Self-similar solutions for reversing interfaces in slow diffusion with strong absorption

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

With <u>Jamie Foster</u>, University of Portsmouth, England and Peter Gysberg (undergrad), McMaster University

CMS Winter Meeting, Niagara Falls, December 2-5, 2016

The Diffusion Equation with Absorption

$$\frac{\partial h}{\partial t} = \frac{\partial^2 h}{\partial x^2} - h$$

The Slow Diffusion Equation with Strong Absorption

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^{m} \frac{\partial h}{\partial x} \right) - h^{n}$$

- Slow diffusion: m > 0 implies finite propagation speed for contact lines (Herrero-Vazquez, 1987)
- Strong absorption: n < 1 implies finite time extinction for compactly supported data (Kersner, 1983).

Physical Examples

The slow diffusion equation

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^{m} \frac{\partial h}{\partial x} \right) - h^{n}$$

describes physical processes related to dynamics of interfaces.

- ▶ spread of viscous films over a horizontal plate subject to gravity and constant evaporation (m = 3 and n = 0) (Acton-Huppert-Worster, 2001)
- be dispersion of biological populations with a constant death rate (m = 2, n = 0)
- ▶ nonlinear heat conduction with a constant rate of heat loss (m = 4, n = 0)
- ▶ fluid flows in porous media with a drainage rate driven by gravity or background flows (m = 1 and n = 1 or n = 0) (Pritchard–Woods–Hogg, 2001)

Interface Dynamics

Advancing interfaces

driven by diffusion

$$h \sim (x - \ell(t))^{1/m}$$

Receding interfaces

driven by absorption

$$h \sim (x - \ell(t))^{1/(1-n)}$$

We wish to construct a solution that exhibits reversing behaviour:

Advancing → Receding

or anti-reversing behaviour:

Receding → Advancing

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x,t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where m > 0 and n < 1. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi}\left(H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}\right) \pm \frac{m+1-n}{2(1-n)}\phi\frac{dH_{\pm}}{d\phi} = H_{\pm}^{n} \pm \frac{1}{1-n}H_{\pm}$$

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x,t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where m > 0 and n < 1. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi}\left(H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}\right) \pm \frac{m+1-n}{2(1-n)}\phi\frac{dH_{\pm}}{d\phi} = H_{\pm}^{n} \pm \frac{1}{1-n}H_{\pm}$$

We seek positive solutions H_{\pm} on the semi-infinite line $[A_{\pm}, \infty)$ that satisfy

(i):
$$H_{\pm}(\phi) \to 0$$
 as $\phi \to A_{\pm}$,

(ii):
$$H_{\pm}(\phi)$$
 is monotonically increasing for all $\phi > A_{\pm}$,

(iii):
$$H_{\pm}(\phi) \to +\infty$$
 as $\phi \to +\infty$,

(iv):
$$H_+(\phi) \sim H_-(\phi)$$
 as $\phi \to +\infty$.

Self-similar solutions

Consider the following self-similar reduction (Gandarias, 1994):

$$h(x,t) = (\pm t)^{\frac{1}{1-n}} H_{\pm}(\phi), \quad \phi = x(\pm t)^{-\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0,$$

where m > 0 and n < 1. The functions H_{\pm} satisfy the ODEs:

$$\frac{d}{d\phi}\left(H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}\right) \pm \frac{m+1-n}{2(1-n)}\phi\frac{dH_{\pm}}{d\phi} = H_{\pm}^{n} \pm \frac{1}{1-n}H_{\pm}$$

We seek positive solutions H_{\pm} on the semi-infinite line $[A_{\pm}, \infty)$ that satisfy

(i):
$$H_{\pm}(\phi) \to 0$$
 as $\phi \to A_{\pm}$,

(ii):
$$H_{\pm}(\phi)$$
 is monotonically increasing for all $\phi > A_{\pm}$,

(iii):
$$H_{\pm}(\phi) \to +\infty$$
 as $\phi \to +\infty$,

(iv):
$$H_+(\phi) \sim H_-(\phi)$$
 as $\phi \to +\infty$.

If $A_{\pm} > 0$, the existence of self-similar solutions imply reversing behaviour:

$$\ell(t) = A_{\pm}(\pm t)^{\frac{m+1-n}{2(1-n)}}, \quad \pm t > 0.$$

If m + n > 1, then $\ell'(0) = 0$.

Dynamical Systems Framework

Solutions were approximated by a naive numerical scheme in Foster *et al.* [SIAM J. Appl. Math. **72**, 144 (2012)].

The scope of our work is to develop a "rigorous" shooting method:

- ▶ The ODEs are singular in the limits of small and large H_{\pm}
- ▶ Make transformations to change singular boundary values to equilibrium points
- ▶ Obtain near-field asymptotics (small H_{\pm}): $(\phi, u, w) = (A_{\pm}, 0, 0)$
- ▶ Obtain far-field asymptotics (large H_{\pm}): $(x, y, z) = (x_0, 0, 0)$
- Connect between near-field and far-field asymptotics.

Near-field asymptotics

In variables $u=H_{\pm}$ and $w=H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}$, the system is non-autonomous:

$$\frac{du}{d\phi} = \frac{w}{u^m},$$

$$\frac{dw}{d\phi} = u^n \pm \frac{1}{1-n}u \mp \frac{m+1-n}{2(1-n)}\frac{\phi w}{u^m}.$$

The system is also singular at u = 0.

Near-field asymptotics

In variables $u=H_{\pm}$ and $w=H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}$, the system is non-autonomous:

$$\frac{du}{d\phi} = \frac{w}{u^m},$$

$$\frac{dw}{d\phi} = u^n \pm \frac{1}{1-n}u \mp \frac{m+1-n}{2(1-n)}\frac{\phi w}{u^m}.$$

The system is also singular at u = 0.

Introduce the map $\tau\mapsto\phi$ by $\frac{d\phi}{d\tau}=u^m$ for u>0. Then, we obtain the 3D autonomous dynamical system

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = w, \\ \dot{w} = u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w. \end{cases}$$

Near-field asymptotics

In variables $u=H_{\pm}$ and $w=H_{\pm}^{m}\frac{dH_{\pm}}{d\phi}$, the system is non-autonomous:

$$\frac{du}{d\phi} = \frac{w}{u^m},$$

$$\frac{dw}{d\phi} = u^n \pm \frac{1}{1-n}u \mp \frac{m+1-n}{2(1-n)}\frac{\phi w}{u^m}.$$

The system is also singular at u = 0.

Introduce the map $\tau\mapsto\phi$ by $\frac{d\phi}{d\tau}=u^m$ for u>0. Then, we obtain the 3D autonomous dynamical system

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = w, \\ \dot{w} = u^{m+n} \pm \frac{1}{1-n} u^{m+1} \mp \frac{m+1-n}{2(1-n)} \phi w. \end{cases}$$

The set of equilibrium points is given by $(\phi, u, w) = (A, 0, 0)$, where $A \in \mathbb{R}$. If m > 1, each equilibrium point is associated with the Jacobian matrix

$$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \mp \frac{m+1-n}{2(1-n)} A \end{array}\right].$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $A \neq 0$.

Center manifold

For every m > 0, n < 1, and m + n > 1 and for every $A \ne 0$, there exists a two-dimensional center manifold near (A, 0, 0), which can be parameterized by

$$W_c(A,0,0) = \left\{ w = \pm \frac{2(1-n)}{(m+1-n)A} u^{m+n} + \cdots, \ \phi \in (A,A+\delta), \ u \in (0,\delta) \right\}.$$

Dynamics on $W_c(A, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} \dot{\phi} = u^m, \\ \dot{u} = \pm \frac{2(1-n)u^{m+n}}{(m+1-n)A}. \end{cases}$$

In particular, for every $A \neq 0$, there exists exactly one trajectory on $W_c(A, 0, 0)$, which approaches the equilibrium point (A, 0, 0) as $\tau \to -\infty$ if $\pm A > 0$.

If $\pm A_{\pm} > 0$, the unique solution has the following asymptotic behaviour

$$H_{\pm}(\phi) = \left[\pm \frac{2(1-n)^2}{(m+1-n)A_{\pm}}(\phi - A_{\pm})\right]^{1/(1-n)} + \cdots, \text{ as } \phi \to A_{\pm}.$$

Unstable manifold

If $\pm A < 0$, the center manifold is attracting (no trajectories leave (A,0,0)). However, there is an unstable manifold.

For every m > 1, n < 1, and m + n > 1 and for every $\pm A < 0$, there exists a one-dimensional unstable manifold near (A, 0, 0), which can be parameterized as follows:

$$W_u(A,0,0) = \left\{ \phi = A + \mathcal{O}(u^m), \quad w = \mp \frac{m+1-n}{2(1-n)} Au + \mathcal{O}(u^{m+n}), \quad u \in (0,\delta) \right\}.$$

Dynamics on $W_u(A, 0, 0)$ is topologically equivalent to that of

$$\dot{u} = \mp \frac{m+1-n}{2(1-n)} Au.$$

If $\mp A_{\pm} > 0$, the unique solution has the following asymptotic behaviour

$$H_{\pm}(\phi) = \left(\mp \frac{m(m+1-n)A_{\pm}}{2(1-n)}(\phi - A_{\pm})\right)^{1/m} [1 + \cdots], \text{ as } \phi \to A_{\pm}.$$

Far-field asymptotics

If a trajectory departs from the point $(\phi, u, w) = (A, 0, 0)$, how does it arrive to infinity: $\phi \to \infty$, $u \to \infty$?

Far-field asymptotics

If a trajectory departs from the point $(\phi, u, w) = (A, 0, 0)$, how does it arrive to infinity: $\phi \to \infty$, $u \to \infty$?

Let us change the variables

$$\phi = \frac{x}{y^{\frac{m+1-n}{2(1-n)}}}, \quad u = \frac{1}{y^{\frac{1}{1-n}}}, \quad w = \frac{z}{y^{\frac{m+3-n}{2(1-n)}}}$$

and re-parameterize the time τ with new time s by

$$\frac{d\tau}{ds} = y^{\frac{m+1-n}{2(1-n)}}, \quad y \ge 0.$$

The 3D autonomous dynamical system is rewritten as a smooth system

$$\begin{cases} x' = y - \frac{m+1-n}{2}xz, \\ y' = -(1-n)zy, \\ z' = \pm \frac{1}{1-n}y + y^2 \mp \frac{m+1-n}{2(1-n)}xz - \frac{m+3-n}{2}z^2, \end{cases}$$

The 3D smooth dynamical system is

$$\begin{cases} x' = y - \frac{m+1-n}{2}xz, \\ y' = -(1-n)zy, \\ z' = \pm \frac{1}{1-n}y + y^2 \mp \frac{m+1-n}{2(1-n)}xz - \frac{m+3-n}{2}z^2, \end{cases}$$

The set of equilibrium points is given by $(x, y, z) = (x_0, 0, 0)$, where $x_0 \in \mathbb{R}$. Each equilibrium point is associated with the Jacobian matrix

$$\begin{bmatrix} 0 & 1 & -\frac{m+1-n}{2}x_0 \\ 0 & 0 & 0 \\ 0 & \pm \frac{1}{1-n} & \mp \frac{m+1-n}{2(1-n)}x_0 \end{bmatrix}.$$

with a double zero eigenvalue and a simple nonzero eigenvalue if $x_0 \neq 0$. Only $x_0 > 0$ is relevant for the asymptotics as $\phi \to +\infty$.

- ▶ Two-dimensional center manifold associated with the double zero eigenvalue.
- ▶ A stable curve for the upper sign and an unstable curve for the lower sign.

Center manifold

Assume m > 0, n < 1, and m + n > 1. For every $x_0 > 0$, there exists a two-dimensional center manifold near $(x_0, 0, 0)$, which can be parameterized as follows:

$$W_c(x_0, 0, 0) = \left\{ y = \frac{m+1-n}{2} xz + \mathcal{O}(z^2), \quad x \in (x_0 - \delta, x_0 + \delta), \ z \in (-\delta, \delta) \right\}.$$

The dynamics on $W_c(x_0, 0, 0)$ is topologically equivalent to that of

$$\begin{cases} x' = \pm (1-n) \left(\frac{m+n+1}{2} - \frac{(m+1-n)^2}{4} x_0^2 \right) z^2, \\ z' = -(1-n) z^2. \end{cases}$$

In particular, there exists exactly one trajectory on $W_c(x_0, 0, 0)$, which approaches the equilibrium point $(x_0, 0, 0)$ as $s \to +\infty$.

The solution at infinity satisfies the asymptotic behaviour

$$H_{\pm}(\phi) \sim \left(\frac{\phi}{x_0}\right)^{\frac{2}{m+1-n}}$$
 as $\phi \to +\infty$.

The family of diverging solutions is 1D for H_{-} and 2D for H_{+} .

Back to the plan

We are developing "rigorous" shooting method:

- ▶ The ODEs are singular in the limits of small and large H_{\pm}
- ▶ Make transformations to change singular boundary values to equilibrium points
- Obtain near-field asymptotics (small H_{\pm}): $(\phi, u, w) = (A_{\pm}, 0, 0)$
- ▶ Obtain far-field asymptotics (large H_{\pm}): $(x, y, z) = (x_0, 0, 0)$
- ► Connect between near-field and far-field asymptotics.

Connection results for H_+ (after reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_+, 0, 0)$ is 1D
- ► Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 2D.

Fix $A_+ \in \mathbb{R} \setminus \{0\}$ and consider a 1D trajectory such that $(\phi, u, w) \to (A_+, 0, 0)$ as $\tau \to -\infty$ and u > 0. Then, there exists a $\tau_0 \in \mathbb{R}$ such that $\phi(\tau) \to +\infty$ and $u(\tau) \to +\infty$ as $\tau \to \tau_0$.

Figure: Plots of the variation of x_0 with A_+ for various different values of m=2, 3 and 4.

Connection results for H_{-} (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ► Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

If we shoot from $(A_-, 0, 0)$, then the trajectory does not generally reach $(x_0, 0, 0)$

Figure: Panels (a) and (b) show trajectories with m = 3 and n = 0 for H_+ and H_- respectively.

Connection results for H_{-} (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ► Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

Therefore, we shoot from $(x_0, 0, 0)$ trying to reach $(A_-, 0, 0)$.

Lemma

Fix $x_0 > 0$ and consider a 1D trajectory such that $(x, y, z) \to (x_0, 0, 0)$ as $s \to +\infty$ and y > 0. Then, there exists an $s_0 \in \mathbb{R}$ such that

- (i) either w = 0 and $u \ge 0$ as $s \to s_0$
- (ii) or u = 0 and $w \ge 0$ as $s \to s_0$.

In both cases, if $(u, w) \neq (0, 0)$ as $s \to s_0$, then $|\phi| < \infty$ as $s \to s_0$.

Connection results for H_{-} (before reversing)

- ▶ Trajectory that departs from $(\phi, u, w) = (A_-, 0, 0)$ is 1D
- ► Trajectory that arrives to $(x, y, z) = (x_0, 0, 0)$ is 1D.

Therefore, we shoot from $(x_0, 0, 0)$ trying to reach $(A_-, 0, 0)$.

Lemma

Fix $x_0 > 0$ and consider a 1D trajectory such that $(x, y, z) \to (x_0, 0, 0)$ as $s \to +\infty$ and y > 0. Then, there exists an $s_0 \in \mathbb{R}$ such that

- (i) either w = 0 and $u \ge 0$ as $s \to s_0$
- (ii) or u = 0 and $w \ge 0$ as $s \to s_0$.

In both cases, if $(u, w) \neq (0, 0)$ as $s \to s_0$, then $|\phi| < \infty$ as $s \to s_0$.

Open ends:

- ▶ Do the two piecewise C^1 maps intersect?
 - (i) $\mathbb{R}^+ \ni x_0 \mapsto (\phi, u) \in \mathbb{R} \times \mathbb{R}^+$ and (ii) $\mathbb{R}^+ \ni x_0 \mapsto (\phi, w) \in \mathbb{R} \times \mathbb{R}^+$.
- ▶ If they do, does ϕ remain bounded at the intersection point?

And here the numerical approximation kicks in...

Finding the intersection points $x_0 = x_*$

Figure: Panels (a)-(b) show plots of the piecewise C^1 maps for m=2 and m=4. In all cases the blue, red and black curves show the value of w at u=0, the value of u at w=0 and the value of ξ at the termination point respectively.

Self-similar solutions for n = 0 and bifurcations

Self-similar solutions for other values of n

Location of Bifurcations

The black curve corresponds to the exact solution with $A_+ = A_- = 0$:

$$H_{\pm}(\phi) = \left(\frac{\phi}{x_*}\right)^{\frac{2}{m+1-n}}, \quad x_*^2 = \frac{2(m+1+n)}{(m+1-n)^2}.$$

After substituting self-similar variables, it is a static solution h(x,t) = h(x). New self-similar solutions bifurcate from the static solutions at

$$m = m_k = (1 - n)(2k - 1), \quad k = 1, 2, 3, ...$$

Analysis of Bifurcations (n = 0)

Write H_{-} as a perturbation to the exact solution

$$H_{-} = x^{\frac{2}{m+1}} + u(x).$$

The bifurcation problem is related to the linear equation Lu = 0, where

$$Lu = \frac{m+1}{2} \frac{d^2}{dx^2} \left(x^{\frac{2m}{m+1}} u(x) \right) - \frac{m+1}{2} x \frac{du}{dx} + u(x) = 0, \quad x \in (0, \infty).$$

The boundary conditions for admissible self-similar solutions are

$$u(x) \sim x^{\frac{2}{m+1}}$$
 as $x \to \infty$

Near x = 0, the self-similar solutions satisfy

$$u(x) \sim c_1 x^{\frac{1-m}{1+m}} + c_2 x^{\frac{-2m}{1+m}}$$
 as $x \to 0$.

Analysis of Bifurcations

After a coordinate transformation, the homogeneous equation Lu=0 becomes the Kummer's differential equation (1837),

$$z\frac{d^2w}{dz^2} + (b-z)\frac{dw}{dz} + aw(z) = 0, \quad z \in (0,\infty),$$

where

$$a := -\frac{m+1}{2}, \quad b := \frac{m+3}{2}.$$

The power series solution is given by Kummer's function

$$M(z; a, b) = 1 + \frac{a}{b} \frac{z}{1!} + \frac{a(a+1)}{b(b+1)} \frac{z^2}{2!} + \cdots$$

The other solution is singular as $z \to 0$.

The only solution with the correct boundary condition at infinity,

$$U(z; a, b) \sim z^{-a} \left[1 + \mathcal{O}(z^{-1}) \right]$$
 as $z \to \infty$,

was characterized by Tricomi (1947).

When a = -k or $m = m_k = (2k - 1)$, $k \in \mathbb{N}$, Kummer's power series M(z; a, b) becomes a polynomial which connects to the Tricomi's function U(z; a, b).

Connection problem (n = 0)

The *inner* solution near the interface:

$$\phi = A + |A|^{\frac{m+1}{m-1}}\eta, \quad H(\phi) = |A|^{\frac{2}{m-1}}\mathcal{H}(\eta),$$

satisfying

$$\mathcal{H}(\eta) \sim \left(\frac{m(m+1)}{2}\eta\right)^{\frac{1}{m}} \quad \text{as} \quad \eta \to 0; \quad \sim \left(\frac{m+1}{2}\eta^2\right)^{\frac{1}{m+1}} \quad \text{as} \quad \eta \to \infty.$$

The outer solution in the far field:

$$H(\phi) = x^{\frac{2}{m+1}} + \alpha u_1(x) + \alpha^2 u_2(x) + \mathcal{O}(\alpha^3), \quad x := \phi/x_*,$$

where u_1 is Tricomi's function

$$u_1(x) = x^{\frac{1-m}{1+m}} U\left(\frac{m+1}{2} x^{\frac{2}{m+1}}; -\frac{m+1}{2}, \frac{m+3}{2}\right),$$

whereas u_2 is a solution of the inhomogeneous equation

$$Lu_2 = R_2 := -\frac{m(m+1)}{4} \frac{d^2}{dx^2} \left[x^{\frac{2(m-1)}{m+1}} u_1^2 \right].$$

Matching conditions as $\eta \to \infty$ and $x \to 0$ determine α and $x_0 - x_*$ in terms of A, and A in terms of $m - m_k$, where $m = m_k = (2k - 1)$, $k \in \mathbb{N}$ is the bifurcation point.

Numerical confirmations

Bifurcation at m = 5 and n = 0:

$$A_{-} = -\frac{40}{9}(x_0 - x_*) + \cdots$$

and

$$5 - m = \frac{27\sqrt{3}}{4}A_{-} + \cdots$$

Figure: Left: The variation of the parameter A_{-} with 5-m, and; right: the variation of x_0-x_* with A_{-} local to m=5. The black dots are numerics, the blue lines are asymptotics.

Conclusion

- ▶ For every m > 0, n < 1 and m + n > 1 a pair of solutions H_+ and H_- can be constructed numerically and then converted to h(x, t)
 - ▶ Solutions with $A_{\pm} > 0$ correspond to reversing interfaces
 - ▶ Solutions with A_{\pm} < 0 correspond to anti-reversing interfaces
- The behaviour of the self-similar solution at zero and infinity is justified by the dynamical system theory.
- Bifurcations of self-similar solutions are predicted from analysis of the classical Kummer's differential equation.
- Relevance of the self-similar solutions for the slow diffusion equation is confirmed numerically.

References

- J. M. Foster, P. Gysberg, J.R. King, and D. E. Pelinovsky, Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation, in preparation (2016)
- J. M. Foster and D. E. Pelinovsky, Self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption, SIAM J. Appl. Dynam. Syst. 15 (2016), 2017–2050.
- J. M. Foster, C. P. Please, A. D. Fitt, and G. Richardson, The reversing of interfaces in slow diffusion processes with strong absorption, SIAM J. Appl. Math. 72 (2012), 144–162

