Spectral stability of periodic waves in the generalized reduced Ostrovsky equation

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

IMACS Conference on Nonlinear Evolution Equations Athens, GA, USA, March 29-31, 2017

Based on the joint work with:

- E.R. Johnson (University College London) J. Diff. Eqs. (2016)
- A. Geyer (Delft University of Technology) Lett. Math. Phys. (2017)

(日) (日) (日) (日) (日) (日) (日)

The **Ostrovsky equation** is a model for small-amplitude long waves in a rotating fluid of a finite depth [Ostrovsky, 1978]:

$$(u_t + uu_x - \beta u_{xxx})_x = \gamma u_x$$

where β and γ are real coefficients.

When $\beta = 0$ and $\gamma = 1$, the Ostrovsky equation is

$$(u_t + uu_x)_x = u,$$

and is known under the names of

- the short-wave equation [Hunter, 1990];
- Ostrovsky–Hunter equation [Boyd, 2005];
- reduced Ostrovsky equation [Stepanyants, 2006];
- the Vakhnenko equation [Vakhnenko & Parkes, 2002].

We will use the terminology of the reduced Ostrovsky equation.

Internal waves are described by the modified Ostrovsky equation [R. Grimshaw et al., 1998]:

$$(u_t + u^2 u_x - \beta u_{xxx})_x = \gamma u.$$

When $\beta = 0$ and $\gamma = 1$, the modified Ostrovsky equation

$$(u_t + u^2 u_x)_x = u$$

has been studied by [E.R. Johnson, R. Grimshaw, 2014]

Note that the reduced modified Ostrovsky equation is different from the **short-pulse equation** derived as a model for propagation of ultra-short pulses with few cycles on the pulse scale [Schäfer, Wayne 2004]:

$$u_{xt} = u + \left(u^3\right)_{xx}.$$

Consider the generalized reduced Ostrovsky equation for an integer *p*:

$$(u_t + u^p u_x)_x = u.$$

We are interested in travelling 2T-periodic waves and their stability. All solutions satisfy the constraint $\int_{-T}^{T} u dx = 0$.

We denote the L^2 space of 2*T*-periodic functions with zero mean by \dot{L}^2_{per} .

Consider the generalized reduced Ostrovsky equation for an integer *p*:

$$(u_t + u^p u_x)_x = u.$$

We are interested in **travelling** 2T-**periodic waves and their stability**. All solutions satisfy the constraint $\int_{-T}^{T} u dx = 0$. We denote the L^2 space of 2T-periodic functions with zero mean by \dot{L}_{per}^2 .

- Local solutions exist in \dot{H}_{per}^{s} for $s > \frac{3}{2}$ [A. Stefanov *et al.* (2010)].
- For sufficiently *large* initial data, the local solutions break in a finite time [Y. Liu *et al.* (2009,2010) for p = 1, 2].
- For sufficiently *small* initial data in \dot{H}_{per}^2 , the local solutions are continued globally [D.P.,A.Sakovich (2010) for p = 2].
- For sufficiently *small* initial data in \dot{H}_{per}^3 , the local solutions are continued globally [R. Grimshaw, D.P. (2014) for p = 1].
- For p = 1 and p = 2, the reduced Ostrovsky equation is reduced to an integrable equation of the Klein–Gordon type.

Consider travelling 2*T*-periodic waves u(x,t) = U(x - ct) in the generalized reduced Ostrovsky equation:

$$(u_t + u^p u_x)_x = u, \quad p \in \mathbb{N}.$$

The wave profile satisfies the second-order ODE

$$\frac{d}{dz}\left[(c-U^{p})\frac{dU}{dz}\right] + U(z) = 0, \quad U(-T) = U(T), \quad U'(-T) = U'(T),$$

where z = x - ct and c is the wave speed.

After two integrations, the ODE is the Euler–Lagrange equation of the energy function F(u) = H(u) + cQ(u) in $\dot{L}^2_{per} \cap L^{p+2}$, where

$$H(u) = -\frac{1}{2} \|\partial_x^{-1}u\|_{L^2_{\text{per}}}^2 - \frac{1}{(p+1)(p+2)} \int_{-T}^{T} u^{p+2} dx,$$

and

$$Q(u) = \frac{1}{2} \|u\|_{L^2_{\text{per}}}^2$$

(ロ) (同) (三) (三) (三) (○) (○)

are conserved energy and momentum of the reduced Ostrovsky equation.

Traveling periodic wave U is a critical point of F(u)=H(u)+cQ(u) in $\dot{L}^2_{\rm per}\cap L^{p+2}.$ The Hessian operator is

$$L = P_0 \left(\partial_z^{-2} + c - U(z)^p \right) P_0 : \dot{L}_{per}^2(-T, T) \to \dot{L}_{per}^2(-T, T),$$

where $P_0: L^2_{\rm per}
ightarrow \dot{L}^2_{\rm per}$ is the mean-zero projection operator.

Definition

We say that the traveling wave is **spectrally stable** if $\partial_z L : \dot{H}_{\rm per}^1 \to \dot{L}_{\rm per}^2$ has no eigenvalues λ with $\operatorname{Re}(\lambda) > 0$.

Approaches to stability of traveling periodic waves:

- Orbital stability in \dot{H}_{per}^3 (for p = 1) and \dot{H}_{per}^2 (for p = 2) by using higher-order energy [E.R.Johnson, D.P. (2016)]
- Spectral stability in \dot{L}_{per}^2 (for p = 1 and p = 2) from eigenvalues of $M\psi = \lambda \partial_z \psi$ in L_{per}^2 [S. Hakkaev, *et al.* (2017)].
- Spectral stability in \dot{L}_{per}^2 for any $p \in \mathbb{N}$ [A. Geyer, D.P. (2017)].

Orbital stability of periodic waves for p = 1

. . .

J. Brunelli & S. Sakovich (2013) found bi-infinite sequence of conserved quantities for the reduced Ostrovsky equation $(u_t + uu_x)_x = u$:

$$E_{-1} = \int \left(\frac{1}{3}u^3 + (\partial_x^{-1}u)^2\right) dx = -2H,$$

$$E_0 = \int u^2 dx = 2Q$$

$$E_1 = \int (1 - 3u_{xx})^{1/3} dx,$$

$$E_2 = \int \frac{(u_{xxx})^2}{(1 - 3u_{xx})^{7/3}} dx$$

...

Theorem (R.Grimshaw & D.P., 2014)

Let $u_0 \in H^3$ such that $1 - 3u_0''(x) > 0$ for all x. There exists a unique solution $u \in C(\mathbb{R}, H^3)$ to the reduced Ostrovsky equation with $u(0) = u_0$.

Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F(u)=H(u)+cQ(u) in $\dot{L}^2_{\rm per}\cap L^3$ with

$$L_{c} = F''(U) = P_{0} \left(\partial_{z}^{-2} + c - U(z) \right) P_{0} : \dot{L}_{per}^{2}(-T,T) \to \dot{L}_{per}^{2}(-T,T),$$

where $P_0: L^2_{\rm per} \to \dot{L}^2_{\rm per}$ is the mean-zero projection operator.

Let us normalize the period T to 2π . Then, U = 0 at c = 1, and

$$L_{c=1} = P_0(1 + \partial_z^{-2})P_0 \quad \sigma(L_{c=1}) = \{1 - n^{-2}, \quad n \ge 1\},\$$

where the spectrum is defined in $\dot{L}^2_{\rm per}(0,2\pi)$. All eigenvalues are positive except for the double zero eigenvalue.

Variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F(u)=H(u)+cQ(u) in $\dot{L}^2_{\rm per}\cap L^3$ with

$$L_{c} = F''(U) = P_{0} \left(\partial_{z}^{-2} + c - U(z) \right) P_{0} : \dot{L}_{per}^{2}(-T,T) \to \dot{L}_{per}^{2}(-T,T),$$

where $P_0: L^2_{\rm per} \to \dot{L}^2_{\rm per}$ is the mean-zero projection operator.

Let us normalize the period T to 2π . Then, U = 0 at c = 1, and

$$L_{c=1} = P_0(1 + \partial_z^{-2})P_0 \quad \sigma(L_{c=1}) = \{1 - n^{-2}, \quad n \ge 1\},\$$

where the spectrum is defined in $\dot{L}^2_{\rm per}(0,2\pi)$. All eigenvalues are positive except for the double zero eigenvalue.

For the subharmonic perturbations in $\dot{L}^2_{\rm per}(0,2\pi N)$ with $N\geq 1,$ the spectrum is

$$\sigma(L_{c=1}) = \{1 - n^{-2}N^2, \quad n \ge 1\}.$$

There are N - 1 double negative eigenvalues and a double zero eigenvalue.

U is not a minimizer of F(u) = H(u) + cQ(u).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

$$G(u) = R(u) - \frac{1}{(c^3 - 6I_c)^{2/3}}Q(u)$$
 in $\dot{H}^3_{\rm per}$

where

$$R(u) = -\int \left(1 - 3u_{xx}\right)^{1/3} dx$$

and

$$I_{c} = \frac{1}{2}(c-U)^{2} \left(\frac{dU}{dz}\right)^{2} + \frac{c}{2}U^{2} - \frac{1}{3}U^{3} = \text{const in } z$$

Here $c^3 - 6I_c > 0$, U(z) < c, and 1 - 3U''(z) > 0 for smooth periodic waves.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Alternative variational characterizations of periodic waves

Traveling periodic wave U is also a critical point of

$$G(u) = R(u) - \frac{1}{(c^3 - 6I_c)^{2/3}}Q(u)$$
 in $\dot{H}_{\rm per}^3$

where

$$R(u) = -\int \left(1 - 3u_{xx}\right)^{1/3} dx$$

and

$$I_{c} = \frac{1}{2}(c-U)^{2} \left(\frac{dU}{dz}\right)^{2} + \frac{c}{2}U^{2} - \frac{1}{3}U^{3} = \text{const in } z.$$

Here $c^3 - 6I_c > 0$, U(z) < c, and 1 - 3U''(z) > 0 for smooth periodic waves.

The Hessian operator is

$$M_c = G''(U) = P_0 \left(\partial_z^2 (1 - 3U'')^{-5/3} \partial_z^2 - (c^3 - 6I_c)^{-2/3} \right) P_0 : \dot{H}_{per}^4 \to \dot{L}_{per}^2,$$

For U = 0 at c = 1 and for the subharmonic perturbations in $\dot{L}^2_{\rm per}(0, 2\pi N)$

$$M_{c=1} = P_0(-1 + \partial_z^4)P_0 \quad \sigma(M_{c=1}) = \{-1 + n^4 N^{-4}, \quad n \ge 1\}.$$

There are N-1 double negative eigenvalues and a double zero eigenvalue. U is not a minimizer of G(u).

Mixed variational structure

Following

- N. Bottman, B. Deconinck, DCDS A (2009)
- B. Deconinck, T. Kapitula, Physics Letters A (2010)
- M. Nivala, B. Deconinck, Physica D (2010)
- N. Bottman, B. Deconinck, M. Nivala, J. Phys. A (2011)
- Th. Gallay, D.P., J. Diff. Eq. (2015)

we define a mixed variational structure for periodic waves U:

$$W_b(u) := G(u) - bF(u), \quad b \in \mathbb{R}.$$

Theorem (E.Johnson, D.P., 2016)

For sufficiently small |c-1|, U is a local nondegenerate (up to translational symmetry) minimizer of $W_b(u)$ in $\dot{H}_{per}^3(0, 2\pi N)$ for every $b \in (b_-, b_+)$, where b_{\pm} are given asymptotically by

$$b_{\pm} = \frac{1}{2} \pm \frac{3}{\sqrt{2}}\sqrt{c-1} + \mathcal{O}(c-1), \text{ as } c \to 1.$$

Numerical results: periodic wave U

Galerkin-Fourier approximation

$$U(z) = \sum_{n=1}^{N} A_n \cos(nz),$$

where $a = |A_1|$ is taken as the wave amplitude (depends on c > 1).

Figure: (a) The 2π -periodic solutions of the reduced Ostrovsky equation. (b) The Fourier coefficients of the trigonometric approximation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical results: U as a minimizer of W

The mixed variational structure yields

 $W_b(u) := G(u) - bF(u),$

and U is a critical point of W for every $b \in \mathbb{R}$.

Figure: The region of the (b, a) plane where U is a minimizer of $W_b(u)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Orbital stability of periodic waves for p = 2

. . .

J. Brunelli (2005) found bi-infinite sequence of conserved quantities for the modified reduced Ostrovsky equation $(u_t + u^2 u_x)_x = u$:

$$E_{-1} = \int \left(\frac{1}{12}u^4 + (\partial_x^{-1}u)^2\right) dx = -2H,$$

$$E_0 = \int u^2 dx = 2Q,$$

$$E_1 = \int (1 - u_x^2)^{1/2} dx,$$

$$E_2 = \int \frac{u_{xx}^2}{(1 - u_x^2)^{5/2}} dx,$$

Theorem (D.P. & A. Sakovich, 2010)

Let $u_0 \in H^2$ such that $||u'_0||^2_{L^2} + ||u''_0||^2_{L^2} < 1$. There exists a unique solution $u \in C(\mathbb{R}, H^2)$ to the modified reduced Ostrovsky equation with $u(0) = u_0$.

Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F(u)=H(u)+cQ(u) in $\dot{L}^2_{\rm per}\cap L^4$ with

$$L_c = F''(U) = P_0 \left(\partial_z^{-2} + c - U(z)^2\right) P_0: \dot{L}_{per}^2 \to \dot{L}_{per}^2,$$

where $P_0: L^2_{\rm per}
ightarrow \dot{L}^2_{\rm per}$ is the mean-zero projection operator.

Two variational characterizations of periodic waves

Traveling periodic wave U is a critical point of F(u)=H(u)+cQ(u) in $\dot{L}^2_{\rm per}\cap L^4$ with

$$L_c = F''(U) = P_0 \left(\partial_z^{-2} + c - U(z)^2\right) P_0 : \dot{L}_{per}^2 \to \dot{L}_{per}^2,$$

where $P_0: L^2_{\rm per}
ightarrow \dot{L}^2_{\rm per}$ is the mean-zero projection operator.

Traveling periodic wave U is also a critical point of

$$G(u) = R(u) - \frac{1}{2(c^2 - 2I_c)^{1/2}}Q(u)$$
 in \dot{H}_{per}^2

where

$$R(u) = -\int (1 - u_x^2)^{1/2} \, dx$$

and

$$I_{c} = \frac{1}{2}(c - U^{2})^{2} \left(\frac{dU}{dz}\right)^{2} + \frac{c}{2}U^{2} - \frac{1}{2}U^{4} = \text{const in } z.$$

Here $c^2 - 2I_c > 0$, $U(z)^2 < c$, and |U'(z)| < 1 for smooth periodic waves.

U is not a minimizer of neither F(u) nor G(u) in $\dot{L}^2_{per}(0, 2\pi N)$.

・ロト・日本・日本・日本・日本

Let us define now the mixed variational structure for periodic waves U:

$$W_b(u) := G(u) - bF(u), \quad b \in \mathbb{R}.$$

U is a critical point of W.

Theorem (E.Johnson, D.P., 2016)

For sufficiently small |c-1|, U is a local nondegenerate (up to translational symmetry) minimizer of $W_b(u)$ in $\dot{H}^2_{\rm per}(0, 2\pi N)$ for every $b \in (b_-, b_+)$, where b_{\pm} are given asymptotically by

$$b_{\pm} = 2 \pm 4\sqrt{2}\sqrt{c-1} + \mathcal{O}(c-1), \text{ as } c \to 1.$$

(日) (日) (日) (日) (日) (日) (日)

Numerical results: U as a minimizer of W

The mixed variational structure yields

 $W_b(u) := G(u) - bF(u),$

and U is a critical point of W for every $b \in \mathbb{R}$.

Figure: The region of the (b, a) plane where U is a minimizer of $W_b(u)$.

・ロト・四ト・モー・ 中下・ 日・ うらぐ

The travelling 2*T*-periodic waves u(x,t) = U(x - ct) satisfies the second-order ODE

$$\frac{d}{dz}\left[(c-U^{p})\frac{dU}{dz}\right] + U(z) = 0, \quad U(-T) = U(T), \quad U'(-T) = U'(T),$$

with the first-order invariant

$$E = \frac{1}{2}(c - U^{p})^{2} \left(\frac{dU}{dz}\right)^{2} + \frac{c}{2}U^{2} - \frac{1}{p+2}U^{p+2} = \text{const},$$

where z = x - ct and c is the wave speed.

Theorem (A.Geyer, D.P., 2017)

For every c > 0 and $p \in \mathbb{N}$, there exists a smooth family of periodic solutions $U \in \dot{L}^2_{per}(-T,T) \cap H^\infty_{per}(-T,T)$ parameterized by $E \in (0, E_c)$ such that the energy-to-period map $E \mapsto 2T$ is strictly monotonically decreasing.

The first-order invariant

$$E = \frac{1}{2}(c - U^p)^2 \left(\frac{dU}{dz}\right)^2 + \frac{c}{2}U^2 - \frac{1}{p+2}U^{p+2} = \text{const}$$

yield integral curves on the (U, U') phase plane.

Figure: Phase portraits for p = 2 (left) and p = 1 (right).

It follows from

$$E = \frac{1}{2}(c - U^{p})^{2} \left(\frac{dU}{dz}\right)^{2} + \frac{c}{2}U^{2} - \frac{1}{p+2}U^{p+2} = \text{const}$$

that

$$2T(E) = \int_{\gamma_E} \frac{du}{v} = 2 \int_{u_-(E)}^{u_+(E)} \frac{\sqrt{B(u)}du}{\sqrt{E - A(u)}},$$
 where $A(u) = \frac{c}{2}u^2 - \frac{1}{p+2}u^{p+2}$ and $B(u) = \frac{1}{2}(c - u^p)^2$.

- The integrand is singular at the turning points $u_{\pm}(E)$ where $A(u_{\pm}) = E$.
- Derivative in *E* can not be applied separately to the integrand and the limits of integration.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Following

- M. Frau, F. Manosas, J. Villadelprat, Transactions AMS (2011)
- A. Farijo, J. Villadelprat, J. Diff. Eq. (2014)

one can rewrite it

$$\begin{split} 2ET(E) &= \int_{\gamma_E} B(u)vdu + \int_{\gamma_E} A(u)\frac{du}{v} \\ &= \int_{\gamma_E} \left[B(u) + \left(\frac{2A(u)B(u)}{A'(u)}\right)' - \frac{A(u)B'(u)}{A'(u)} \right] vdu, \end{split}$$

where the integrand is now free of singularities at the turning points.

Then, applying derivative in E, we obtain

$$2T(E) + 2ET'(E) = \int_{\gamma_E} \frac{B(u) + G(u)}{2B(u)v} du$$

and the final expression

$$T'(E) = -\frac{p}{4(2+p)E} \int_{\gamma_E} \frac{u^p}{(c-u^p)} \frac{du}{v} < 0.$$

Existence theorem on the parameter plane

For fixed c, the map $E \mapsto 2T$ is monotonically decreasing for $E \in (0, E_c)$ with $T(0) = \pi c^{1/2}$ and $T(E_c) = T_1 c^{1/2}$, where $T_1 < \pi$ is independent of c.

Figure: The existence region for smooth periodic waves in the (T, c)-parameter plane.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For fixed T, the map $c \mapsto E$ is monotonically increasing for $c \in (T^2 \pi^{-2}, T^2 T_1^{-2})$.

Spectral stability in the generalized reduced Ostrovsky equation

The 2*T*-periodic wave U is a critical point of F(u) = H(u) + cQ(u), where

$$\begin{split} H(u) &= -\frac{1}{2} \|\partial_x^{-1} u\|_{L^2_{\text{per}}}^2 - \frac{1}{(p+1)(p+2)} \int_{-T}^T u^{p+2} dx, \\ Q(u) &= \frac{1}{2} \|u\|_{L^2_{\text{per}}}^2 \end{split}$$

The Hessian operator is

$$L = P_0 \left(\partial_z^{-2} + c - U(z)^p \right) P_0 : \dot{L}_{per}^2(-T, T) \to \dot{L}_{per}^2(-T, T),$$

where $P_0: L^2_{
m per}
ightarrow \dot{L}^2_{
m per}$ is the zero-mean projection operator.

Theorem (A.Geyer, D.P., 2017)

For every c > 0, $p \in \mathbb{N}$, and U, the operator L in $\dot{L}^2_{per}(-T,T)$ has a simple negative eigenvalue, a simple zero eigenvalue associated with $\operatorname{Ker}(L) = \operatorname{span}\{\partial_z U\}$, and the rest of the spectrum is strictly positive. Moreover, the operator L is positive under the fixed-momentum constraint:

$$L_c^2 = \left\{ u \in \dot{L}^2_{\rm per}(-T,T): \quad \langle U,u\rangle_{L^2_{\rm per}} = 0 \right\}.$$

Fix T > 0 and consider the Hessian operator

$$L = P_0 \left(\partial_z^{-2} + c - U(z)^p \right) P_0 : \dot{L}_{per}^2(-T, T) \to \dot{L}_{per}^2(-T, T).$$

At $c = T^2 \pi^{-2}$, we have U = 0 and

$$L_0 = P_0(c + \partial_z^{-2})P_0 \quad \sigma(L_0) = \{c(1 - n^{-2}), \quad n \ge 1\}.$$

All eigenvalues are positive except for the double zero eigenvalue. For $c > T^2 \pi^{-2}$, L_0 has only simple zero eigenvalue and a simple negative eigenvalue.

Lemma

The zero eigenvalue of L is simple if $T'(E) \neq 0$.

The family of operators L is iso-spectral with respect to parameter c.

(日) (日) (日) (日) (日) (日) (日)

Fix T > 0 and consider the Hessian operator

$$L = P_0 \left(\partial_z^{-2} + c - U(z)^p \right) P_0 : \ \dot{L}_{\rm per}^2(-T,T) \to \dot{L}_{\rm per}^2(-T,T).$$

under the scalar constraint

$$L_c^2 = \left\{ u \in \dot{L}_{per}^2(-T,T) : \quad \langle U, u \rangle_{L_{per}^2} = 0 \right\}.$$

The operator L is positive under the constraint if

$$\langle L^{-1}U,U\rangle_{L^2_{\mathrm{per}}} < 0,$$

where $U \perp \operatorname{Ker}(L) = \operatorname{span}(\partial_z U)$.

For fixed T > 0, $L\partial_c U = -U$ yields $\partial_c U = -L^{-1}U \in \dot{L}^2_{per}(-T,T)$, so that

$$\langle L^{-1}U,U\rangle_{L^2_{\rm per}} = -\frac{1}{2}\frac{d}{dc}\|U\|^2_{L^2_{\rm per}} < 0,$$

the latter inequality can be proved for every p > 0 and for every c > 0.

For the generalized reduced Ostrovsky equation with an integer p,

$$(u_t + u^p u_x)_x = u,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

we have shown two stability results for the travelling periodic waves:

- Minimization property for higher-order energy in $\dot{H}^s_{\rm per}\mbox{-spaces}$ for p=1 and p=2
- Spectral stability in \dot{L}^2_{per} for any $p \in \mathbb{N}$

For the generalized reduced Ostrovsky equation with an integer p,

$$(u_t + u^p u_x)_x = u,$$

we have shown two stability results for the travelling periodic waves:

- Minimization property for higher-order energy in $\dot{H}^s_{\rm per}\mbox{-spaces}$ for p=1 and p=2
- Spectral stability in $\dot{L}^2_{\rm per}$ for any $p \in \mathbb{N}$

Spectral stability for $p \ge 3$ cannot be transferred to the orbital stability results because the global well-posedness is not available in $\dot{L}_{\rm per}^2 \cap L^{p+2}$, where the energy and momentum functions H(u) and Q(u) are defined.