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The rogue wave of the cubic NLS equation

The focusing nonlinear Schrédinger (NLS) equation

it + e+ 2(J012 = 1) = 0
admits the exact solution

4(1 + 4it)

PN =T" T e e

It was discovered by H. Peregrine (1983) and was labeled as the rogue wave.

Properties of the rogue wave:
@ ltis related to modulational instability of the constant wave (X, t) = 1.
@ It comes from nowhere: |¢(x,t)| — 1 as |x| + |t] = oo.
@ It is magnified at the center: My := |¢(0,0)| = 3.
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Definitions and properties of rogue waves
Main question

The focusing nonlinear Schrédinger (NLS) equation
it + P + 2[¢P% = 0
admits other wave solutions, e.g. the periodic waves
Yan(X, 1) = dn(x; k)€C=K) yo(x, 1) = ken(x; k)@ =Dt
or the double-periodic solutions (Akhmediev, 1987):

oty — VEOERIn(@1K) — idn(2t Kjen(vV2x:k) gy VT—K
) VT +k — Vken(2t; k)en(v2x; k) ; 5

where k € (0, 1) is elliptic modulus.

Can we obtain the exact solution on the background i)y such that

inf  sup [1h(x, 1) — Yo(X — X0, t — 1))€’*| -0 as t— foo 777
Xo,f0,20€ER xcR

This corresponds to the rogue wave on the background
that appears from nowhere and disappears without trace.
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Definitions and properties of rogue waves
Background

Rogue periodic waves were numerically constructed in
(Kedziora—Ankiewicz—Akhmediev, 2014)

Emergence of rogue waves from dn-periodic waves was numerically
observed in (Agafontsev—Zakharov, 2016)

Rogue waves on double-periodic solutions were studied numerically in
(Calini—-Schober, 2017)

Magnification factor of quasi-periodic solutions were obtained from
analysis of Riemann’s Theta functions (Bertola—Tovbis, 2017).

Rogue waves from a superposition of nearly identical solitons were
constructed in (Slunyaev—E.Pelinovsky, 2016)

Rogue waves were approximated by the finite-gap solutions in
(Grinevich—Santini, 2017)
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Rogue waves in the modified KdV equation

Rogue waves in the modified KdV equation

The modified Korteweg—de Vries (mKdV) equation
U + 6U2Ux +Uxx =0

appears in many physical applications, e.g., in models for internal waves.
The mKdV equation admits two families of the travelling periodic waves:
@ positive-definite periodic waves modulationally stable
Ui (X, t) = dn(x — ct; k), €= (k) :=2 — K2,
@ sign-indefinite periodic waves modulationally unstable
Un(X, 1) = ken(x — ¢t k), € = Cen(K) := 2k® — 1,

where k € (0, 1) is elliptic modulus.
Bronski—Johnson—Kapitula, 2011 and Deconinck—Nivala, 2011

As k — 1, the periodic waves converge to the soliton u(x, t) = sech(x — t).
As k — 0, the periodic waves converge to the small-amplitude waves.
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Rogue waves in the modified KdV equation

Rogue waves on the periodic background

The mKdV equation
ut + 6U2UX + UXXX = O

is a compatibility condition of the Lax pair ¢(x, t) € C?:

Px = U(Aa u)(p7 Yt = V(>\7 U)QO

Main question: Can we obtain the exact solution on the periodic wave
background up s.t.

inf _sup|u(x,t) — Up(X — X0, t — )] =0 as t— too 7?77
XO,TOE]R)(G]R

@ For a periodic wave uy, we construct the periodic eigenfunctions ¢ for
particular eigenvalues .

@ For each periodic eigenfunction ¢, we construct the second linearly
independent non-periodic solution ¢ for the same value of \.

@ Darboux transformation with a non-periodic function +, yields the rogue
wave u on the periodic background up.
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Rogue waves in the modified KdV equation

Rogue wave on the cn-periodic background

For cn-periodic waves
Uen(X, t) = ken(x — ct; k), € = Can(k) := 2k® — 1,
the magnification factor is
Mu(k) =3, ke]0,1].

The new solution is a rogue wave created because of the modulational
instability of the cn-periodic wave.

Figure: The rogue cn-periodic wave of the mKdV for k = 0.95.
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Rogue waves in the modified KdV equation

Rogue wave on the dn-periodic background

For dn-periodic waves
Uan(X, 1) = dn(x — ct; k), ¢ = Can(k) := 2 — K,
the magnification factor is
Mu(k) =2+ /1 — k2, kec[0,1].

The new solution is a superposition of the (modulationally stable) dn-periodic
wave and a travelling algebraic soliton.

Figure: Algebraic soliton on the dn-periodic wave for k = 0.95.
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Algebraic method - Step 1

1. For a periodic wave u, we compute the periodic eigenfunctions  for
particular eigenvalues ).

The AKNS spectral problem for ¢(x, t) € C2:

b= e U= (2, 4 ).

where u(x, f) € Ris any solution of the mKdV.

We use an algebraic technique based on the “nonlinearization” of Lax pair:
Cao—Geng, 1990; Cao—Wu—-Geng, 1999; Zhou, 2009; Chen, 2012.

Relations between the potential u(x, t) and the squared eigenfunctions ¢(x, t)
for some eigenvalues A have been known since the original paper of
Gardner—Green—Kruskal-Miura (1974).
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Algebraic construction of rogue waves

Nonlinear Hamiltonian system from Lax operator

Fix A = \; € C with an eigenfunction ¢ = (¢4, p2) € C?. Set
u=¢i+ps R
and consider the Hamiltonian system

d
G = Mot + (D5 + B = 22,
922 = N2 — (¢ + 2)e1,=

related to the Hamiltonian function

? oH
I

—

H(p1,92) = Z(<P$ + ©3)% + Mp1¢p2.
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Algebraic construction of rogue waves

Nonlinear Hamiltonian system from Lax operator

Fix A = \; € C with an eigenfunction ¢ = (¢4, p2) € C?. Set
u=¢i+ps R

and consider the Hamiltonian system

d
T = Mo+ (F + B2 = SIL,
922 = N2 — (93 + 3)p1, = —%

related to the Hamiltonian function

—

H(p1, ¢2) = Z(@? +©05)? + M1
Besides u = ¢% + 3, we also have constraints

o =2 -
and

Eo — U? = 4\ 11402,
where Ey = 4H(p1, p2) is conserved.
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Algebraic construction of rogue waves

Integrability of the Hamiltonian system

The Hamiltonian system is a compatibility condition of the Lax equation

d
2 W) = QW) - W),

O(/\):< AU )7 W()\):( Wii(2) Wiz(N) ),

—u -\ W12(—)\) —W11(—)\)
with

©1p2 P1p2 Ey — u?
Wii(\) = 1- S R
1Y) RSB VLS WIS 2(X2 — )2y’

2 2

2

W) = =

X—h A 208N
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Differential relations on u

The (1, 2)-element of the Lax equation is equivalent to

d2
dTZ +20° =cu, c=2E) +4)7
The determinant equation
Eo

det[W(A)] = —[Wa1 (A\)F — Wia(AN)Wai(A) = —1 + oz
2

yields
dU 2 4 2 " ; E2
((fX) ’ 0

The differential equations on u are satisfied if u is the periodic wave of the
mKdV equation. Moreover, if u(x — ct), then ¢(x — ct) is compatible with the
time evolution of the Lax pair.
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Algebraic construction of rogue waves
dn-periodic waves

The connection formulas:
c=4) +2F, d=-E.
For dn-periodic waves
Uan(X, 1) = dn(x — ct; k), €= can(k) :=2 — k2,
we have d = k2 — 1 < 0. Hence E; = +v1 — k2 and

ﬁ:%P—Wyaﬁfa.

of
2 _)‘+ - A A
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Algebraic construction of rogue waves
cn-periodic waves

The connection formulas:

c=4) +2F, d=-E.
For cn-periodic waves

Un(X, 1) = ken(x — ct; k), € = Cn(K) := 2k® — 1,
we have d = k?(1 — k?) > 0. Hence Eqy = +ikv/1 — k2 and
1

X =2 [2K% — 1 5 2ikv/1 - K]
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Algebraic method - Step 2

2. For each periodic eigenfunction ¢, we construct the second linearly
independent non-periodic solution ) for the same value of ).

For A = Ay € C, we have one periodic solution ¢ = (1, ¢2) of

b= U, U= (0, )

where u € R is any solution of the mKdV.
Let us define the second solution ¢ = (1, 12) by
6—1 C0+1

¢1 = ) ¢2 - )
P2 1

such that o112 — p21p1 = 2 (Wronskian is constant). Then, 6 satisfies the
first-order reduction

do u0w§—¢?+u¢$+w§.

ax P12 ©1p2
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Non-periodic solutions

Because u = ¢? + 3, Uy = 2X\1(p? — ¢3), and Eg — U? = 41102, We can
rewrite the ODE for 0 as

do 0 2ud AP
dx U2—E0 U2—EQ7

where u? — Ey # 0 is assumed. Integration yields
00 =~ — ) [ i oy
Eo)?
Moreover, if u(x — ct) and ¢(x — ct), then the time evolution yields

x—ct 2
0(x, 1) = — 4\ (u(x — ct)? — Eo) /0 (U(y“)gﬂEo)zdy s

up to translation in t.
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Algebraic method - Step 3

3. Darboux transformation with the non-periodic function ¢ yields a
rogue wave U on the periodic background uj.

One-fold Darboux transformation:

where up and u are solutions of the mKdV and (p, q) is a nonzero solution of
the Lax pair with A = Ay and up.

Two-fold Darboux transformation:
402 = 23) [Mp1qi (5 + 65) — XeP2a(P% + G2))
N2+ 03)(0F + 2)(P% + 03) — 2\ X2 [4p1q1P2Ge + (PF — G2) (0% — 03)]

where (p1, 1) and (pz, g2) are nonzero solutions of the Lax pair with A1 and
Ao such that M 75 + M.

u= U+
(
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Algebraic soliton on the dn-periodic wave

The dn-periodic wave is Uy = dn(x — ct; k). Using one-fold transformation with
periodic eigenfunction (o1, ¢2) yields

B ANiprp2 Vi-k .
U=+ i ey i dn(x — ct + K(k); k),

which is a translation of the dn-periodic wave.
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Algebraic soliton on the dn-periodic wave

The dn-periodic wave is Uy = dn(x — ct; k). Using one-fold transformation with
periodic eigenfunction (o1, ¢2) yields

Ahpree  VI1-K?
ga? + SOS dn(x — ct; k)
which is a translation of the dn-periodic wave.

u=u+

= —dn(x — ct + K(k); k),

Using one-fold transformation with non-periodic (1, v») yields

AN AN1p102(02 — 1)

2h0 T T (B BT+ 07) —2(ef — B)
which is not a translation of the dn-periodic wave.

@ As |0] — oo (as |x| + |t] — oo almost everywhere):

u(x,t) ~ —m = —dn(x — ct + K(k); k).

@ At9 =0 (at (x,t) = (0,0)), the rogue wave is at the maximum point:

u(0,0) =2+ V1 — K2
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Algebraic construction of rogue waves

Algebraic soliton on the dn-periodic wave

For dn-periodic waves
Uan(X, 1) = dn(x — ct; k), ¢ = Can(k) := 2 — K,
the magnification factor is
Mu(k) =2+ /1 — k2, kec[0,1].

The new solution is a superposition of the (modulationally stable) dn-periodic
wave and a travelling algebraic soliton.

Figure: Algebraic soliton on the dn-periodic wave for k = 0.95.
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Rogue wave on the cn-periodic wave

The cn-periodic wave is up = ken(x — ct; k). Since A\ ¢ R, one-fold
transformation yields complex solutions of the mKdV. Using two-fold
transformation with periodic (¢1, ¢2) and its conjugate yields
4k2(1 — kz)Uo
= U+ 53 2 _ 4 g2 2 2
(2k2 —1)ug — ug — k2(1 — k2) — (u})
which is a translation of the cn-periodic wave.

u = —Up,
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Rogue wave on the cn-periodic wave

The cn-periodic wave is uy = ken(x — ct; k). Since A1 ¢ R, one-fold
transformation yields complex solutions of the mKdV. Using two-fold
transformation with periodic (¢1, ¢2) and its conjugate yields
4k2(1 — kz)Uo
=t 5 2 _ 4 K2 2 2
(2k2 —1)ug — ug — k2(1 — k2) — (u})
which is a translation of the cn-periodic wave.

u

= —Uo,

Using two-fold transformation with non-periodic (v1, ¢2) and its conjugate:
—2 -2 -2 —
408 = X)) [N (F; + 05) — Xy (v + v9)|
) .
(A7 + XDIWF + w82 — 2[\[2 [4]u1 [Pe2]? + [vF — w32
@ As |0| — oo (as |x| + |t| — oo everywhere):

u=up+

u(x, t) ~ —up(x, t).
@ At9 =0 (at (x,t) = (0,0)), the rogue wave is at the maximum point:
u(0,0) = 3k.
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Rogue cn-periodic waves

For cn-periodic waves
Uen(X, t) = ken(x — ct; k), € = Can(k) := 2k® — 1,
the magnification factor is
M. (k) =3, ke]l0,1].

The new solution is a rogue wave on the background of the modulationally
unstable cn-periodic wave.

Figure: The rogue cn-periodic wave for k = 0.95.
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Rogue waves in the focusing NLS equation

Rogue periodic waves in NLS

The NLS equation
iU + Uy + 2|uj?u =0

has a similar Lax pair, e.g.

A u

The NLS equation admits two families of the periodic waves:
@ positive-definite periodic waves

U (X, t) = dn(x; k)€™, c=2— k2
@ sign-indefinite periodic waves
Uen(X, 1) = ken(x; k)€, ¢ =2k? -1,
where k € (0, 1) is elliptic modulus.

Both periodic waves are modulationally unstable.
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Rogue dn-periodic waves

For dn-periodic waves

Ui (X, t) = dn(x; k)€™, c=2— Kk,
the magnification factor is still

Mu(k) =2++/1— K2, ke[0,1].

The rogue dn-periodic wave is a generalization of Peregrine’s breather. Exact
solutions are computed compared to the numerical approximation in
(Kedziora—Ankiewicz—Akhmediev, 2014).
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Rogue waves in the focusing NLS equation
Rogue cn-periodic waves

For cn-periodic waves
Uen(X, t) = ken(x; k)€™, ¢ =2k® -1,

we employ the one-fold transformation and obtain the magnification factor
M..(k) = 2 for every k € (0,1).

Figure: The rogue cn-periodic wave of the NLS for k = 0.99.
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Rogue waves in the focusing NLS equation
Rogue cn-periodic waves

For cn-periodic waves
Uen(X, t) = ken(x; k)€, ¢ =2k% -1,

we employ the two-fold transformation and obtain the magnification factor
M. (k) = 3 for every k € (0,1).

Figure: The rogue cn-periodic wave of the NLS for k = 0.99.
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Summary and open problems

Summary:

@ New method is developed for computations of eigenfunctions of the
periodic spectral problem associated with the periodic waves.

@ New exact solutions are obtained for rogue waves which generalize
Peregrine’s breathers in the context of dn and cn periodic waves.

Open problems:

@ Extend this approach to the quasi-periodic solutions such as the
double-periodic wave patterns.

@ Characterize squared eigenfunctions and the location of spectral bands
for the quasi-periodic solutions.

@ Understand the connections between parameters of the higher-order
differential equations and parameters of the algebraic method.
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Hamiltonian system of degree two

Fix A1, A2 € C with eigenfunctions (p1, g1) € C? and (p2, g2) € C?. Set
U=pi+G +m+a¢
and consider the Hamiltonian system
9 _ oH
& — " opy

related to the Hamiltonian function
1
H= Z(P12 +Gf + 05+ GB)° + MpiGr + AoPade.
and higher-order conserved energy

Hi = 4(\3pigi + A3p2ae) — 4(M1p1G1 + Aop2ge)?
+2(0F + GF + 5 + G5)(NF(% + GF) + Na(P5 + )
—(M(PF = &) + a5 — G5))°.
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Differential relations on u

Parameters A\, Ao, Eg = 4H, and E; = 4H;. By differentiating in x, we obtain

au
a_2)\1(p i) + 2)2(p3 — G3),
d?u 2,,2 2 202 2
F+2u —cu=—4)5(pF + §%) — 4N5(p5 + G5),
d®u du du
ww uP = O = —8Ma a(pf — af) + Mi(pE - GB)]
and
d*u d2u du d?u
F+1Ou2d 5 +10u(dx> +6u5c(d2+2u):2du,
where

C=2E+4X2 +4)\3, d=FE; +EZ —4E()\F+ )\3) — 8)3\3.

Main question: is to characterize location of (A4, A2) in terms of solutions u to
the fourth-order differential equation.
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Very recent progress

For the differential equation

ddu du  du

@Jrfiuza—ca =0,
integrated as
% +2u¥ —cu=-e
and
<Zl;>2+ u* — cu? + d = 2eu,

there exist only three pairs of eigenvalues £\, X2, and £A3 such that

c = 207+ 23+ )\,
d = M FX 4+ —200503 + \2X3 + )3)3),
e = —4/\1)\2/\3.

This enables us to characterize all periodic waves of the mKdV equation and
related rogue waves on the periodic background.
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