Short-pulse equation: well-posedness and wave breaking
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Properties of the short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
[Schéafer, Wayne 2004]:
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where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation
@ originates from a scalar Maxwell’s equation

Ugz = Utt + U+ (U3)tt

@ replaces the nonlinear Schrédinger equation for short wave packets with
few cycles on the pulse scale

@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Transformation to the sine-Gordon equation

Let z = z(y, t) satisfy

Then, w = w(y, t) satisfies the sine—Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, J. Phys. A 39, L361 (2006)]:

wyt = sin(w).

Lemma
Letw(-,t), t € [0,T]is C* in the space

H::{weHS(R); ||w||Loogwc<g}, s> 1.

Then, z(y, t) is invertible in y for any ¢ € [0, T] and u(z,t) = w(y(z, t),t)
solves the short-pulse equation

urt:u—i—%(u?’)rm, zeR, tel0,T].




Solutions of the short-pulse equation

A kink of the sine—Gordon equation gives a loop solution of the short-pulse
equation:

u = 2sech(y + 1),
x =y — 2tanh(y +t).
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Figure: The loop solution u(z, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine—Gordon equation gives a pulse solution of the
short-pulse equation:

msinsinh ¢ +ncosycoshg

m?2sin? 1) + n?2 cosh? ¢
msin 2¢) — nsinh 2¢ —o(y— i+ Z) 4=
m?2 sin? ¥ + n2 cosh? ¢ yom " m

u(y,t) = 4mn u( —%,t—&—%),

z(y,t) =y +2mn

where
p=m(y+t), Yv=n(y—t), n=+v1-—m?
and m € R is a free parameter.

Figure: The pulse solution to the short-pulse equation with m = 0.25



The list of problems

The short-pulse equation
1
U =u+ ¢ (v’),,, TER, te0T]

and the sine—Gordon equation in characteristic coordinates

wyr =sin(w), yeR, te[0,T].

@ Local existence of solutions of the Cauchy problem
@ Criteria for global solutions
@ Criteria for wave breaking in a finite time

@ Orbital and asymptotic stability of pulse solutions



Local well-posedness of the short-pulse equation

Theorem (Schéafer & Wayne, 2004)

Letuo € H?, s > 3/2. There exists a maximal existence time T = T'(ug) > 0
and a unique solution to the short-pulse equation

u(t) € C([0,T), H)nC'([0,T), H ™)

that satisfies u(0) = uo and depends continuously on wg.

Remarks:

@ The proof of Schéafer & Wayne was only developed for s = 2.
@ There is a constraint on solutions of the short-pulse equation

/u(x,t)dﬂc =0, t>0,
R

but this constraint was not taken into account.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:
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Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let uo € H? and the conserved quantities satisfy 2F; + E» < 1. Then the
short-pulse equation admits a unique solution u(t) € C(R4, H?) with
u(0) = uo.

The values of Ey, E1 and E- are bounded by ||uo|| 52 as follows:
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The existence time T' > 0 of the local solutions is inverse proportional to the
norm ||uo|| 2 Of the initial data. To extend 7" to oo, we need to control the
norm ||u(t)|| = by a T-independent constant on [0, T7.



Sketch of the proof

Then, we obtain

o Letg(z,t) = \/_
lat)lm < V2E1 + E2 <1, t€[0,T).

@ Thanks to Sobolev's embedding ||G]| L~ < f||q||H1 < 1, so that
Up = M satisfies the bound

el < —ALE_ 4 e (0,7
= llali%
or equivalently

2B, + B, \'?
t < | E s et S )
IIu()IIHzf< 0+1—(2E1+E2)) , telo,T)



Sharper condition for global well-posedness

Let uo € H? such that 2\/2F; E» < 1. Then the short-pulse equation admits a
unique solution u(t) € C(Ry, H?) with u(0) = uo.

Let a € Ry be an arbitrary parameter. If u(z,t) is a solution of the
short-pulse equation, then U (X, T) is also a solution with

X=az, T=ao't, UX,T) =ou(zt).

The scaling invariance yields transformation £, = aE; and E; = a~ ' E,. For
a given ug € H?, a family of initial data U, € H? satisfies

¢(a) = 2E1 +4 E2 =2aF; + a71E2 > 2V 2E1E2, Va € R+.

If 2v/2E1E> < 1, there exists « such that U (X, T') is defined for any T € R...



Short-pulse equation in a periodic domain

Let S be the unit circle and let ;' be the mean-zero anti-derivative

8;1u:/ u(x',t)dx'—// w(z’, t)dx'dx.
0 sJo

The short-pulse equation on a circle is given by

1,2
{“t_2“_“m+a Y ozes, t>o

u(z,0) (2),

Letu(t) € C([0,T), H*(S)) N C*([0,T), H*'(S)) be a local solution such
that u(0) = uo € H*(S).

@ The assumption [, uo(x)dz = 0 is necessary for existence.
@ The following quantities are constant on [0, T'):

E():/u2dx, Eq :/\/1+u%daz
s S



Finite-time blow-up scenario

Let uo € H?(S) and u(t) be a local solution of the Cauchy problem. The
solution blows up in a finite time 7" < oo in the sense limyr ||u(-, ¢) || g2 = oo
if and only if

lim sup u(z, t)ug(x,t) = +oo.
lim sup u(z, (@, )

For the inviscid Burgers equation
1,2
{“t**‘i“z’ €S, t>0.

the problem can be solved by the method of characteristics. The finite-time
blow-up occurs for any uo(x) € C*(S) if there is a point zo € S such that
uo(z0)ug(zo) > 0. The blow-up time is

1

T'=inf {m o uo(§uo(€) > 0}-



Method of characteristics

Let{ €S,¢€[0,7), and denote
z=X(E1), u@t)=UE), 8 uzt) =G

At characteristics © = X (¢, ¢), we obtain

® The map X (-,t) : S+— Ris an increasing diffeomorphism with
t
0x(6.0) = exp [ u(X(6.9).9u-(X(6 5).5)ds ) >0, € 0.7), €es.
0
@ The following quantities are bounded on [0, T'):

/ Ug(z,t) dz
&t

10 (e, 0)] < ] [ ety ds
3

t

|u(z, t)] <

< /|uz(1’,t)|dﬂc < B
S

and

< / lu(z, )]de < V.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Let uo € H*(S) and Js uo(z) dz = 0. Assume that there exists zo € R such
that uo(xo)ug(zo) > 0 and
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or lug (z0)| < <

Then there exists a finite time T € (0, co) such that the solution
u(t) € C([0,T), H*(S)) of the Cauchy problem blows up with the property

li o(z,t) = ,  while i t)||pee < B
tlTrgilé[S)u(x,t)u (z,t) = 400 tlglnu( Mo < Er




Sketch of the proof

Let V (£, ) = un(X (&, ¢),t) and W (&,t) = U(&, 1)V (€, t). Then
vV = VW+U,
W = W?4+VG+U>

Under the conditions of the theorem, there exists &, € S such that V' (&, t)
and W (&, t) satisfy the apriori estimates

vV > VW-=E,
W > W?—-V+E,.

We show that V' (&, t) and W (&o, t) go to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data
uo(z) = a(l — 2b1’2)e_bzz, z €R,

where (a,b) are arbitrary and [, uo(z)dx = 0 is satisfied.
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Figure: Global solutions exist below the lower curve and the wave breaking occurs
above the upper curve.



Numerical simulation

Using the pseudospectral method, we solve

Consider the 1-periodic initial data

uo(x) = acos(2mwx)

@ Criterion for wave breaking: a > 1.053.
@ Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Figure: Solution surface u(z, t) (left) and the supremum norm W (t) (right) for a = 0.2

(top) and a = 0.5 (bottom). The dashed curve on the bottom right picture shows the
linear regression with C' = 1.072, T' = 1.356.



We compute the best power fit for

Wi(t) := ilé};u(x, t)ug(x,t)

according to the blow-up law

W(t)zi for 0<T -tk 1.

T—t
Note that the inviscid Burgers equation has the exact blow-up law
W(t) = 7.
N
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Figure: Time of wave breaking 7T versus a (left). Constant C of the linear regression
versus a (right).



Summary of our results

@ We found sufficient conditions for global well-posedness of the
short-pulse equation for small initial data.

@ We found sufficient conditions for wave breaking of the short-pulse
equation for large initial data.

@ We illustrated both global existence and wave breaking numerically.

@ Numerical results suggest orbital stability of the exact modulated pulses
of the short-pulse equation.
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