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Properties of the short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schäfer, Wayne 2004]:

uxt = u+
1

6

`

u3
´

xx
,

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation

originates from a scalar Maxwell’s equation

uxx = utt + u+ (u3)tt

replaces the nonlinear Schrödinger equation for short wave packets

features exact solutions for modulated pulses

enjoys inverse scattering and an infinite set of conserved quantities



Transformation to the sine-Gordon equation

Let x = x(y, t) satisfy
(

xy = cosw,

xt = − 1
2
w2

t .

Then, w = w(y, t) satisfies the sine–Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich, J. Phys. A 39, L361 (2006)]:

wyt = sin(w).

Lemma

Let the mapping [0, T ] ∋ t 7→ w(·, t) ∈ Hs
c be C1 and

Hs
c =

n

w ∈ Hs(R) : ‖w‖L∞ ≤ wc <
π

2

o

, s ≥ 1.

Then, x(y, t) is invertible in y for any t ∈ [0, T ] and u(x, t) = wt(y(x, t), t)
solves the short-pulse equation

uxt = u+
1

6

`

u3´

xx
, x ∈ R, t ∈ [0, T ].



Solutions of the short-pulse equation

A kink of the sine–Gordon equation gives a loop solution of the short-pulse
equation:



u = 2 sech(y + t),
x = y − 2 tanh(y + t).
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Figure: The loop solution u(x, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine–Gordon equation gives a pulse solution of the
short-pulse equation:
8

>

<

>

:

u(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
= u

`

y − π
m
, t+ π

m

´

,

x(y, t) = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
= x

`

y − π
m
, t+ π

m

´

+ π
m
,

where
φ = m(y + t), ψ = n(y − t), n =

p

1 −m2,

and m ∈ R is a free parameter.
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Figure: The pulse solution to the short-pulse equation with m = 0.25



The list of problems

The short-pulse equation

uxt = u+
1

6

`

u3´

xx
, x ∈ R, t ∈ [0, T ]

and the sine–Gordon equation in characteristic coordinates

wyt = sin(w), y ∈ R, t ∈ [0, T ].

Local existence of solutions of the Cauchy problem

Criteria for existence of global solutions

Criteria for wave breaking in a finite time

Orbital and asymptotic stability of modulated pulse solutions



Context with other recent works

A. Stefanov [J. Diff. Eqs. (2010)] considered a family of the generalized
short-pulse equations

uxt = u+ (up)xx

and proved global existence and scattering to zero for small initial data if
p ≥ 4.

Y. Liu, D.P., & A. Sakovich [SIAM J. Math. Anal. (2010)] proved wave
breaking for sufficiently large initial data if p = 2 but found no proof of
global existence for small initial data.

C. Holliman & A. Himonas [Diff. Int. Eqs. (2010)] proved the lack of
continuity with respect to initial data (no local well-posedness) for the
Hunter-Saxton equation

uxt = (ux)2 − (u2)xx.

Remark: The cubic case p = 2 is a critical, for which the existence of the
modulated pulse solutions implies no scattering to zero for small initial data.
Global existence and wave breaking coexist for small and large initial data.



Local well-posedness of the short-pulse equation

Theorem (Schäfer & Wayne, 2004)

Let u0 ∈ Hs, s > 3/2. There exists a maximal existence time T = T (u0) > 0
and a unique solution to the short-pulse equation

u(t) ∈ C([0, T ),Hs) ∩ C1([0, T ),Hs−1)

that satisfies u(0) = u0 and depends continuously on u0.

Remarks:

The proof of Schäfer & Wayne was only developed for s = 2.

There is a constraint on solutions of the short-pulse equation
Z

R

u(x, t)dx = 0, t > 0,

but this constraint was not taken into account.



Detour: local well-posedness of the sine-Gordon equation

Consider the Cauchy problem for the sine-Gordon equation


wyt = sinw, y ∈ R, t > 0
w|t=0 = w0, y ∈ R.

Note: if w ∈ C1([0, T ),Hs(R)), s > 1
2
, then

Z

R

sinw(y, t)dy = 0, t ∈ (0, T ).

The standard method of Picard–Kato would not work because if w(·, t) ∈ Hs,
s > 1

2
, then sin(w(·, t)) ∈ Hs, but ∂−1

y sin(w(y, t))dy may not be in Hs.

Let q = sin(w) and rewrite the Cauchy problem in the equivalent form


qt = (1 − f(q))∂−1
y q,

q|t=0 = q0,

where

f(q) := 1 −
p

1 − q2 =
q2

1 +
p

1 − q2
, ∀|q| ≤ 1 :

q2

2
≤ f(q) ≤ q2.



Local well-posedness of the sine–Gordon equation

Consider the initial-value problem


qt = (1 − f(q))∂−1
y q,

q|t=0 = q0.

Now the constraints are

‖q(·, t)‖L∞ < 1,

Z

R

q(y, t)dy = 0, t > 0.

Theorem

Assume that q0 ∈ Xs
c , s > 1

2
, where

Xs
c =

n

q ∈ Hs ∩ Ḣ−1, ‖q‖L∞ ≤ qc < 1
o

.

There exist a maximal time T = T (q0) > 0 and a unique solution
q(t) ∈ C([0, T ),Xs

c ) of the Cauchy problem that satisfies q(0) = q0 and
depends continuously on q0.



Duhamel’s method

Consider the Cauchy problem for the linearized sine–Gordon equation


Qt = ∂−1
y Q,

Q|t=0 = Q0.

Denote
L = ∂−1

y and Q(t) = etLQ0.

The solution operator etL is an isometry from Hs to Hs for any s ≥ 0, so that

‖Q(t)‖Hs = ‖etLQ0‖Hs = ‖Q0‖Hs , ∀t ∈ R.

By Duhamel’s principle, we have

q(t) = etLq0 −
Z t

0

e(t−t′)Lf(q(t′)) ∂−1
y q dt′.



Sketch of the proof

Fix qc ∈ (0, 1), δ > 0 and α ∈ (0, 1) so that the initial data satisfy

‖q0‖Xs ≤ αδ, ‖q0‖L∞ ≤ αqc

We need to show that there exists T > 0 such that

the mapping

(Aq)(t) =

Z t

0

e(t−t′)Lf(q(t′)) ∂−1
y q dt′ : C([0, T ],Xs

c ) 7→ C([0, T ],Xs
c )

is Lipschitz continuous and a contraction for sufficiently small T > 0.

The integral equation is well-defined in

‖q(t)‖Xs ≤ δ, ‖q(t)‖L∞ ≤ qc, t ∈ [0, T ].

Existence, uniqueness, and continuous dependence come from the standard
Banach’s Fixed-Point Theorem.



More details on the proof

The first estimate is easy:

‖q(t)‖Hs ≤ ‖etLq0‖Hs +

Z t

0

‖e(t−t′)Lf(q(t′))p(t′)‖Hsdt′

≤ ‖q0‖Hs + Cs

Z t

0

‖f(q(t′))‖Hs‖p(t′)‖Hsdt′.

The second estimate is more difficult (recall that L = ∂−1
y ):

‖∂−1
y q(t)‖L2 ≤ ‖∂−1

y et∂−1

y q0‖L2 +

Z t

0

‖∂−1
y e(t−t′)∂−1

y f(q(t′))∂−1
y q(t′)‖L2dt′,

where we would need to use

Le(t−t′)Lf(q(t′))p(t′) = −
Z ∞

y

J0(2
p

(t− t′)(y′ − y))f(q(y′, t′))p(y′, t′)dy′,

as well as Hausdorf–Young’s and Hölder’s inequalities

‖Le(t−t′)Lf(q(t′))p(t′)‖L2 ≤ ‖Jt−t′‖L∞‖f(q(t′))p(t′)‖L2/3 ≤ ‖f(q(t′))‖L1‖p(t′)‖L2 .



Our local well-posedness of the short-pulse equation

Theorem (P., Sakovich, 2010)

Let u0 ∈ Hs ∩ Ḣ−1, s > 3/2. There exists a maximal existence time
T = T (u0) > 0 and a unique solution to the short-pulse equation

u(t) ∈ C1([0, T ),Hs ∩ Ḣ−1)

that satisfies u(0) = u0 and depends continuously on u0.

This theorem follows from the local well-posedness of the sine–Gordon
equation and the correspondence

u = wt =
qt

p

1 − q2
= p, ux =

wty

cos(w)
= tan(w) =

py
p

1 − q2
.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

· · ·

E−1 =

Z

R

„

1

24
u4 − 1

2
(∂−1

x u)2
«

dx,

E0 =

Z

R

u2dx,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx,

· · ·



Balance equations

Balance equations for the conserved quantities:

∂t

`

u2
´

= ∂x

„

v2 +
1

4
u4

«

,

∂t

“

p

1 + u2
x − 1

”

=
1

2
∂x

“

u2
p

1 + u2
x

”

,

∂t

 

u2
xx

p

(1 + u2
x)5

!

= ∂x

 

2u2
x√

1 + u2
x

− u2u2
xx

2
p

(1 + u2
x)5

!

,

where v = ∂−1
x u = ut − 1

2
u2ux and u(t) ∈ C1([0, T ),H2).

Thanks to the relation to the sine–Gordon equation, we obtain

1

2
uuxx − u2

x =
uxt

u
− 1 = tan2(w) =

q2

1 − q2
,

so that uuxx → 0 as |x| → ∞ if q(t) ∈ C([0, T ),Xs
c ), s > 1

2
.



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let u0 ∈ H2 and the conserved quantities satisfy 2E1 + E2 < 1. Then the
short-pulse equation admits a unique solution u(t) ∈ C(R+,H

2) with
u(0) = u0.

The values of E0, E1 and E2 are bounded by ‖u0‖H2 as follows:

E0 =

Z

R

u2dx = ‖u0‖2
L2 ,

E1 =

Z

R

u2
x

1 +
√

1 + u2
x

dx ≤ 1

2
‖u′

0‖2
L2 ,

E2 =

Z

R

u2
xx

(1 + u2
x)5/2

dx ≤ ‖u′′
0‖2

L2 .

The existence time T > 0 of the local solutions is inverse proportional to the
norm ‖u0‖H2 of the initial data. To extend T to ∞, we need to control the
norm ‖u(t)‖H2 by a T -independent constant on [0, T ].



Sketch of the proof

Let q̃(x, t) = ux√
1+u2

x

. Then, we obtain

‖q̃(t)‖H1 ≤
√

2E1 + E2 < 1, t ∈ [0, T ).

Thanks to Sobolev’s embedding ‖q̃‖L∞ ≤ 1√
2
‖q̃‖H1 < 1, so that

ux = q̃√
1−q̃2

satisfies the bound

‖ux(t)‖H1 ≤ ‖q̃‖H1

q

1 − ‖q̃‖2
H1

, t ∈ [0, T )

or equivalently

‖u(t)‖H2 ≤
„

E0 +
2E1 +E2

1 − (2E1 + E2)

«1/2

, t ∈ [0, T ).



Sharper condition for global well-posedness

Corollary

Let u0 ∈ H2 such that 2
√

2E1E2 < 1. Then the short-pulse equation admits a
unique solution u(t) ∈ C(R+,H

2) with u(0) = u0.

Let α ∈ R+ be an arbitrary parameter. If u(x, t) is a solution of the
short-pulse equation, then U(X,T ) is also a solution with

X = αx, T = α−1t, U(X,T ) = αu(x, t).

The scaling invariance yields transformation Ẽ1 = αE1 and Ẽ2 = α−1E2. For
a given u0 ∈ H2, a family of initial data U0 ∈ H2 satisfies

φ(α) = 2Ẽ1 + Ẽ2 = 2αE1 + α−1E2 ≥ 2
√

2E1E2, ∀α ∈ R+.

If 2
√

2E1E2 < 1, there exists α such that U(X, T ) is defined for any T ∈ R+.



Short-pulse equation in a periodic domain

Let S be the unit circle and let ∂−1
x be the mean-zero anti-derivative

∂−1
x u =

Z x

0

u(x′, t)dx′ −
Z

S

Z x

0

u(x′, t)dx′dx.

The short-pulse equation on a circle is given by


ut = 1
2
u2ux + ∂−1

x u,
u(x, 0) = u0(x),

x ∈ S, t ≥ 0.

Let u(t) ∈ C([0, T ),Hs(S)) ∩ C1([0, T ),Hs−1(S)) be a local solution such
that u(0) = u0 ∈ Hs(S).

The assumption
R

S
u0(x)dx = 0 is necessary for existence.

The following quantities are constant on [0, T ):

E0 =

Z

S

u2dx, E1 =

Z

S

p

1 + u2
xdx



Finite-time blow-up scenario

Lemma

Let u0 ∈ H2(S) and u(t) be a local solution of the Cauchy problem. The
solution blows up in a finite time T <∞ in the sense limt↑T ‖u(·, t)‖H2 = ∞
if and only if

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞.

For the inviscid Burgers equation


ut = 1
2
u2ux,

u(x, 0) = u0(x),
x ∈ S, t ≥ 0.

the problem can be solved by the method of characteristics. The finite-time
blow-up occurs for any u0(x) ∈ C1(S) if there is a point x0 ∈ S such that
u0(x0)u

′
0(x0) > 0. The blow-up time is

T = inf
ξ∈S



1

u0(ξ)u′
0(ξ)

: u0(ξ)u
′
0(ξ) > 0

ff

.



Method of characteristics

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain


Ẋ(t) = − 1
2
U2,

X(0) = ξ,



U̇(t) = G,
U(0) = u0(ξ),

The map X(·, t) : S 7→ R is an increasing diffeomorphism with

∂ξX(ξ, t) = exp

„Z t

0

u(X(ξ, s), s)ux(X(ξ, s), s)ds

«

> 0, t ∈ [0, T ), ξ ∈ S.

The following quantities are bounded on [0, T ):

|u(x, t)| ≤
˛

˛

˛

˛

Z x

ξt

ux(x, t) dx

˛

˛

˛

˛

≤
Z

S

|ux(x, t)|dx ≤ E1

and

|∂−1
x u(x, t)| ≤

˛

˛

˛

˛

Z x

ξ̃t

u(x, t) dx

˛

˛

˛

˛

≤
Z

S

|u(x, t)|dx ≤
√
E0.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Let u0 ∈ H2(S) and
R

S
u0(x) dx = 0. Assume that there exists x0 ∈ R such

that u0(x0)u
′
0(x0) > 0 and

either |u′
0(x0)| >

 

E2
1

4E
1/2
0

!1/3

,

|u0(x0)||u′
0(x0)|2 > E1 +

„

2E
1/2
0 |u′

0(x0)|3 − 1

2
E2

1

«1/2

,

or |u′
0(x0)| ≤

 

E2
1

4E
1/2
0

!1/3

, |u0(x0)||u′
0(x0)|2 > E1.

Then there exists a finite time T ∈ (0,∞) such that the solution
u(t) ∈ C([0, T ),H2(S)) of the Cauchy problem blows up with the property

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ E1.



Sketch of the proof

Let V (ξ, t) = ux(X(ξ, t), t) and W (ξ, t) = U(ξ, t)V (ξ, t). Then


V̇ = VW + U,

Ẇ = W 2 + V G+ U2.

Under the conditions of the theorem, there exists ξ0 ∈ S such that V (ξ0, t)
and W (ξ0, t) satisfy the apriori estimates



V̇ ≥ VW − E1,

Ẇ ≥ W 2 − V
√
E0.

We show that V (ξ0, t) and W (ξ0, t) go to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data

u0(x) = a(1 − 2bx2)e−bx2

, x ∈ R,

where (a, b) are arbitrary and
R

R
u0(x)dx = 0 is satisfied.

Figure: Global solutions exist below the lower curve and the wave breaking occurs
above the upper curve.



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk +

ik

6
F
h

`

F−1û
´3
i

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx)

Criterion for wave breaking: a > 1.053.

Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Figure: Solution surface u(x, t) (left) and the supremum norm W (t) (right) for a = 0.2
(top) and a = 0.5 (bottom). The dashed curve on the bottom right picture shows the
linear regression with C = 1.072, T = 1.356.



Power fit

We compute the best power fit for

W (t) := sup
x∈S

u(x, t)ux(x, t)

according to the blow-up law

W (t) ≃ C

T − t
for 0 < T − t≪ 1.

Note that the inviscid Burgers equation has the exact blow-up law
W (t) = 1

T−t
.
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Figure: Time of wave breaking T versus a (left). Constant C of the linear regression
versus a (right).



Summary of our results

We found sufficient conditions for global well-posedness of the
short-pulse equation for small initial data.

We found sufficient conditions for wave breaking of the short-pulse
equation for large initial data.

We illustrated both global existence and wave breaking numerically.

Numerical results suggest orbital stability of the exact modulated pulses
of the short-pulse equation.
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