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Properties of the short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
[Schäfer, Wayne 2004]:

uxt = u+
1

6

`

u3
´

xx
,

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation

originates from a scalar Maxwell’s equation

uxx = utt + u+ (u3)tt

replaces the nonlinear Schrödinger equation for short wave packets with
few cycles on the pulse scale

features exact solutions for modulated pulses

enjoys inverse scattering and an infinite set of conserved quantities



Transformation to the sine-Gordon equation

Let x = x(y, t) satisfy
(

xy = cosw,

xt = − 1

2
w2

t .

Then, w = w(y, t) satisfies the sine–Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, J. Phys. A 39, L361 (2006)]:

wyt = sin(w).

Lemma

Let w(·, t), t ∈ [0, T ] is C1 in the space

Hs
c =

n

w ∈ Hs(R) : ‖w‖L∞ ≤ wc <
π

2

o

, s ≥ 1.

Then, x(y, t) is invertible in y for any t ∈ [0, T ] and u(x, t) = wt(y(x, t), t)
solves the short-pulse equation

uxt = u+
1

6

`

u3
´

xx
, x ∈ R, t ∈ [0, T ].



Solutions of the short-pulse equation

A kink of the sine–Gordon equation gives a loop solution of the short-pulse
equation:



u = 2 sech(y + t),
x = y − 2 tanh(y + t).
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Figure: The loop solution u(x, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine–Gordon equation gives a pulse solution of the
short-pulse equation:
8

>

<

>

:

u(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
= u

`

y − π
m
, t+ π

m

´

,

x(y, t) = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
= x

`

y − π
m
, t+ π

m

´

+ π
m
,

where
φ = m(y + t), ψ = n(y − t), n =

p

1 −m2,

and m ∈ R is a free parameter.
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Figure: The pulse solution to the short-pulse equation with m = 0.25



The list of problems

The short-pulse equation

uxt = u+
1

6

`

u3
´

xx
, x ∈ R, t ∈ [0, T ]

and the sine–Gordon equation in characteristic coordinates

wyt = sin(w), y ∈ R, t ∈ [0, T ].

Local existence of solutions of the Cauchy problem

Criteria for global solutions

Criteria for wave breaking in a finite time

Orbital and asymptotic stability of pulse solutions



Local well-posedness of the short-pulse equation

Theorem (Schäfer & Wayne, 2004)

Let u0 ∈ Hs, s > 3/2. There exists a maximal existence time T = T (u0) > 0
and a unique solution to the short-pulse equation

u(t) ∈ C([0, T ),Hs) ∩ C1([0, T ),Hs−1)

that satisfies u(0) = u0 and depends continuously on u0.

Remarks:

The proof of Schäfer & Wayne was only developed for s = 2.

There is a constraint on solutions of the short-pulse equation
Z

R

u(x, t)dx = 0, t > 0,

but this constraint was not taken into account.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

· · ·

E−1 =

Z

R

„

1

24
u4 − 1

2
(∂−1

x u)2
«

dx,

E0 =

Z

R

u2dx,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx,

· · ·



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let u0 ∈ H2 and the conserved quantities satisfy 2E1 + E2 < 1. Then the
short-pulse equation admits a unique solution u(t) ∈ C(R+,H

2) with
u(0) = u0.

The values of E0, E1 and E2 are bounded by ‖u0‖H2 as follows:

E0 =

Z

R

u2dx = ‖u0‖2

L2 ,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx ≤ 1

2
‖u′

0‖2

L2 ,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx ≤ ‖u′′
0‖2

L2 .

The existence time T > 0 of the local solutions is inverse proportional to the
norm ‖u0‖H2 of the initial data. To extend T to ∞, we need to control the
norm ‖u(t)‖H2 by a T -independent constant on [0, T ].



Sketch of the proof

Let q̃(x, t) = ux√
1+u2

x

. Then, we obtain

‖q̃(t)‖H1 ≤
√

2E1 + E2 < 1, t ∈ [0, T ).

Thanks to Sobolev’s embedding ‖q̃‖L∞ ≤ 1√
2
‖q̃‖H1 < 1, so that

ux = q̃√
1−q̃2

satisfies the bound

‖ux(t)‖H1 ≤ ‖q̃‖H1

q

1 − ‖q̃‖2

H1

, t ∈ [0, T )

or equivalently

‖u(t)‖H2 ≤
„

E0 +
2E1 +E2

1 − (2E1 + E2)

«1/2

, t ∈ [0, T ).



Sharper condition for global well-posedness

Corollary

Let u0 ∈ H2 such that 2
√

2E1E2 < 1. Then the short-pulse equation admits a
unique solution u(t) ∈ C(R+,H

2) with u(0) = u0.

Let α ∈ R+ be an arbitrary parameter. If u(x, t) is a solution of the
short-pulse equation, then U(X,T ) is also a solution with

X = αx, T = α−1t, U(X,T ) = αu(x, t).

The scaling invariance yields transformation Ẽ1 = αE1 and Ẽ2 = α−1E2. For
a given u0 ∈ H2, a family of initial data U0 ∈ H2 satisfies

φ(α) = 2Ẽ1 + Ẽ2 = 2αE1 + α−1E2 ≥ 2
√

2E1E2, ∀α ∈ R+.

If 2
√

2E1E2 < 1, there exists α such that U(X, T ) is defined for any T ∈ R+.



Short-pulse equation in a periodic domain

Let S be the unit circle and let ∂−1
x be the mean-zero anti-derivative

∂−1
x u =

Z x

0

u(x′, t)dx′ −
Z

S

Z x

0

u(x′, t)dx′dx.

The short-pulse equation on a circle is given by


ut = 1

2
u2ux + ∂−1

x u,
u(x, 0) = u0(x),

x ∈ S, t ≥ 0.

Let u(t) ∈ C([0, T ),Hs(S)) ∩ C1([0, T ),Hs−1(S)) be a local solution such
that u(0) = u0 ∈ Hs(S).

The assumption
R

S
u0(x)dx = 0 is necessary for existence.

The following quantities are constant on [0, T ):

E0 =

Z

S

u2dx, E1 =

Z

S

p

1 + u2
xdx



Finite-time blow-up scenario

Lemma

Let u0 ∈ H2(S) and u(t) be a local solution of the Cauchy problem. The
solution blows up in a finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 = ∞
if and only if

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞.

For the inviscid Burgers equation


ut = 1

2
u2ux,

u(x, 0) = u0(x),
x ∈ S, t ≥ 0.

the problem can be solved by the method of characteristics. The finite-time
blow-up occurs for any u0(x) ∈ C1(S) if there is a point x0 ∈ S such that
u0(x0)u

′
0(x0) > 0. The blow-up time is

T = inf
ξ∈S



1

u0(ξ)u′
0(ξ)

: u0(ξ)u
′
0(ξ) > 0

ff

.



Method of characteristics

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain


Ẋ(t) = − 1

2
U2,

X(0) = ξ,



U̇(t) = G,
U(0) = u0(ξ),

The map X(·, t) : S 7→ R is an increasing diffeomorphism with

∂ξX(ξ, t) = exp

„Z t

0

u(X(ξ, s), s)ux(X(ξ, s), s)ds

«

> 0, t ∈ [0, T ), ξ ∈ S.

The following quantities are bounded on [0, T ):

|u(x, t)| ≤
˛

˛

˛

˛

Z x

ξt

ux(x, t) dx

˛

˛

˛

˛

≤
Z

S

|ux(x, t)|dx ≤ E1

and

|∂−1
x u(x, t)| ≤

˛

˛

˛

˛

Z x

ξ̃t

u(x, t) dx

˛

˛

˛

˛

≤
Z

S

|u(x, t)|dx ≤
√
E0.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Let u0 ∈ H2(S) and
R

S
u0(x) dx = 0. Assume that there exists x0 ∈ R such

that u0(x0)u
′
0(x0) > 0 and

either |u′
0(x0)| >

 

E2
1

4E
1/2

0

!1/3

,

|u0(x0)||u′
0(x0)|2 > E1 +

„

2E
1/2

0 |u′
0(x0)|3 − 1

2
E2

1

«1/2

,

or |u′
0(x0)| ≤

 

E2
1

4E
1/2

0

!1/3

, |u0(x0)||u′
0(x0)|2 > E1.

Then there exists a finite time T ∈ (0,∞) such that the solution
u(t) ∈ C([0, T ),H2(S)) of the Cauchy problem blows up with the property

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ E1.



Sketch of the proof

Let V (ξ, t) = ux(X(ξ, t), t) and W (ξ, t) = U(ξ, t)V (ξ, t). Then


V̇ = VW + U,

Ẇ = W 2 + V G+ U2.

Under the conditions of the theorem, there exists ξ0 ∈ S such that V (ξ0, t)
and W (ξ0, t) satisfy the apriori estimates



V̇ ≥ VW − E1,

Ẇ ≥ W 2 − V
√
E0.

We show that V (ξ0, t) and W (ξ0, t) go to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data

u0(x) = a(1 − 2bx2)e−bx2

, x ∈ R,

where (a, b) are arbitrary and
R

R
u0(x)dx = 0 is satisfied.

Figure: Global solutions exist below the lower curve and the wave breaking occurs
above the upper curve.



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk +

ik

6
F
h

`

F−1û
´3
i

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx)

Criterion for wave breaking: a > 1.053.

Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Figure: Solution surface u(x, t) (left) and the supremum norm W (t) (right) for a = 0.2
(top) and a = 0.5 (bottom). The dashed curve on the bottom right picture shows the
linear regression with C = 1.072, T = 1.356.



Power fit

We compute the best power fit for

W (t) := sup
x∈S

u(x, t)ux(x, t)

according to the blow-up law

W (t) ≃ C

T − t
for 0 < T − t≪ 1.

Note that the inviscid Burgers equation has the exact blow-up law
W (t) = 1

T−t
.
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Figure: Time of wave breaking T versus a (left). Constant C of the linear regression
versus a (right).



Summary of our results

We found sufficient conditions for global well-posedness of the
short-pulse equation for small initial data.

We found sufficient conditions for wave breaking of the short-pulse
equation for large initial data.

We illustrated both global existence and wave breaking numerically.

Numerical results suggest orbital stability of the exact modulated pulses
of the short-pulse equation.
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