Self-similar solutions for reversing interfaces
 in slow diffusion with strong absorption

Dmitry Pelinovsky
Department of Mathematics, McMaster University, Canada

With Jamie Foster, University of Portsmouth, England and Peter Gysberg (undergrad), McMaster University

CMS Winter Meeting, Niagara Falls, December 2-5, 2016

The Diffusion Equation with Absorption

$$
\frac{\partial h}{\partial t}=\frac{\partial^{2} h}{\partial x^{2}}-h
$$

The Slow Diffusion Equation with Strong Absorption

$$
\frac{\partial h}{\partial t}=\frac{\partial}{\partial x}\left(h^{m} \frac{\partial h}{\partial x}\right)-h^{n}
$$

- Slow diffusion: $m>0$ implies finite propagation speed for contact lines (Herrero-Vazquez, 1987)
- Strong absorption: $n<1$ implies finite time extinction for compactly supported data (Kersner, 1983).

Physical Examples

The slow diffusion equation

$$
\frac{\partial h}{\partial t}=\frac{\partial}{\partial x}\left(h^{m} \frac{\partial h}{\partial x}\right)-h^{n}
$$

describes physical processes related to dynamics of interfaces.

- spread of viscous films over a horizontal plate subject to gravity and constant evaporation ($m=3$ and $n=0$) (Acton-Huppert-Worster, 2001)
- dispersion of biological populations with a constant death rate ($m=2, n=0$)
- nonlinear heat conduction with a constant rate of heat loss $(m=4, n=0)$
- fluid flows in porous media with a drainage rate driven by gravity or background flows ($m=1$ and $n=1$ or $n=0$) (Pritchard-Woods-Hogg, 2001)

Interface Dynamics

Advancing interfaces

- driven by diffusion

$$
h \sim(x-\ell(t))^{1 / m}
$$

Receding interfaces

- driven by absorption

$$
h \sim(x-\ell(t))^{1 /(1-n)}
$$

We wish to construct a solution that exhibits reversing behaviour:

$$
\text { Advancing } \rightarrow \text { Receding }
$$

or anti-reversing behaviour:
Receding \rightarrow Advancing

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

We seek positive solutions $H_{ \pm}$on the semi-infinite line $\left[A_{ \pm}, \infty\right)$ that satisfy

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow 0 \quad \text { as } \quad \phi \rightarrow A_{ \pm} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
H_{ \pm}(\phi) \text { is monotonically increasing for all } \phi>A_{ \pm} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow+\infty \quad \text { as } \quad \phi \rightarrow+\infty \tag{iii}
\end{equation*}
$$

(iv):

$$
H_{+}(\phi) \sim H_{-}(\phi) \quad \text { as } \quad \phi \rightarrow+\infty
$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$
h(x, t)=(\pm t)^{\frac{1}{1-n}} H_{ \pm}(\phi), \quad \phi=x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

where $m>0$ and $n<1$. The functions $H_{ \pm}$satisfy the ODEs:

$$
\frac{d}{d \phi}\left(H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}\right) \pm \frac{m+1-n}{2(1-n)} \phi \frac{d H_{ \pm}}{d \phi}=H_{ \pm}^{n} \pm \frac{1}{1-n} H_{ \pm}
$$

We seek positive solutions $H_{ \pm}$on the semi-infinite line $\left[A_{ \pm}, \infty\right)$ that satisfy

$$
\begin{equation*}
H_{ \pm}(\phi) \rightarrow 0 \quad \text { as } \quad \phi \rightarrow A_{ \pm} \tag{i}
\end{equation*}
$$

$$
\text { (ii): } \quad H_{ \pm}(\phi) \text { is monotonically increasing for all } \phi>A_{ \pm}
$$

$$
\text { (iii): } \quad H_{ \pm}(\phi) \rightarrow+\infty \quad \text { as } \quad \phi \rightarrow+\infty
$$

$$
\text { (iv): } \quad H_{+}(\phi) \sim H_{-}(\phi) \text { as } \quad \phi \rightarrow+\infty
$$

If $A_{ \pm}>0$, the existence of self-similar solutions imply reversing behaviour:

$$
\ell(t)=A_{ \pm}(\pm t)^{\frac{m+1-n}{2(1-n)}}, \quad \pm t>0
$$

If $m+n>1$, then $\ell^{\prime}(0)=0$.

Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme in Foster et al. [SIAM J. Appl. Math. 72, 144 (2012)].

The scope of our work is to develop a "rigorous" shooting method:

- The ODEs are singular in the limits of small and large $H_{ \pm}$
- Make transformations to change singular boundary values to equilibrium points
- Obtain near-field asymptotics (small $\left.H_{ \pm}\right):(\phi, u, w)=\left(A_{ \pm}, 0,0\right)$
- Obtain far-field asymptotics (large $\left.H_{ \pm}\right):(x, y, z)=\left(x_{0}, 0,0\right)$
- Connect between near-field and far-field asymptotics.

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is also singular at $u=0$.

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is also singular at $u=0$.
Introduce the map $\tau \mapsto \phi$ by $\frac{d \phi}{d \tau}=u^{m}$ for $u>0$. Then, we obtain the 3D autonomous dynamical system

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m} \\
\dot{u}=w, \\
\dot{w}=u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w .
\end{array}\right.
$$

Near-field asymptotics

In variables $u=H_{ \pm}$and $w=H_{ \pm}^{m} \frac{d H_{ \pm}}{d \phi}$, the system is non-autonomous:

$$
\begin{aligned}
\frac{d u}{d \phi} & =\frac{w}{u^{m}} \\
\frac{d w}{d \phi} & =u^{n} \pm \frac{1}{1-n} u \mp \frac{m+1-n}{2(1-n)} \frac{\phi w}{u^{m}}
\end{aligned}
$$

The system is also singular at $u=0$.
Introduce the map $\tau \mapsto \phi$ by $\frac{d \phi}{d \tau}=u^{m}$ for $u>0$. Then, we obtain the 3D autonomous dynamical system

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m}, \\
\dot{u}=w, \\
\dot{w}=u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w .
\end{array}\right.
$$

The set of equilibrium points is given by $(\phi, u, w)=(A, 0,0)$, where $A \in \mathbb{R}$. If $m>1$, each equilibrium point is associated with the Jacobian matrix

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \mp \frac{m+1-n}{2(1-n)} A
\end{array}\right]
$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $A \neq 0$.

Center manifold

For every $m>0, n<1$, and $m+n>1$ and for every $A \neq 0$, there exists a two-dimensional center manifold near $(A, 0,0)$, which can be parameterized by

$$
W_{c}(A, 0,0)=\left\{w= \pm \frac{2(1-n)}{(m+1-n) A} u^{m+n}+\cdots, \quad \phi \in(A, A+\delta), u \in(0, \delta)\right\} .
$$

Dynamics on $W_{c}(A, 0,0)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
\dot{\phi}=u^{m}, \\
\dot{u}= \pm \frac{2(1-n) u^{m+n}}{(m+1-n) A}
\end{array}\right.
$$

In particular, for every $A \neq 0$, there exists exactly one trajectory on $W_{c}(A, 0,0)$, which approaches the equilibrium point $(A, 0,0)$ as $\tau \rightarrow-\infty$ if $\pm A>0$.

If $\pm A_{ \pm}>0$, the unique solution has the following asymptotic behaviour

$$
H_{ \pm}(\phi)=\left[\pm \frac{2(1-n)^{2}}{(m+1-n) A_{ \pm}}\left(\phi-A_{ \pm}\right)\right]^{1 /(1-n)}+\cdots, \quad \text { as } \quad \phi \rightarrow A_{ \pm}
$$

Unstable manifold

If $\pm A<0$, the center manifold is attracting (no trajectories leave $(A, 0,0)$). However, there is an unstable manifold.

For every $m>1, n<1$, and $m+n>1$ and for every $\pm A<0$, there exists a one-dimensional unstable manifold near $(A, 0,0)$, which can be parameterized as follows:

$$
W_{u}(A, 0,0)=\left\{\phi=A+\mathcal{O}\left(u^{m}\right), \quad w=\mp \frac{m+1-n}{2(1-n)} A u+\mathcal{O}\left(u^{m+n}\right), \quad u \in(0, \delta)\right\}
$$

Dynamics on $W_{u}(A, 0,0)$ is topologically equivalent to that of

$$
\dot{u}=\mp \frac{m+1-n}{2(1-n)} A u .
$$

If $\mp A_{ \pm}>0$, the unique solution has the following asymptotic behaviour

$$
H_{ \pm}(\phi)=\left(\mp \frac{m(m+1-n) A_{ \pm}}{2(1-n)}\left(\phi-A_{ \pm}\right)\right)^{1 / m}[1+\cdots], \quad \text { as } \quad \phi \rightarrow A_{ \pm}
$$

Far-field asymptotics
If a trajectory departs from the point $(\phi, u, w)=(A, 0,0)$, how does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Far-field asymptotics

If a trajectory departs from the point $(\phi, u, w)=(A, 0,0)$, how does it arrive to infinity: $\phi \rightarrow \infty, u \rightarrow \infty$?

Let us change the variables

$$
\phi=\frac{x}{y^{\frac{m+1-n}{2(1-n)}}}, \quad u=\frac{1}{y^{\frac{1}{1-n}}}, \quad w=\frac{z}{y^{\frac{m+3-n}{2(1-n)}}}
$$

and re-parameterize the time τ with new time s by

$$
\frac{d \tau}{d s}=y^{\frac{m+1-n}{2(1-n)}}, \quad y \geq 0
$$

The 3D autonomous dynamical system is rewritten as a smooth system

$$
\left\{\begin{array}{l}
x^{\prime}=y-\frac{m+1-n}{2} x z \\
y^{\prime}=-(1-n) z y \\
z^{\prime}= \pm \frac{1}{1-n} y+y^{2} \mp \frac{m+1-n}{2(1-n)} x z-\frac{m+3-n}{2} z^{2}
\end{array}\right.
$$

The 3D smooth dynamical system is

$$
\left\{\begin{array}{l}
x^{\prime}=y-\frac{m+1-n}{2} x z \\
y^{\prime}=-(1-n) z y \\
z^{\prime}= \pm \frac{1}{1-n} y+y^{2} \mp \frac{m+1-n}{2(1-n)} x z-\frac{m+3-n}{2} z^{2}
\end{array}\right.
$$

The set of equilibrium points is given by $(x, y, z)=\left(x_{0}, 0,0\right)$, where $x_{0} \in \mathbb{R}$. Each equilibrium point is associated with the Jacobian matrix

$$
\left[\begin{array}{ccc}
0 & 1 & -\frac{m+1-n}{2} x_{0} \\
0 & 0 & 0 \\
0 & \pm \frac{1}{1-n} & \mp \frac{m+1-n}{2(1-n)} x_{0}
\end{array}\right]
$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $x_{0} \neq 0$. Only $x_{0}>0$ is relevant for the asymptotics as $\phi \rightarrow+\infty$.

- Two-dimensional center manifold associated with the double zero eigenvalue.
- A stable curve for the upper sign and an unstable curve for the lower sign.

Center manifold

Assume $m>0, n<1$, and $m+n>1$. For every $x_{0}>0$, there exists a two-dimensional center manifold near $\left(x_{0}, 0,0\right)$, which can be parameterized as follows:

$$
W_{c}\left(x_{0}, 0,0\right)=\left\{y=\frac{m+1-n}{2} x z+\mathcal{O}\left(z^{2}\right), \quad x \in\left(x_{0}-\delta, x_{0}+\delta\right), \quad z \in(-\delta, \delta)\right\}
$$

The dynamics on $W_{c}\left(x_{0}, 0,0\right)$ is topologically equivalent to that of

$$
\left\{\begin{array}{l}
x^{\prime}= \pm(1-n)\left(\frac{m+n+1}{2}-\frac{(m+1-n)^{2}}{4} x_{0}^{2}\right) z^{2} \\
z^{\prime}=-(1-n) z^{2}
\end{array}\right.
$$

In particular, there exists exactly one trajectory on $W_{c}\left(x_{0}, 0,0\right)$, which approaches the equilibrium point $\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$.

The solution at infinity satisfies the asymptotic behaviour

$$
H_{ \pm}(\phi) \sim\left(\frac{\phi}{x_{0}}\right)^{\frac{2}{m+1-n}} \quad \text { as } \quad \phi \rightarrow+\infty
$$

The family of diverging solutions is $1 D$ for H_{-}and $2 D$ for H_{+}.

Back to the plan

We are developing "rigorous" shooting method:

- The ODEs are singular in the limits of small and large $H_{ \pm}$
- Make transformations to change singular boundary values to equilibrium points
- Obtain near-field asymptotics (small $\left.H_{ \pm}\right):(\phi, u, w)=\left(A_{ \pm}, 0,0\right)$
- Obtain far-field asymptotics (large $\left.H_{ \pm}\right):(x, y, z)=\left(x_{0}, 0,0\right)$
- Connect between near-field and far-field asymptotics.

Connection results for H_{+}(after reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{+}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 2 D .

Fix $A_{+} \in \mathbb{R} \backslash\{0\}$ and consider a $1 D$ trajectory such that $(\phi, u, w) \rightarrow\left(A_{+}, 0,0\right)$ as $\tau \rightarrow-\infty$ and $u>0$. Then, there exists a $\tau_{0} \in \mathbb{R}$ such that $\phi(\tau) \rightarrow+\infty$ and $u(\tau) \rightarrow+\infty$ as $\tau \rightarrow \tau_{0}$.

Figure: Plots of the variation of x_{0} with A_{+}for various different values of $m=2,3$ and 4 .

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

If we shoot from $\left(A_{-}, 0,0\right)$, then the trajectory does not generally reach $\left(x_{0}, 0,0\right)$

Figure: Panels (a) and (b) show trajectories with $m=3$ and $n=0$ for H_{+}and H_{-}respectively.

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

Therefore, we shoot from $\left(x_{0}, 0,0\right)$ trying to reach $\left(A_{-}, 0,0\right)$.

Lemma

Fix $x_{0}>0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$ and $y>0$. Then, there exists an $s_{0} \in \mathbb{R}$ such that
(i) either $w=0$ and $u \geq 0$ as $s \rightarrow s_{0}$
(ii) or $u=0$ and $w \geq 0$ as $s \rightarrow s_{0}$.

In both cases, if $(u, w) \neq(0,0)$ as $s \rightarrow s_{0}$, then $|\phi|<\infty$ as $s \rightarrow s_{0}$.

Connection results for H_{-}(before reversing)

- Trajectory that departs from $(\phi, u, w)=\left(A_{-}, 0,0\right)$ is 1 D
- Trajectory that arrives to $(x, y, z)=\left(x_{0}, 0,0\right)$ is 1 D .

Therefore, we shoot from $\left(x_{0}, 0,0\right)$ trying to reach $\left(A_{-}, 0,0\right)$.

Lemma

Fix $x_{0}>0$ and consider a 1D trajectory such that $(x, y, z) \rightarrow\left(x_{0}, 0,0\right)$ as $s \rightarrow+\infty$ and $y>0$. Then, there exists an $s_{0} \in \mathbb{R}$ such that
(i) either $w=0$ and $u \geq 0$ as $s \rightarrow s_{0}$
(ii) or $u=0$ and $w \geq 0$ as $s \rightarrow s_{0}$.

In both cases, if $(u, w) \neq(0,0)$ as $s \rightarrow s_{0}$, then $|\phi|<\infty$ as $s \rightarrow s_{0}$.
Open ends:

- Do the two piecewise C^{1} maps intersect?
(i) $\mathbb{R}^{+} \ni x_{0} \mapsto(\phi, u) \in \mathbb{R} \times \mathbb{R}^{+} \quad$ and \quad (ii) $\mathbb{R}^{+} \ni x_{0} \mapsto(\phi, w) \in \mathbb{R} \times \mathbb{R}^{+}$.
- If they do, does ϕ remain bounded at the intersection point?

And here the numerical approximation kicks in...

Finding the intersection points $x_{0}=x_{*}$

Figure: Panels (a)-(b) show plots of the piecewise C^{1} maps for $m=2$ and $m=4$. In all cases the blue, red and black curves show the value of w at $u=0$, the value of u at $w=0$ and the value of ξ at the termination point respectively.

Self-similar solutions for $n=0$ and bifurcations

Self-similar solutions for other values of n

Location of Bifurcations

The black curve corresponds to the exact solution with $A_{+}=A_{-}=0$:

$$
H_{ \pm}(\phi)=\left(\frac{\phi}{x_{*}}\right)^{\frac{2}{m+1-n}}, \quad x_{*}^{2}=\frac{2(m+1+n)}{(m+1-n)^{2}}
$$

After substituting self-similar variables, it is a static solution $h(x, t)=h(x)$. New self-similar solutions bifurcate from the static solutions at

$$
m=m_{k}=(1-n)(2 k-1), \quad k=1,2,3, \ldots
$$

Analysis of Bifurcations $(n=0)$

Write H_{-}as a perturbation to the exact solution

$$
H_{-}=x^{\frac{2}{m+1}}+u(x) .
$$

The bifurcation problem is related to the linear equation $L u=0$, where

$$
L u=\frac{m+1}{2} \frac{d^{2}}{d x^{2}}\left(x^{\frac{2 m}{m+1}} u(x)\right)-\frac{m+1}{2} x \frac{d u}{d x}+u(x)=0, \quad x \in(0, \infty) .
$$

The boundary conditions for admissible self-similar solutions are

$$
u(x) \sim x^{\frac{2}{m+1}} \quad \text { as } \quad x \rightarrow \infty
$$

Near $x=0$, the self-similar solutions satisfy

$$
u(x) \sim c_{1} x^{\frac{1-m}{1+m}}+c_{2} x^{\frac{-2 m}{1+m}} \quad \text { as } \quad x \rightarrow 0
$$

Analysis of Bifurcations

After a coordinate transformation, the homogeneous equation $L u=0$ becomes the Kummer's differential equation (1837),

$$
z \frac{d^{2} w}{d z^{2}}+(b-z) \frac{d w}{d z}+a w(z)=0, \quad z \in(0, \infty)
$$

where

$$
a:=-\frac{m+1}{2}, \quad b:=\frac{m+3}{2} .
$$

The power series solution is given by Kummer's function

$$
M(z ; a, b)=1+\frac{a}{b} \frac{z}{1!}++\frac{a(a+1)}{b(b+1)} \frac{z^{2}}{2!}+\cdots
$$

The other solution is singular as $z \rightarrow 0$.
The only solution with the correct boundary condition at infinity,

$$
U(z ; a, b) \sim z^{-a}\left[1+\mathcal{O}\left(z^{-1}\right)\right] \quad \text { as } \quad z \rightarrow \infty
$$

was characterized by Tricomi (1947).
When $a=-k$ or $m=m_{k}=(2 k-1), k \in \mathbb{N}$, Kummer's power series $M(z ; a, b)$ becomes a polynomial which connects to the Tricomi's function $U(z ; a, b)$.

Connection problem $(n=0)$

The inner solution near the interface:

$$
\phi=A+|A|^{\frac{m+1}{m-1}} \eta, \quad H(\phi)=|A|^{\frac{2}{m-1}} \mathcal{H}(\eta)
$$

satisfying

$$
\mathcal{H}(\eta) \sim\left(\frac{m(m+1)}{2} \eta\right)^{\frac{1}{m}} \quad \text { as } \quad \eta \rightarrow 0 ; \quad \sim\left(\frac{m+1}{2} \eta^{2}\right)^{\frac{1}{m+1}} \quad \text { as } \quad \eta \rightarrow \infty
$$

The outer solution in the far field:

$$
H(\phi)=x^{\frac{2}{m+1}}+\alpha u_{1}(x)+\alpha^{2} u_{2}(x)+\mathcal{O}\left(\alpha^{3}\right), \quad x:=\phi / x_{*},
$$

where u_{1} is Tricomi's function

$$
u_{1}(x)=x^{\frac{1-m}{1+m}} U\left(\frac{m+1}{2} x^{\frac{2}{m+1}} ;-\frac{m+1}{2}, \frac{m+3}{2}\right)
$$

whereas u_{2} is a solution of the inhomogeneous equation

$$
L u_{2}=R_{2}:=-\frac{m(m+1)}{4} \frac{d^{2}}{d x^{2}}\left[x^{\frac{2(m-1)}{m+1}} u_{1}^{2}\right] .
$$

Matching conditions as $\eta \rightarrow \infty$ and $x \rightarrow 0$ determine α and $x_{0}-x_{*}$ in terms of A, and A in terms of $m-m_{k}$, where $m=m_{k}=(2 k-1), k \in \mathbb{N}$ is the bifurcation point.

Numerical confirmations

Bifurcation at $m=5$ and $n=0$:

$$
A_{-}=-\frac{40}{9}\left(x_{0}-x_{*}\right)+\cdots
$$

and

$$
5-m=\frac{27 \sqrt{3}}{4} A_{-}+\cdots
$$

Figure: Left: The variation of the parameter A_{-}with $5-m$, and; right: the variation of $x_{0}-x_{*}$ with A_{-}local to $m=5$. The black dots are numerics, the blue lines are asymptotics.

Conclusion

- For every $m>0, n<1$ and $m+n>1$ a pair of solutions H_{+}and H_{-}can be constructed numerically and then converted to $h(x, t)$
- Solutions with $A_{ \pm}>0$ correspond to reversing interfaces
- Solutions with $A_{ \pm}<0$ correspond to anti-reversing interfaces
- The behaviour of the self-similar solution at zero and infinity is justified by the dynamical system theory.
- Bifurcations of self-similar solutions are predicted from analysis of the classical Kummer's differential equation.
- Relevance of the self-similar solutions for the slow diffusion equation is confirmed numerically.

References

1. J. M. Foster, P. Gysberg, J.R. King, and D. E. Pelinovsky, Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation, in preparation (2016)
2. J. M. Foster and D. E. Pelinovsky, Self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption, SIAM J. Appl. Dynam. Syst. 15 (2016), 2017-2050.
3. J. M. Foster, C. P. Please, A. D. Fitt, and G. Richardson, The reversing of interfaces in slow diffusion processes with strong absorption, SIAM J. Appl. Math. 72 (2012), 144-162
