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Background

Introduction

I am mainly interested in stability of periodic wave solutions to nonlinear
integrable Hamiltonian systems.

Integrable models (mKdV, Gardner, NLS, DNLS, KP) feature rogue waves on
complex wave backgrounds, can be treated mathematically, and are still
relevant for modelling of important physical processes.

The derivative nonlinear Schrödinger (DNLS) equation

iψt + ψxx + i(|ψ|2ψ)x = 0

where ψ(x , t) is complex valued. It is one of the basic models for Alfvén waves
propagating along the magnetic field in cold plasmas [E. Mjolhus, 1976]
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Background

Periodic waves and linear stability

The DNLS equation admits the periodic traveling and standing wave solution

ψ(x , t) = e4ibtu(x + 2ct)

with two parameters b (frequency) and c (speed). [A. Kamchatnov, 1990]

Linear stability of such solutions is defined by the linearized equation

iwt − 4bw + 2icwx + wxx + i[2|u|2wx + u2w̄x + 2(uūx + ūux )w + 2uux w̄ ] = 0

for the perturbation w in ψ(x , t) = e4ibt [u(x + 2ct) + w(x + 2ct , t)].

Separating variables by w(x , t) = w1(x)etΛ and w̄(x , t) = w2(x)etΛ results in
the spectral problem for the eigenvector ~w := (w1,w2)T and eigenvalue Λ:

L
[

w1
w2

]
= Λ

[
w1
w2

]
.

D.Pelinovsky (McMaster University) Periodic waves in DNLS equation 3 / 30



Background

Stability of periodic waves

If u(x) is periodic, one can consider periodic ~w(x) with the same period.

On the other hand, by Floquet theorem, ~w(x) = ~p(x)eikx , where ~p is periodic
and k is real, then, ~w ∈ L∞(R) forms a basis of functions in L2(R).

Stability spectrum is the union of all Λ for which ~w ∈ L∞(R).

Definition

The periodic wave u is spectrally unstable if there exists Λ with Re(Λ) > 0
such that ~w ∈ L∞(R).
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Background

How to study stability of periodic waves?

Stability spectrum Λ can be characterized from the linear Lax system
representing the DNLS equation for φ(x , t) = e2btσ3ϕ(x + 2ct , t):

ϕx = U(u, λ)ϕ, ϕt + 2ibσ3ϕ+ 2cϕx = V (u, λ)ϕ,

where

U =

(
−iλ2 λu
−λū iλ2

)
, V =

(
−2iλ4 + iλ2|u|2 2λ3u + λ(iux − |u|2u)

−2λ3ū + λ(i ūx + |u|2ū) 2iλ4 − iλ2|u|2
)
,

If λ ∈ C belongs to Lax spectrum with χ ∈ L∞(R) of χx = U(u, λ)χ, then the
time evolution yields ϕ(x , t) = χ(x)etΩ(λ) for some Ω(λ). Moreover,
~w = (w1,w2)T and Λ in the spectral stability problem are given by

w1 = ∂xχ
2
1, w2 = ∂xχ

2
2, Λ = 2Ω(λ).

Squared eigenfunctions for DNLS were found in [X.G. Chen-J.Yang (2002)].
Recent study of DNLS was done in [J. Upsal-B. Deconinck (2020)].
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Background

Main result from J. Upsal-B. Deconinck (2020):

If Λ ∈ iR for a given λ ∈ R ∪ iR, then λ ∈ R ∪ iR belongs to the Lax spectrum.

Spectral stability of some periodic waves in DNLS in L2
per was also studied in

[S.Hakkaev-A.Stefanov-M.Stanislavova (2021)].
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Background

Our methods and results

We explore construction of periodic waves of integrable equations by
using complex-valued Hamiltonian systems arising in the nonlinearization
of the Lax equations [Cao–Geng, 1990] Also (Z.Qiao; R.Zhou; J.Chen)

We obtain precise information on the location of Lax and stability spectra.

We construct exact solutions describing rogue waves on the background
of periodic waves.

A particularly interesting outcome is the explicit relation between
instability of periodic waves and full localization of rogue waves.
[F. Baronio, M. Conforti, S. Wabnitz, 2014]
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Characterization of periodic waves in the derivative NLS

Periodic travelling and standing waves

The derivative nonlinear Schrödinger (DNLS) equation

iψt + ψxx + i(|ψ|2ψ)x = 0

admits the periodic traveling and standing wave solution

ψ(x , t) = e4ibtu(x + 2ct)

with two parameters b and c. The envelope u = u(x) satisfies

u′′ + 2|u|2u + 2icu′ − 4bu = 0,

From here, solutions are usually constructed by separation of variables
u(x) = R(x)eiΘ(x) with

dΘ

dx
= − a

R2 −
3
4

R2 − c.

Periodic waves of “trivial phase” correspond to a = 0.
Whatever we do for a = 0 can be done for a 6= 0.
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Characterization of periodic waves in the derivative NLS

Families of periodic waves for a = 0

(
dR
dx

)2

+ F (R) = 4d , F (R) =
1

16
R6 +

c
2

R4 + (c2 − 4b)R2.

Left: c2 < 4b. Right: c2 > 4b, c < 0, and b > 0.
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Characterization of periodic waves in the derivative NLS

Lax spectrum for DNLS

Lax system for the DNLS equation includes the spectral problem
[D.Kaup–A.Newell (1978)]:

ϕx =

(
−iλ2 λu
−λū iλ2

)
ϕ,

where u(x) = R(x)eiΘ(x) with periodic R and Θ′. Solutions are in the form
ϕ = (p,q)T , where p(x) = P(x)eiΘ(x)/2 and q(x) = Q(x)e−iΘ(x)/2.

1 Let λ ∈ C\iR be a simple eigenvalue with ϕ = (p,q)T .
Then, λ̄ is a simple eigenvalue with ϕ = (q̄,−p̄)T .

2 Let λ ∈ iR be a simple eigenvalue with ϕ = (p,q)T . Then, q = −i p̄.
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Characterization of periodic waves in the derivative NLS

Complex Hamiltonian system

Fix λ = λ1 with ϕ = (p1,q1)T and λ = λ2 with ϕ = (p2,q2)T s.t. λ1 6= λ2.
Consider the potential u of the Kaup–Newell problem given by either

λ1 ∈ C\iR, λ2 = λ̄1 :

{
u = λ1p2

1 + λ̄1q̄2
1 ,

ū = λ̄1p̄2
1 + λ1q2

1

or
λ1 = iβ1, λ2 = iβ2
q1 = −i p̄1, q2 = −i p̄2

:

{
u = iβ1p2

1 + iβ2p2
2,

ū = −iβ1p̄2
1 − iβ2p̄2

2.

The Kaup–Newell problem becomes a complex Hamiltonian system
generated by the Hamiltonian function

H = iλ2
1p1q1 + iλ2

2p2q2 −
1
2

(λ1p2
1 + λ2p2

2)(λ1q2
1 + λ2q2

2).

with additional conserved quantity

M = i(p1q1 + p2q2).

Both conserved quantities are real for the two cases above.
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Characterization of periodic waves in the derivative NLS

Travelling wave reduction

Differentiating the constraint between u and eigenfunctions:

u = λ1p2
1 + λ2p2

2,

⇒ du
dx

+ i |u|2u + 2iHu + 2i(λ3
1p2

1 + λ3
2p2

2) = 0,

⇒ d2u
dx2 + i

d
dx

(|u|2u) + 2iH
du
dx

+ 4(λ5
1p2

1 + λ5
2p2

2 + iλ4
1up1q1 + iλ4

2up2q2) = 0.

The last equation yields the travelling wave reduction of DNLS:

d2u
dx2 + i

d
dx

(|u|2u) + 2ic
du
dx
− 4bu = 0,

where b := λ2
1λ

2
2(1 + M) and c := λ2

1 + λ2
2 + H.
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Characterization of periodic waves in the derivative NLS

Integrability of the complex Hamiltonian system

The complex Hamiltonian system on (p1,q1) and (p2,q2) is a compatibility
condition of the Lax equation

d
dx

Ψ = U(λ,u)Ψ−ΨU(λ,u),

where U(λ,u) is the same as in the Kaup–Newell system and

Ψ =

(
Ψ11 Ψ12
Ψ21 −Ψ11

)
with

Ψ11 = −i − λ2
1p1q1

λ2 − λ2
1
− λ2

2p2q2

λ2 − λ2
2

=
−i[λ4 − (c + 1

2 |u|2)λ2 + b]

(λ2 − λ2
1)(λ2 − λ2

2)
,

Ψ12 = λ

[
λ1p2

1

λ2 − λ2
1

+
λ2p2

2

λ2 − λ2
2

]
=
λ[λ2u + i

2 ( du
dx + i |u|2u)− cu

(λ2 − λ2
1)(λ2 − λ2

2)
.
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Characterization of periodic waves in the derivative NLS

detΨ is constant and has simple poles at (±λ1,±λ2):

det Ψ = 1− 2Hλ2 − λ2
1λ

2
2M(M + 2)

(λ2 − λ2
1)(λ2 − λ2

2)
=

P(λ)

(λ2 − λ2
1)2(λ2 − λ2

2)2

with

P(λ) = λ8 − 2cλ6 + (a + 2b + c2)λ4 + (d − c(a + 2b))λ2 + b2.

Recall the stability analysis with ϕ(x , t) = χ(x)etΩ(λ) and Λ = 2Ω(λ). Then,

Ω(λ) = ±2i
√

P(λ).

Roots of P(λ) are mapped to Λ = 0 in the stability plane.
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Characterization of periodic waves in the derivative NLS

Characterization of periodic waves

On one hand, the periodic waves of the DNLS are related to the polynomial

P(λ) = λ8 − 2cλ6 + (a + 2b + c2)λ4 + (d − c(a + 2b))λ2 + b2.

Denote four pairs of roots of P(λ) by {±λ1,±λ2,±λ3,±λ4}, where any two
roots can be picked for the algebraic method.

On the other hand, the periodic waves are given for ρ = 1
2 R2:(

dρ
dx

)2

+ Q(ρ) = 0,Q(ρ) = ρ4 + 4cρ3 + 2(2c2 − 8b)ρ2 + 4(ac − 2d)ρ+ a2

Denote four roots of Q(ρ) by {u1,u2,u3,u4}.
The two sets of roots are related explicitly by{

u1 = − 1
2 (λ1 − λ2 + λ3 − λ4)2,

u2 = − 1
2 (λ1 − λ2 − λ3 + λ4)2,

{
u3 = − 1

2 (λ1 + λ2 − λ3 − λ4)2,
u4 = − 1

2 (λ1 + λ2 + λ3 + λ4)2.

[A. Kamchatnov (1990)]
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Characterization of periodic waves in the derivative NLS

First family of periodic waves

Four roots of Q(ρ) are real: u4 ≤ u3 ≤ u2 ≤ u1. Then,

ρ(x) = u4 +
(u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2)sn2(µx ; k)
,

with 2µ =
√

(u1 − u3)(u2 − u4) and 2µk =
√

(u1 − u2)(u3 − u4).

This family occurs only in two cases:
Two complex quadruplets when u4 ≤ u3 ≤ 0 ≤ u2 ≤ u1,

λ1 = λ̄2 = α1 + iβ1, λ3 = λ̄4 = α2 + iβ2.

Four pairs of purely imaginary eigenvalues when 0 ≤ u4 ≤ u3 ≤ u2 ≤ u1,

λ1 = iβ1, λ2 = iβ2, λ3 = iβ3, λ4 = iβ4.
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Characterization of periodic waves in the derivative NLS

Second family of periodic waves

Two roots of Q(ρ) are real u2 ≤ u1 and two roots of Q(ρ) are
complex-conjugate u3,4 = γ ± iη. Then,

ρ(x) = u1 +
(u2 − u1)(1− cn(µx ; k))

1 + δ + (δ − 1)cn(µx ; k)
,

with δ, µ, and k are given in terms of u1, u2, γ, and η.

This family occurs only in one case:
One complex quadruplet and two pairs of purely imaginary eigenvalues when
0 ≤ u2 ≤ u1.
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Modulational instability of periodic waves

Two complex quadruplets
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(a) u1 = 0.2, u2 = 0.1, u3 = 0, u4 = −0.9.
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(b) u1 = 1.9, u2 = 0.2, u3 = 0, u4 = −0.3.
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Modulational instability of periodic waves

One complex quadruplet and two pairs of imaginary
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(a) u1 = 1.2, u2 = 0, u3 = −0.4 − 0.2i , u4 = −0.4 + 0.2i .
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(b) u1 = 3.2, u2 = 0, u3 = −0.6 + 0.2i , u4 = −0.6 − 0.2i .
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Modulational instability of periodic waves

Four pairs of imaginary eigenvalues
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Remarkable:
Stability is observed only for c2 > 4b, c < 0, and b > 0 for periodic waves
ψ(x , t) = e4ibtu(x + 2ct)
Two different families of periodic waves (positive and sign-indefinite)
share the same Lax spectrum and the same stability.
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Rogue waves on the periodic wave background

Rogue waves on the periodic wave background

Does there exist a rogue wave on the periodic wave background such that

sup
x∈R

∣∣∣ψ(x , t)− e4ibt+iα±u(x + 2ct + x±)
∣∣∣→ 0 as t → ±∞

for some α± and x±? This rogue wave would appear from nowhere and
disappear without trace.

Rogue waves are generated by Darboux transformations in the form
ψ̂(x , t) = û(x + 2ct , t)e4ibt with

λ1 ∈ C\iR : û =

(
λ̄1|p1|2 + λ1|q1|2
λ1|p1|2 + λ̄1|q1|2

)2 [
u − 2i(λ2

1 − λ̄2
1)p1q̄1

λ̄1|p1|2 + λ1|q1|2
]
.

and

λ1 = iβ1, q1 = −i p̄1 : û = − p̄2
1

p2
1

[
u + 2iβ1

p1

p̄1

]
e−8ibt

[K. Imai (1999); H. Steudel (2003)]
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Rogue waves on the periodic wave background

Complex quadruplets
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Let φ = (p1,q1)T be the periodic eigenvector for the eigenvalue λ1 with Λ = 0
(a root in the algebraic method). Darboux transformation

λ1 ∈ C\iR : û =

(
λ̄1|p1|2 + λ1|q1|2
λ1|p1|2 + λ̄1|q1|2

)2 [
u − 2i(λ2

1 − λ̄2
1)p1q̄1

λ̄1|p1|2 + λ1|q1|2
]

generates the same periodic wave translated in x .
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Rogue waves on the periodic wave background

The second, linearly independent solution φ = (p̂1, q̂1) for the same
eigenvalue λ1 can be presented in the form

p̂1 = p1χ1 −
q̄1

|p1|2 + |q1|2
, q̂1 = q1χ1 +

p̄1

|p1|2 + |q1|2
,

where
∂χ1

∂x
=

2i(λ2
1 − λ̄2

1)p̄1q̄1 + (λ1 − λ̄1)(up̄2
1 + ūq̄2

1)

(|p1|2 + |q1|2)2

and
∂χ1

∂t
= 2λ2

1(λ2
1 − λ̄2

1).

If λ1 ∈ C\iR, then |χ1(x , t)| → ∞ as |x |+ |t | → ∞ so that the Darboux
transformation defines rogue wave localized in (x , t).
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Rogue waves on the periodic wave background
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Magnification factors of rogue waves can be computed explicitly.
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Rogue waves on the periodic wave background

Purely imaginary eigenvalues
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Let φ = (p1,q1)T be the periodic eigenvector for the eigenvalue λ1 with Λ = 0
(a root in the algebraic method). Darboux transformation

λ1 = iβ1, q1 = −i p̄1 : û = − p̄2
1

p2
1

[
u + 2iβ1

p1

p̄1

]
e−8ibt

generates the periodic wave of the same class.
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Rogue waves on the periodic wave background

The second, linearly independent solution φ = (p̂1, q̂1) for the same
eigenvalue λ1 can be presented in the form

p̂1 = p1χ1 −
1

2q1
, q̂1 = q1χ1 +

1
2p1

,

where
∂χ1

∂x
=

iβ1

2|p1|4
(
up̄2

1 − ūp2
1
)

and
∂χ1

∂t
= 2β2

1 .

If λ1 ∈ iR, then |χ1(x , t)| is bounded as |x |+ |t | → ∞ along the direction:

k1(x + 2ct) + 2β2
1 t = 0

where

k1 =
νβ4

1
4K (k)

∫ 2K (k)ν−1

0

(a− 2(c + 2β2
1)ρ− ρ2)

(b + cβ2
1 + β4

1 + β2
1ρ)2

dx
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Rogue waves on the periodic wave background
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Rogue waves on the periodic wave background

One complex quadruplet and two pairs of imaginary
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Here is the rogue wave for the complex quadruplet:
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Rogue waves on the periodic wave background

Here are two algebraic solitons for two pairs of purely imaginary eigenvalues:
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Rogue waves on the periodic wave background

Summary

Periodic waves of the DNLS equation are constructed by using integrable
Hamiltonian systems
This allows us to characterize the periodic waves in terms of eigenvalues
of the Lax equations associated with the periodic eigenfunctions
We obtain the precise location of Lax and stability spectra, with
assistance of the numerical package based on the Hill’s method.
We further obtain exact solutions describing localized structures on the
background of periodic waves (either rogue waves or propagating
algebraic solitons)
Localization of rogue waves is related to the modulational instability of the
background periodic wave.
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