodic waves

Consider travelling 2T-periodic waves $u(x, t)=U(x-c t)$ in the generalized reduced Ostrovsky equation:

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u, \quad p \in \mathbb{N} .
$$

The wave profile satisfies the second-order ODE

$$
\frac{d}{d z}\left[\left(c-U^{p}\right) \frac{d U}{d z}\right]+U(z)=0, \quad U(-T)=U(T), \quad U^{\prime}(-T)=U^{\prime}(T),
$$

where $z=x-c t$ and c is the wave speed.
After two integrations, the ODE is the Euler-Lagrange equation of the energy function $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\text {per }}^{2} \cap L^{p+2}$, where

$$
H(u)=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\mathrm{per}}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x
$$

and

$$
Q(u)=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}
$$

are conserved energy and momentum of the reduced Ostrovsky equation.

Spectral stability

Traveling periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\text {per }}^{2} \cap L^{p+2}$. The Hessian operator is

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ is the mean-zero projection operator.

Definition

We say that the traveling wave is spectrally stable if $\partial_{z} L: \dot{H}_{\mathrm{per}}^{1} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ has no eigenvalues λ with $\operatorname{Re}(\lambda)>0$.

Approaches to stability of traveling periodic waves:

- Orbital stability in $\dot{H}_{\text {per }}^{3}($ for $p=1)$ and $\dot{H}_{\text {per }}^{2}$ (for $p=2$) by using higher-order energy [E.R.Johnson, D.P. (2016)]
- Spectral stability in $\dot{L}_{\text {per }}^{2}$ (for $p=1$ and $p=2$) from eigenvalues of $M \psi=\lambda \partial_{z} \psi$ in $L_{\text {per }}^{2}$ [S. Hakkaev, et al. (2017)].
- Spectral stability in $\dot{L}_{\text {per }}^{2}$ for any $p \in \mathbb{N}$ [A. Geyer, D.P. (2017)].

Orbital stability of periodic waves for $p=1$

J. Brunelli \& S. Sakovich (2013) found bi-infinite sequence of conserved quantities for the reduced Ostrovsky equation $\left(u_{t}+u u_{x}\right)_{x}=u$:

$$
\begin{aligned}
E_{-1} & =\int\left(\frac{1}{3} u^{3}+\left(\partial_{x}^{-1} u\right)^{2}\right) d x=-2 H \\
E_{0} & =\int u^{2} d x=2 Q \\
E_{1} & =\int\left(1-3 u_{x x}\right)^{1 / 3} d x \\
E_{2} & =\int \frac{\left(u_{x x x}\right)^{2}}{\left(1-3 u_{x x}\right)^{7 / 3}} d x
\end{aligned}
$$

Theorem (R.Grimshaw \& D.P., 2014)

Let $u_{0} \in H^{3}$ such that $1-3 u_{0}^{\prime \prime}(x)>0$ for all x. There exists a unique solution $u \in C\left(\mathbb{R}, H^{3}\right)$ to the reduced Ostrovsky equation with $u(0)=u_{0}$.

Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\mathrm{per}}^{2} \cap L^{3}$ with

$$
L_{c}=F^{\prime \prime}(U)=P_{0}\left(\partial_{z}^{-2}+c-U(z)\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T),
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\text {per }}^{2}$ is the mean-zero projection operator.
Let us normalize the period T to 2π. Then, $U=0$ at $c=1$, and

$$
L_{c=1}=P_{0}\left(1+\partial_{z}^{-2}\right) P_{0} \quad \sigma\left(L_{c=1}\right)=\left\{1-n^{-2}, \quad n \geq 1\right\},
$$

where the spectrum is defined in $\dot{L}_{\text {per }}^{2}(0,2 \pi)$. All eigenvalues are positive except for the double zero eigenvalue.

Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\mathrm{per}}^{2} \cap L^{3}$ with

$$
L_{c}=F^{\prime \prime}(U)=P_{0}\left(\partial_{z}^{-2}+c-U(z)\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T),
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ is the mean-zero projection operator.
Let us normalize the period T to 2π. Then, $U=0$ at $c=1$, and

$$
L_{c=1}=P_{0}\left(1+\partial_{z}^{-2}\right) P_{0} \quad \sigma\left(L_{c=1}\right)=\left\{1-n^{-2}, \quad n \geq 1\right\}
$$

where the spectrum is defined in $\dot{L}_{\text {per }}^{2}(0,2 \pi)$. All eigenvalues are positive except for the double zero eigenvalue.

For the subharmonic perturbations in $\dot{L}_{\mathrm{per}}^{2}(0,2 \pi N)$ with $N \geq 1$, the spectrum is

$$
\sigma\left(L_{c=1}\right)=\left\{1-n^{-2} N^{2}, \quad n \geq 1\right\} .
$$

There are $N-1$ double negative eigenvalues and a double zero eigenvalue.
U is not a minimizer of $F(u)=H(u)+c Q(u)$.

Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

$$
G(u)=R(u)-\frac{1}{\left(c^{3}-6 I_{c}\right)^{2 / 3}} Q(u) \quad \text { in } \dot{H}_{\mathrm{per}}^{3}
$$

where

$$
R(u)=-\int\left(1-3 u_{x x}\right)^{1 / 3} d x
$$

and

$$
I_{c}=\frac{1}{2}(c-U)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{3} U^{3}=\text { const in } z .
$$

Here $c^{3}-6 I_{c}>0, U(z)<c$, and $1-3 U^{\prime \prime}(z)>0$ for smooth periodic waves.

Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

$$
G(u)=R(u)-\frac{1}{\left(c^{3}-6 I_{c}\right)^{2 / 3}} Q(u) \quad \text { in } \dot{H}_{\mathrm{per}}^{3}
$$

where

$$
R(u)=-\int\left(1-3 u_{x x}\right)^{1 / 3} d x
$$

and

$$
I_{c}=\frac{1}{2}(c-U)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{3} U^{3}=\text { const in } z .
$$

Here $c^{3}-6 I_{c}>0, U(z)<c$, and $1-3 U^{\prime \prime}(z)>0$ for smooth periodic waves.
The Hessian operator is

$$
M_{c}=G^{\prime \prime}(U)=P_{0}\left(\partial_{z}^{2}\left(1-3 U^{\prime \prime}\right)^{-5 / 3} \partial_{z}^{2}-\left(c^{3}-6 I_{c}\right)^{-2 / 3}\right) P_{0}: \dot{H}_{\mathrm{per}}^{4} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

For $U=0$ at $c=1$ and for the subharmonic perturbations in $\dot{L}_{\text {per }}^{2}(0,2 \pi N)$

$$
M_{c=1}=P_{0}\left(-1+\partial_{z}^{4}\right) P_{0} \quad \sigma\left(M_{c=1}\right)=\left\{-1+n^{4} N^{-4}, \quad n \geq 1\right\} .
$$

There are $N-1$ double negative eigenvalues and a double zero eigenvalue.
U is not a minimizer of $G(u)$.

Mixed variational structure

Following

- N. Bottman, B. Deconinck, DCDS A (2009)
- B. Deconinck, T. Kapitula, Physics Letters A (2010)
- M. Nivala, B. Deconinck, Physica D (2010)
- N. Bottman, B. Deconinck, M. Nivala, J. Phys. A (2011)
- Th. Gallay, D.P., J. Diff. Eq. (2015)
we define a mixed variational structure for periodic waves U :

$$
W_{b}(u):=G(u)-b F(u), \quad b \in \mathbb{R}
$$

Theorem (E.Johnson, D.P., 2016)

For sufficiently small $|c-1|, U$ is a local nondegenerate (up to translational symmetry) minimizer of $W_{b}(u)$ in $\dot{H}_{\mathrm{per}}^{3}(0,2 \pi N)$ for every $b \in\left(b_{-}, b_{+}\right)$, where $b_{ \pm}$are given asymptotically by

$$
b_{ \pm}=\frac{1}{2} \pm \frac{3}{\sqrt{2}} \sqrt{c-1}+\mathcal{O}(c-1), \quad \text { as } \quad c \rightarrow 1
$$

Numerical results: periodic wave U

Galerkin-Fourier approximation

$$
U(z)=\sum_{n=1}^{N} A_{n} \cos (n z)
$$

where $a=\left|A_{1}\right|$ is taken as the wave amplitude (depends on $c>1$).

Figure: (a) The 2π-periodic solutions of the reduced Ostrovsky equation. (b) The Fourier coefficients of the trigonometric approximation.

Numerical results: U as a minimizer of W

The mixed variational structure yields

$$
W_{b}(u):=G(u)-b F(u),
$$

and U is a critical point of W for every $b \in \mathbb{R}$.

Figure: The region of the (b, a) plane where U is a minimizer of $W_{b}(u)$.

Orbital stability of periodic waves for $p=2$

J. Brunelli (2005) found bi-infinite sequence of conserved quantities for the modified reduced Ostrovsky equation $\left(u_{t}+u^{2} u_{x}\right)_{x}=u$:

$$
\begin{aligned}
E_{-1} & =\int\left(\frac{1}{12} u^{4}+\left(\partial_{x}^{-1} u\right)^{2}\right) d x=-2 H \\
E_{0} & =\int u^{2} d x=2 Q \\
E_{1} & =\int\left(1-u_{x}^{2}\right)^{1 / 2} d x \\
E_{2} & =\int \frac{u_{x x}^{2}}{\left(1-u_{x}^{2}\right)^{5 / 2}} d x
\end{aligned}
$$

Theorem (D.P. \& A. Sakovich, 2010)

Let $u_{0} \in H^{2}$ such that $\left\|u_{0}^{\prime}\right\|_{L^{2}}^{2}+\left\|u_{0}^{\prime \prime}\right\|_{L^{2}}^{2}<1$. There exists a unique solution $u \in C\left(\mathbb{R}, H^{2}\right)$ to the modified reduced Ostrovsky equation with $u(0)=u_{0}$.

Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\text {per }}^{2} \cap L^{4}$ with

$$
L_{c}=F^{\prime \prime}(U)=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{2}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2},
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ is the mean-zero projection operator.

Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$ in $\dot{L}_{\text {per }}^{2} \cap L^{4}$ with

$$
L_{c}=F^{\prime \prime}(U)=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{2}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ is the mean-zero projection operator.

Traveling periodic wave U is also a critical point of

$$
G(u)=R(u)-\frac{1}{2\left(c^{2}-2 I_{c}\right)^{1 / 2}} Q(u) \quad \text { in } \dot{H}_{\mathrm{per}}^{2}
$$

where

$$
R(u)=-\int\left(1-u_{x}^{2}\right)^{1 / 2} d x
$$

and

$$
I_{c}=\frac{1}{2}\left(c-U^{2}\right)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{2} U^{4}=\text { const in } z .
$$

Here $c^{2}-2 I_{c}>0, U(z)^{2}<c$, and $\left|U^{\prime}(z)\right|<1$ for smooth periodic waves.
U is not a minimizer of neither $F(u)$ nor $G(u)$ in $\dot{L}_{\text {per }}^{2}(0,2 \pi N)$.

Mixed variational structure

Let us define now the mixed variational structure for periodic waves U :

$$
W_{b}(u):=G(u)-b F(u), \quad b \in \mathbb{R}
$$

U is a critical point of W.

Theorem (E.Johnson, D.P., 2016)

For sufficiently small |c-1|, U is a local nondegenerate (up to translational symmetry) minimizer of $W_{b}(u)$ in $\dot{H}_{\mathrm{per}}^{2}(0,2 \pi N)$ for every $b \in\left(b_{-}, b_{+}\right)$, where $b_{ \pm}$are given asymptotically by

$$
b_{ \pm}=2 \pm 4 \sqrt{2} \sqrt{c-1}+\mathcal{O}(c-1), \quad \text { as } \quad c \rightarrow 1 .
$$

Numerical results: U as a minimizer of W

The mixed variational structure yields

$$
W_{b}(u):=G(u)-b F(u),
$$

and U is a critical point of W for every $b \in \mathbb{R}$.

Figure: The region of the (b, a) plane where U is a minimizer of $W_{b}(u)$.

Spectral stability in the generalized reduced Ostrovsky equation

The travelling $2 T$-periodic waves $u(x, t)=U(x-c t)$ satisfies the second-order ODE

$$
\frac{d}{d z}\left[\left(c-U^{p}\right) \frac{d U}{d z}\right]+U(z)=0, \quad U(-T)=U(T), \quad U^{\prime}(-T)=U^{\prime}(T)
$$

with the first-order invariant

$$
E=\frac{1}{2}\left(c-U^{p}\right)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{p+2} U^{p+2}=\mathrm{const},
$$

where $z=x-c t$ and c is the wave speed.

Theorem (A.Geyer, D.P., 2017)

For every $c>0$ and $p \in \mathbb{N}$, there exists a smooth family of periodic solutions $U \in \dot{L}_{\mathrm{per}}^{2}(-T, T) \cap H_{\mathrm{per}}^{\infty}(-T, T)$ parameterized by $E \in\left(0, E_{c}\right)$ such that the energy-to-period map $E \mapsto 2 T$ is strictly monotonically decreasing.

Existence theorem on the phase plane

The first-order invariant

$$
E=\frac{1}{2}\left(c-U^{p}\right)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{p+2} U^{p+2}=\mathrm{const}
$$

yield integral curves on the $\left(U, U^{\prime}\right)$ phase plane.

Figure: Phase portraits for $p=2$ (left) and $p=1$ (right).

Monotonicity of the map $E \mapsto 2 T$

It follows from

$$
E=\frac{1}{2}\left(c-U^{p}\right)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{c}{2} U^{2}-\frac{1}{p+2} U^{p+2}=\mathrm{const}
$$

that

$$
2 T(E)=\int_{\gamma_{E}} \frac{d u}{v}=2 \int_{u_{-}(E)}^{u_{+}(E)} \frac{\sqrt{B(u)} d u}{\sqrt{E-A(u)}}
$$

where $A(u)=\frac{c}{2} u^{2}-\frac{1}{p+2} u^{p+2}$ and $B(u)=\frac{1}{2}\left(c-u^{p}\right)^{2}$.

- The integrand is singular at the turning points $u_{ \pm}(E)$ where $A\left(u_{ \pm}\right)=E$.
- Derivative in E can not be applied separately to the integrand and the limits of integration.

Monotonicity of the map $E \mapsto 2 T$

Following

- M. Frau, F. Manosas, J. Villadelprat, Transactions AMS (2011)
- A. Farijo, J. Villadelprat, J. Diff. Eq. (2014)
one can rewrite it

$$
\begin{aligned}
2 E T(E) & =\int_{\gamma_{E}} B(u) v d u+\int_{\gamma_{E}} A(u) \frac{d u}{v} \\
& =\int_{\gamma_{E}}\left[B(u)+\left(\frac{2 A(u) B(u)}{A^{\prime}(u)}\right)^{\prime}-\frac{A(u) B^{\prime}(u)}{A^{\prime}(u)}\right] v d u
\end{aligned}
$$

where the integrand is now free of singularities at the turning points.
Then, applying derivative in E, we obtain

$$
2 T(E)+2 E T^{\prime}(E)=\int_{\gamma_{E}} \frac{B(u)+G(u)}{2 B(u) v} d u
$$

and the final expression

$$
T^{\prime}(E)=-\frac{p}{4(2+p) E} \int_{\gamma_{E}} \frac{u^{p}}{\left(c-u^{p}\right)} \frac{d u}{v}<0 .
$$

Existence theorem on the parameter plane

For fixed c, the map $E \mapsto 2 T$ is monotonically decreasing for $E \in\left(0, E_{c}\right)$ with $T(0)=\pi c^{1 / 2}$ and $T\left(E_{c}\right)=T_{1} c^{1 / 2}$, where $T_{1}<\pi$ is independent of c.

Figure: The existence region for smooth periodic waves in the (T, c)-parameter plane.

For fixed T, the map $c \mapsto E$ is monotonically increasing for $c \in\left(T^{2} \pi^{-2}, T^{2} T_{1}^{-2}\right)$.

Spectral stability in the generalized reduced Ostrovsky equation

The $2 T$-periodic wave U is a critical point of $F(u)=H(u)+c Q(u)$, where

$$
\begin{gathered}
H(u)=-\frac{1}{2}\left\|\partial_{x}^{-1} u\right\|_{L_{\text {per }}^{2}}^{2}-\frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} d x, \\
Q(u)=\frac{1}{2}\|u\|_{L_{\text {per }}^{2}}^{2}
\end{gathered}
$$

The Hessian operator is

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T),
$$

where $P_{0}: L_{\mathrm{per}}^{2} \rightarrow \dot{L}_{\mathrm{per}}^{2}$ is the zero-mean projection operator.

Theorem (A.Geyer, D.P., 2017)

For every $c>0, p \in \mathbb{N}$, and U, the operator L in $\dot{L}_{\mathrm{per}}^{2}(-T, T)$ has a simple negative eigenvalue, a simple zero eigenvalue associated with $\operatorname{Ker}(L)=\operatorname{span}\left\{\partial_{z} U\right\}$, and the rest of the spectrum is strictly positive. Moreover, the operator L is positive under the fixed-momentum constraint:

$$
L_{c}^{2}=\left\{u \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, u\rangle_{L_{\mathrm{per}}^{2}}=0\right\} .
$$

An argument about the spectrum of L

Fix $T>0$ and consider the Hessian operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T) .
$$

At $c=T^{2} \pi^{-2}$, we have $U=0$ and

$$
L_{0}=P_{0}\left(c+\partial_{z}^{-2}\right) P_{0} \quad \sigma\left(L_{0}\right)=\left\{c\left(1-n^{-2}\right), \quad n \geq 1\right\}
$$

All eigenvalues are positive except for the double zero eigenvalue. For $c>T^{2} \pi^{-2}, L_{0}$ has only simple zero eigenvalue and a simple negative eigenvalue.

Lemma

The zero eigenvalue of L is simple if $T^{\prime}(E) \neq 0$.

The family of operators L is iso-spectral with respect to parameter c.

An argument about the constraint L_{c}^{2}

Fix $T>0$ and consider the Hessian operator

$$
L=P_{0}\left(\partial_{z}^{-2}+c-U(z)^{p}\right) P_{0}: \dot{L}_{\mathrm{per}}^{2}(-T, T) \rightarrow \dot{L}_{\mathrm{per}}^{2}(-T, T)
$$

under the scalar constraint

$$
L_{c}^{2}=\left\{u \in \dot{L}_{\mathrm{per}}^{2}(-T, T): \quad\langle U, u\rangle_{L_{\mathrm{per}}^{2}}=0\right\} .
$$

The operator L is positive under the constraint if

$$
\left\langle L^{-1} U, U\right\rangle_{L_{\text {per }}^{2}}<0,
$$

where $U \perp \operatorname{Ker}(L)=\operatorname{span}\left(\partial_{z} U\right)$.
For fixed $T>0, L \partial_{c} U=-U$ yields $\partial_{c} U=-L^{-1} U \in \dot{L}_{\text {per }}^{2}(-T, T)$, so that

$$
\left\langle L^{-1} U, U\right\rangle_{L_{\text {per }}^{2}}=-\frac{1}{2} \frac{d}{d c}\|U\|_{L_{\text {per }}^{2}}^{2}<0,
$$

the latter inequality can be proved for every $p>0$ and for every $c>0$.

Summary

For the generalized reduced Ostrovsky equation with an integer p,

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u
$$

we have shown two stability results for the travelling periodic waves:

- Minimization property for higher-order energy in $\dot{H}_{\text {per }}^{s}$-spaces for $p=1$ and $p=2$
- Spectral stability in $\dot{L}_{\text {per }}^{2}$ for any $p \in \mathbb{N}$

Summary

For the generalized reduced Ostrovsky equation with an integer p,

$$
\left(u_{t}+u^{p} u_{x}\right)_{x}=u,
$$

we have shown two stability results for the travelling periodic waves:

- Minimization property for higher-order energy in $\dot{H}_{\text {per }}^{s}$-spaces for $p=1$ and $p=2$
- Spectral stability in $\dot{L}_{\text {per }}^{2}$ for any $p \in \mathbb{N}$

Spectral stability for $p \geq 3$ cannot be transferred to the orbital stability results because the global well-posedness is not available in $\dot{L}_{\mathrm{per}}^{2} \cap L^{p+2}$, where the energy and momentum functions $H(u)$ and $Q(u)$ are defined.

