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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

, 1
bt + 5 + |24 = 0
admits the exact solution

4(1 + 2it) ol

Rl Ly ey

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:
@ ltis related to modulational instability of CW background vy (x, t) = .
@ It comes from nowhere: | (x,t)] — 1 as |x| + |t] = oo.
@ It is magnified at the center: M, := |¢(0,0)| = 3.

D.Pelinovsky (McMaster University) Rogue waves 2/40



Definitions and properties of rogue waves

The rogue wave of the cubic NLS equation

Possible developments:
@ To generate higher-order rational solutions for multiple rogue waves...
@ To extend constructions in other basic integrable PDEs...
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Definitions and properties of rogue waves

Periodic wave background
The focusing nonlinear Schrédinger (NLS) equation
b+ e+ [0 = 0
admits other wave solutions, e.g. the periodic waves of trivial phase

ban(X, 1) = dn(x; k)T, /Dt (x, 1) = ken(x; k)e/k —1/2)1t
where k € (0, 1) is elliptic modulus.
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Definitions and properties of rogue waves

Double-periodic wave background

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987):

en(t; K)en(V1 + kx; k) + iv1 + ksn(t; K)dn(vV1 + kx; k) ot
V14 kdn(v1 4 kx; k) — dn(t; K)en(V1 + kx; k) ’

V(x, 1) = dn(t; k)en(vV2x; k) + ir/k(1 + k)sn(t; k) okt V1—k
. V14 k — Vken(t; k)en(v2x; k) ’ V2

where k € (0, 1) is elliptic modulus.

v(x, )=k
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Main question

Can we obtain a rogue wave on the background g such that

inf _sup ’1/1(X, t) — tho(X — Xo, t — 1)€°| -0 as t— +oo 277

X0,f0,0ER xcR

This rogue wave appears from nowhere and disappears without trace.

Further questions:
@ Magnification factors for rogue waves
@ Spectral representation and inverse scattering
@ Robustness (stability) in the time evolution.
@ Extensions to quasi-periodic background.
@ Extensions to multi-soliton background.
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Main question and background

Darboux transformation as the main tool

Let u be a solution of the NLS. It is a potential of the compatible Lax system

A u

=t vo=( 2 4

and

24 1yl2 1
pr= V(A U)p, V(/\,u)_i<>‘ +luf pux+u )

O — AT —X2—L|uf?

so that v = Y-

Let ¢ = (p1, 1) be a nonzero solution of the Lax system for A = A\ € C. The
following one-fold Darboux transformation (DT):

2(M 4+ M)p1 G

b=u+
P12 + |2

)

provides another solution & of the same NLS equation.
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Main question and background

Preliminary literature

@ Numerical computations of eigenfunctions for DT on dn-, ¢n-, and
double-periodic backgrounds:
(Kedziora—Ankiewicz—Akhmediev, 2014) (Calini—-Schober, 2017)

@ Emergence of rogue waves in simulations of modulation instability of
dn-periodic waves:
(Agafontsev—Zakharov, 2016)

@ Magnification factors of quasi-periodic solutions from analysis of
Riemann’s Theta functions:
(Bertola—Tovbis, 2017) (Wright, 2019)

@ Rogue waves from superpositions of nearly identical solitons:
(Bilman—Buckingham, 2018) (Slunyaev, 2019)
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Algebraic method - Step 1

Consider the spectral problem

px = U\, u)g, Ui ) = ( —A’:’ . )

Fix A\ = A1 € C with ¢ = (py, g1) € C? and set

{u—p12+<‘712,
T — P2 2
Uu=pi+a.

The spectral problem becomes the Hamiltonian system of degree two
generated by the Hamiltonian function

- - - 1 —oy =
H= X p1gi + Mp1gs + E(,D12 + @) (5 + ).

The algebraic technique is called the “nonlinearization” of Lax pair
(Cao—Geng, 1990) (Cao—Wu—-Geng, 1999) (R.Zhou, 2009)
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Algebraic method with one eigenvalue

Hamiltonian system and constraints

The Hamiltonian system is integrable with two constants of motion:

H = Mpigi+Mpigi + 5 (P1+Q1)(P1+Q1)
F = i(p1gr — 1)

The constraints between u and (py, g1) are extended as:

u = P12+EI127
du i O
w7t 2iFu = 2(Mps—\3?),
d2u 5 adu 2.2  32=2
et u+2/Fd——4Hu = 4\TPF +AT).

Compatible potentials u(x) satisfy the closed second-order ODE:

u" + 2|ufPu + 2icu’ — 4bu = 0,

where ¢ := F 4 i(A\ — A1) and b := H + iF(\ — \) + |\ ]2

D.Pelinovsky (McMaster University) Rogue waves

10/40



Algebraic method with one eigenvalue

Integrability of the Hamiltonian system

The Hamiltonian system is a compatibility condition of the Lax equation
W0 = U W) - WU, 1),
where U(\, u) is the same as in the Lax system and
Wi1(N\) Wiz()) >
W) = : ,
2 ( Wia(=)) —Whi(—))

with
P1G P14
Wi(\) = 1- P A
1Y) A*/\1+)\+)\1
%] a9
Wis(\) = ——— + ———.
12(3) NS VL Wy

Simple algebra shows
N2 +icA + b+ F|uf?
()\ — )\1)(/\4-/_\1) ’

U\ + icu + tu
Wia()) = 2

Wir(%) = T A=A+

D.Pelinovsky (McMaster University) Rogue waves

11/40



Closure relations

The (1, 2)-element of the Lax equation,

d

ox Wia(X) = 2AWi2(X) — 2uWi1(N),

yields the second-order equation on u:

u" + 2|ujPu + 2icy’ — 4bu = 0.

detW()\) is constant in (x, t) and has simple poles at A\; and —\1:

P(Y)

det[W(A)] = ~[Wii ()] — Wiz(\) Wiz(—)) = TS MO T M)

so that P()\) is constant in (x, t) and has roots at Ay and —\+:

1 . 1 _ S
P(A) = (X2 +icA + b+ 5[uf?)? — (U + icu + Su') (A + icll — 5 T)

N

D.Pelinovsky (McMaster University) Rogue waves 12/40



Algebraic method with one eigenvalue

Conserved quantities

The second-order equation on u
U’ + 2|ufPu + 2icu’ — 4bu =0
is now closed with the conserved quantities

(VT — ull) — 2clul? = 4a,
|U')? + |u|* + 4b|u|? = 8d.

These equations describe a general class of traveling wave solutions:
W(x,t) = u(x + ct)e 2P,
The polynomial P()) in detW(\) is given by
P()\) = \* + 2icA® + (2b — ¢®)\® + 2i(a+ be)\ + b? — 2ac + 2d,

with roots at Ay and —X4. (Another pair also exists.)

D.Pelinovsky (McMaster University) Rogue waves 13/40



Algebraic method with one eigenvalue

Periodic waves of trivial phase

For traveling wave solutions:
@ ¢ = 0 can be set without loss of generality.
@ a = 0is set for waves with trivial phase.

The real function u(x) is determined by the quadrature:

2
(g‘;) +u* + 4bu? = 8d

with two parameters b,d. Parameterizing V(u) = u* + 4bu? — 8d by two pairs
of roots:
—4b = U2 + U3,
—8d = u2us.
we get two families of traveling wave solutions:
9 0 < U < ur: u(x) = urdn(uy x; k)

@ U = ivp: u(x) = usen(ax; K), o = (/U2 + V3
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Lax spectrum of dn-periodic waves

Polynomial P()) simplifies in terms of the turning points uy, us:

1 1
P(A) = A" = S(Uf + )N + ﬁ(U? — )
with two pairs of roots

uy — U

Imaginary Part
o

-1 -0.5 o 0.5 1
Real Part
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Algebraic method with one eigenvalue

Lax spectrum of cn-periodic waves

If uo = ivo, there is one quadruplet of roots:

g + ivo

Uy — ivo
2 7 '

A=+ 5

A=+

041 04

[
\

Imaginary Part
o

\
/

04r 04

o5, = . - 1 s

Real Part
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En route to rogue waves

Let ¢ = (p1, 1) be a nonzero solution of the Lax system for A = A1 € C.
The one-fold Darboux transformation

2(M + M)p1a
lp112 + (g1 2

gives another solution & of the same NLS equation.

U=u+

)

0.8

0.6

0.4

0.2

Imaginary Part
o

0.2

-0.4

-0.6 |

-0.8 1

-1 -0.5 o 0.5 1
Real Part

Question: which value of )\ to use?
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Algebraic method - Step 2

Evaluating the matrix elements at simple poles A\ and — )4

P1Gi [_)1a1 _)\2+IC)\+b+1§|U‘2
A=A A+A A=A)A+XN) ]
p3 @  ulticu+ ju

+ 5= =
A= A+EXN A=A+ )

Wii(A) = 1-

Wia(A) =

we can derive the inverse relations between the potential v and the squared
eigenfunctions:

1 1
2 / :
= — | U +icu+ \u ),
P A1+ A (2 1 )

2 = 1 (—1u’—|—icu+)\ u)

@ = )\1-1-5\1 2 ! ’

1 1
= - — [ b+ =|uf? +ir c+/\2>.

P13y >\1+)\1<+2||+ 1 1

The eigenfunction ¢ = (p1, g1) is periodic if u is periodic.
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Algebraic method with one eigenvalue

Second linearly independent solution

Let us define the second solution » = (py, §1) by

2q

1 2py
P12+ |1 [

R T
D=@ot o g

p1 = p1g1 —
such that p1§; — p1g1 = 2 (Wronskian is constant). Then, scalar function
o1(x, t) satisfies B
Op1 A4\ + M)P1a

ax (P2 + ¢ [2)2

and _ -
Do1 __SI0F = X)PiGr | 20\ + M) (uPf + UGR)

at (PP +|@f?)? (Ip1[2 + |g112)2
The system is compatible as it is obtained from Lax equation.
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Algebraic method with one eigenvalue

Second solutions for periodic waves

For periodic waves with the trivial phase, variables are separated by

u(x, t) = Ux)e 22, py(x,t) = Pi(x)e ™, ai(x,1) = Qi (x)e™,

where U is real, either U(x) = dn(x; k) or U(x) = Kken(x; k),
whereas |p1|? + |g1|2 = dn(x; k) in both cases.

Integrating linear equations for ¢1(x, t) yields

d1(x, 1) = 2x + 2i(1 £ /1 — K2)t £ 21/1 —kz/

dn? yk

and

dn?(y; k)

p1(x, t):2k2/ en’(y: K)dy + 2ik+/1 k2/ ) + 2ikt
0 dn? y

from which it is obvious that |¢1| — oo as t — +oo.
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Algebraic method - Step 3

Rogue waves on the background u are generated by the DT:

2(M + M)P a1

b=u+—3 =
P17 + [1]2
where o o5
a _ 1 P P1
p1 = P11 PE+ IR q q1¢1+7\p1|2+|q1|2’
As t — +oo, ~
N 2(M +M)p1G
o(x,t o =U+
Ut Ol P [P
which is a translation of the periodic wave u, e.g.
. Vi—K?
(X, gy 00 = m = dn(x + K(k); k)
or

kv/1 — k2sn(x; k)
dn(x; k)

UX, ) jgy |00 = — = ken(x + K(k); k).

D.Pelinovsky (McMaster University) Rogue waves 21/40



Magnification factor

Rogue waves on the background u are generated by the DT:

2(\ 1 + A )P1 G

b=u+—3 =
|P1[2 +[Gn |2
where o e
A 1 A P1
= — 5 5> = + — s 5>
P1 = P11 B+ i g1 = 191 B+ G
At the center of the rogue wave,
. 2(M + M)p1g .
U(X, t)|¢1:0 =Uy— M = 2U — u,

P12 + lau |?

hence the magnification factor does not exceed three magnification if the
rogue solution is obtained by the one-fold transformation.
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Algebraic method with one eigenvalue

Rogue wave on the dn-periodic wave

The dn-periodic wave is
u(x, t) = dn(x; k)& =K/t
The rogue wave for the larger eigenvalue A1 has the larger magnification:

M(k) =2+ 1 -k, kel[0,1]

o

Amplitude

Imaginary Part
°
o
&

-‘4 05 0 05 1 Space (x) -10 Time (t)
Real Part

D.Pelinovsky (McMaster University) Rogue waves 23/40



Algebraic method with one eigenvalue

Another rogue wave on the dn-periodic wave

The dn-periodic wave is
u(x, t) = dn(x; k)& =K/t
The rogue wave for the smaller eigenvalue )\ has the smaller magnification

M(k)=2-1—Kke, kel0,1].

o o o o
5 R e ®
Amplitude

Imaginary Part
5 o

A 05 0
Real Part
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Algebraic method with one eigenvalue

Rogue wave on the cn-periodic wave

The cn-periodic wave is
Yen(X, 1) = ken(x; k)e/k*=1/21t
The rogue wave has the exact magnification factor:
M(k)=2, kel0,1].

[}
°
]
04 E]
£
<
02 ~—
5
&
>
e 0
2
E
02 — T
04
0.6 Space (x)
1 05 0 05 1
Real Part
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Algebraic method with one eigenvalue

Rogue wave on the cn-periodic wave

The cn-periodic wave is
Yen(X, 1) = ken(x; k)e/k*=1/21t
The rogue wave has the exact magnification factor:
M(k)=2, kel0,1].

Amplitude

AN
7N\

O 98 s o+ 02 o o0z o4 o6 o5 Space () -20 220 =10
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

Substituting u(x, t) = e~2P! [U(x) + b(x, t)] into the NLS equation

. 1
iUy + 2 U + |uPu=0
and linearizing at & yields the linearized evolution problem

U I N .
O + 5 Oox +2(b + UAiu+ U0 =0.

Since U does not depend on t, we can separate the variables
U(x,t) = U(x)e' and obtain the spectral problem for I':

e e o

U
—U? 102 - 2(b+ U?) U 0 —1 ] 1
where . o
Ux+L)=e"0(x)
with Floquet parameter v € [—7 /L, w/L].

The periodic wave is modulationally unstable if 3T with Re(I') >0 for small ~.
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

If A belongs to the Lax spectrum and P()) is the polynomial in
PO = M 2( + BN + (4 — B

then I' := +£2i,/P(}) is in the modulation instability spectrum.
(Deconinck—Segal, 2017) (Deconinck—Upsal, 2019)

04

03

Imaginary Part
Imaginary Part

S ° o
= o = o

S
~

0.3

Real Part ’ 008 006 -004 -0.02 0 002 0.04 006 0.08
Real Part
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase
( ) R(X) l@(x 2!bt

with X
R(x) = /B — k2sn2(x; k), ©(x) = —2e _ax
o R(x)?
06
0.4 04
02F 0.2
E 0\ / E
§ 0 E 0
£ 02 / \ £ 0.2
04 0.4
-0'6»1 05 0 0.‘5 1 -0’?0.4 03 »(;.2 -(;.1 5 0.‘1 0‘.2 o.‘s 0.4
Real Part Real Part
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Algebraic method with one eigenvalue

Relation to modulation instability of the periodic wave

Here is an example of the periodic wave with nontrivial phase
U(X) — R(X)eie(x) eZibt

with
R(x) = \/8 — K2sn2(x; k), ©(x) = —2e /0 %.

Amplitude
& v
o - N

> ©°

Space (x) -50 .50 Time (t)
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Algebraic method with one eigenvalue

Parameter plane for periodic waves

0.9 1

0.8 4

0.7 1

0.6 4

0.4 4

0.3 1

0.2 4

0.1 1

Figure: The black curves are boundaries of the triangular region where the periodic
waves with nontrivial phase exist. The blue dots show parameter values of (3, k) for
the solutions chosen for numerical illustrations. The red curve shows the curve where
the rogue wave is not localized.
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Towards the double-periodic background

Algebraic method with two eigenvalues

Fix A = A1 € Cwith ¢ = (p1,g1) € C2and A = A\; € C with ¢ = (p2, g2) € C?
such that A\ # +Xs and Ay # £X,. Set

u=pi+a +p5+ 3.
The algebraic method produces the third-order equation
u" +6JulPu’ + 2ic(u” + 2|ulPu) + 4bu’ + 8iau = 0,
with three constants of motion:

d+ 3blufP + fe(U't— ul') + §(ut’ + "t — |U'? + 3|u| )
2e — au|® - %C(|U 2+ |u*) + g(u'T - u'T")

f—ta(u'to—ul')+ 3b(|U']P+ |u*) + L (v + 2|ufPul® — (VT - uu) )

0,
0,
0.

P(\) = X5 42ich® + (2b— c®)\* + 2i(a+ bc)A® + (b? — 2ac + 2d)\?
+2i(e+ab+ cd)\ + f + 2bd — 2ce — &°.

Eigenvalues Ay and )\, are found among three roots of the polynomial
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Towards the double-periodic background

Double-periodic solutions

Double-periodic solutions (Akhmediev, Eleonskii, Kulagin, 1987)
correspond to ¢ = a = e = 0. The solution takes the explicit form:

u(x, t) = [Q(x, t) + i5(t)] D,
where Q(x, t) and §(t) are found from the first-order quadratures:

__ VZizzsn(pti k)
6(t) B \/23 — Z1Cl’12(ut; k)7

with0 < z; < z» < z3 and

(Q1 — Qu)(Q2 — Qu)

Qlx. 1) = Qa + (@2 — Qu) + (Q — Qo)sn2(vx; k)’

with Qs < Q3 < » < (.
By construction, ++/z1, ++/2Z2, ++/Z3 are roots of P(A):
P(\) = A8 4+ 2bX\* + (b? 4 2d)\2 + f + 2bd.
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Towards the double-periodic background

Lax spectrum and rogue waves: real roots
The double-periodic solution if z; > 3 are real:

u(x, ) = kcn(t; K)en(v1 + kx; k) + iv1 + ksn(t; k)dn(v1 + kx; m)e,t
e V1 + kdn(vT + kx; k) — dn(t; k)en(v/T + kx; &) ’

15
10
gl
= N N —VE N Va2 VE
g or *~— —— -~
g
£ s
10 -
15
-20
Bl 05 0 05 1
Real Part
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Towards the double-periodic background

Lax spectrum and rogue waves: real roots
The double-periodic solution if z; > 3 are real:

u(x, ) = kcn(t; K)en(v1 + kx; k) + iv1 + ksn(t; k)dn(v1 + kx; m)e,t
e V1 + kdn(vT + kx; k) — dn(t; k)en(v/T + kx; &) ’

15
10
gl
= N N —VE N Va2 VE
g or *~— —— -~
g
£ s
10 -
15
-20
Bl 05 0 05 1
Real Part
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Towards the double-periodic background

Lax spectrum and rogue waves: real roots
The double-periodic solution if z; > 3 are real:

u(x, ) = kcn(t; K)en(v1 + kx; k) + iv1 + ksn(t; k)dn(v1 + kx; m)e,t
e V1 + kdn(vT + kx; k) — dn(t; k)en(v/T + kx; &) ’

15
10
S
> Va o Vm VA V- va VA
g 0 *~— —— -~
g
£ s
10 -
15
-20
Bl 05 0 05 1
Real Part
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Towards the double-periodic background

Lax spectrum and rogue waves: complex roots
The double-periodic solution if z4 is real and z» 3 are complex:

“(X’f)Zdn(t;k)cn(ﬁxm)+i\/msn(f;k)eikt o \/ﬂ.

V1 k —Vken(t; k)en(vV2x; ) ’ V2

08

06

04

02

Imaginary Part
s
<\
i) |
Sal %

-0.2

04
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08

Bl -05 0 05 1
Real Part
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Towards the double-periodic background

Lax spectrum and rogue waves: complex roots
The double-periodic solution if z4 is real and z» 3 are complex:

u(x, ) = dn(t; k)en(v2x; k) + i/k(1 + k)sn(t; k) ok V1-— k.

V1 k —Vken(t; k)en(vV2x; ) ’ V2

08
06
04
5 R4 el
5 02 I
ey [ =
g 0 |
., / \
E —VE N
04
06
08
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-1 0.5 0 05 1
Real Part
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Towards the double-periodic background

Magnification factors

Simplest definition of the magnification factor:

max(x,nere | U(X; 1)
T;

| <3.
max(y ez |U(X, D)
Definition of the magnification factor used in physics literature:

M2 — max(x’t)e]Rz |Z\/(X, t)|

meany yegz|U(X, )|
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Towards the double-periodic background

Magnification factors

Simplest definition of the magnification factor:

max(x,nere | U(X; 1)
T;

| <3.
max(x s |U(X. 1)

Definition of the magnification factor used in physics literature:

max(x’t)e]Rz |Z\/(X, t)'

Ve = meange peselu(x, )

Rogue wave Solution M, Mo
M =121 real roots 1.45 | 3.96
Ao =+/22 same 1.71 | 4.68
A3 =+/Z3 same 1.84 | 5.03
M = /Z4 complex roots | 1.80 | 4.67

Ao =&+ In same 1.60 | 4.15
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Towards the double-periodic background

Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.
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Towards the double-periodic background
Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.

Further directions:

@ Characterize eigenvalues, eigenfunctions, and rogue waves on general
quasi-periodic solutions.

@ Observe rogue waves on the periodic background in water wave
experiments (Amin Chabchoub, Sydney).
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Towards the double-periodic background
Summary

Summary:

@ New method is developed for computations of eigenvalues and
eigenfunctions of the Lax system for periodic and double-periodic waves.

@ New exact solutions are obtained for rogue waves on the background of
periodic and double-periodic waves.

@ Magnification factor is computed exactly at the rogue waves.

Further directions:

@ Characterize eigenvalues, eigenfunctions, and rogue waves on general
quasi-periodic solutions.

@ Observe rogue waves on the periodic background in water wave
experiments (Amin Chabchoub, Sydney).

Thank you! Questions???
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