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Introduction

The problem

Density waves in Bose–Einstein condensates are modeled by the
Gross-Pitaevskii equation

iut = −uxx + V (x)u + G(x)|u|2u, x ∈ R,

where V (x) = V (x + 2π) and G(x) = G(x + 2π).

The discrete nonlinear Schrödinger (DNLS) equation

i ċn + α(cn+1 + cn−1) + β|cn|2cn = 0, n ∈ Z,

for some nonzero parameters α and β is thought to be the correct
approximation in the tight-binding limit of narrow spectral bands.

Main Question: What happens if β = 0?
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Introduction

The cubic DNLS equation

Derivation and justification of the cubic DNLS equation with the onsite term:

i ċn + α(cn+1 + cn−1) + β|cn|2cn = 0, n ∈ Z,

G. Alfimov, P. Kevrekidis, V. Konotop, M. Salerno, PRE 66, 046608 (2002)

D. Bambusi, A. Sachetti, CMP 275, 1-36 (2007)

D.P., G. Schneider, R. MacKay, CMP 284, 803-831 (2008)

A. Aftalion, B. Helffer, Rev. Math. Phys. 21 229-278 (2009)

D.P., G. Schneider, JDE 248, 837-849 (2010)
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Introduction

The extended cubic DNLS equations

Derivation of the cubic DNLS equation with the intersite terms:

i ċn = α(cn+1 + cn−1) + γ(2|cn|2(cn+1 + cn−1) + c2
n(c̄n+1 + c̄n−1))

γ(|cn+1|2cn+1 + |cn−1|2cn−1).

M. Oster, M. Johansson, and A. Eriksson, PRE 67, 056606 (2003)

A. Smerzi, A. Trombettoni, PRA 68, 023613 (2003)

F.Kh. Abdullaev, Yu.V. Bludov, S.V. Dmitriev, P.G. Kevrekidis, V.V.
Konotop, PRE 77, 016604 (2008)

We will show that the extended cubic DNLS equation is a wrong model. The
correct model is the quintic DNLS equation:

i ċn = α(cn+1 + cn−1) + δ|cn|4cn.

J. Belmonte-Beitia, D.P., Applicable Analysis 89, 1335-1350 (2010)
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Model example

Model example

References: E. Parkes, J. Phys. A 20, 2025-2036 (1987);
R. Grimshaw et al., Physica D 159, 35-57 (2001)

Start with the following Gardner equation

ut + αuux + u2ux + uxxx = 0, α ∈ R,

and use small-amplitude slowly-varying approximation

u(x , t) = ǫ1/2
[(

A(
√
ǫ(x − c0t), ǫt)ei(k0x−ω0t) + c.c

)

+ O(ǫ)
]

,

where ω0 = ω(k0) = k3
0 , c0 = ω′(k0) = 3k2

0 , and A(X ,T ) satisfies the cubic
NLS equation

iAT +
1
2
ω′′(k0)AXX + β|A|2A = 0,

where β = k0 − α2

6k0
.
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Model example

Model example (cont.)

For k0 = α√
6
, we have β = 0, so that the cubic NLS equation is not applicable.

For k0 = α√
6
, the asymptotic expansion can be rescaled as

u(x , t) = ǫ1/4
[(

A(
√
ǫ(x − c0t), ǫt)ei(k0x−ω0 t) + c.c

)

+ O(ǫ1/2)
]

,

where A(X ,T ) satisfies the cubic–quintic NLS equation

iAT +
1
2
ω′′(k0)AXX + γ|A|4A + iδA2AX = 0,

where γ = 2α2

9k2
0

= 4
3 and δ = 2α

3k0
= 2

√
2√
3

.
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Semi-classical theory

Semi-classical theory

Let V (x) = ǫ−2V0(x), where V0(x) ∈ C∞(R), V0(x + 2π) = V0(x), and ǫ≪ 1.
For instance

V0(x) = 4 sin2
(x

2

)

= 2(1 − cos(x)) = x2 + O(x4).

Let Ψ(x ; k) be the Bloch function for the lowest energy band function E(k):

LΨ(x ; k) = E(k)Ψ(x ; k), L = −∂2
x + ǫ−2V0(x),

where k ∈ [0, 1).

Bloch and band functions satisfy E(k) = E(k + 1) = E(−k) and

Ψ(x ; k) = Ψ(x ; k + 1) = e−2πkiΨ(x + 2π; k) = Ψ̄(x ;−k), x ∈ R, k ∈ R.
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Semi-classical theory

Wannier functions

Consider Fourier series for E(k) and Ψ(x ; k) in k ∈ R:

E(k) =
∑

n∈Z

Ênei2πnk , Ψ(x ; k) =
∑

n∈Z

ψ̂n(x)ei2πnk

where {ψ̂n(x)}n∈Z are real-valued functions, which satisfy the reduction

ψ̂n(x) = ψ̂n−1(x − 2π) = ... = ψ̂0(x − 2πn).

These functions are referred to as the Wannier functions.

If the lowest energy band does not overlap with the other bands, ψ̂n(x) decays
to zero exponentially fast as |x | → ∞, and {ψn}n∈Z forms an orthonormal
basis for the subspace of L2(R) associated with the lowest energy band.
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Semi-classical theory

Construction of ψ̂0(x) in tight-binding approximation

The ODE system for Wannier functions
(

L − Ê0

)

ψ̂0(x) =
∑

n≥1

Ên

(

ψ̂n(x) + ψ̂−n(x)
)

, x ∈ R,

Gaussian approximation near x = 0:

V (x) ∼ x2

ǫ2 , Ê0 ∼ 1
ǫ
, ψ̂0(x) ∼ 1

(πǫ)1/4
e− x2

2ǫ .

WKB approximation on (0, 2π):

ψ̂0(x) ∼ A(x)e− 1
ǫ

R x
0 S(x′)dx′

, x ∈ (0, 2π),

where

S(x) =
√

V0(x),

A(x) =
1

(πǫ)1/4
exp

[
∫ x

0

1 − S′(x ′)

2S(x ′)
dx ′
]

, x ∈ (0, 2π).

Note that ψ̂0(x) diverges as x → 2π.
D.Pelinovsky (McMaster University) Justification of the DNLS equation 9 / 19



Semi-classical theory

Hierarchy of overlapping integrals

From orthonormality of {ψ̂n}n∈Z, we have

Ên = 〈Lψ̂0, ψ̂n〉 =

∫

R

[

ψ̂′
0(x)ψ̂′

n(x) + ǫ−2V0(x)ψ̂0(x)ψ̂n(x)
]

dx , n ∈ N.

Thanks to the small parameter ǫ in the tight-binding limit, we have

. . .≪ |Ê2| ≪ |Ê1| ≪ |Ê0|,

with

Ê1 ∼ −4
√

V0(π)

π1/2ǫ3/2
exp

(

−2
ǫ

∫ π

0

√

V0(x)dx +

∫ π

0

1 − S′(x)

S(x)
dx
)

≡ αµ,

where µ = ǫ−3/2e−κ/ǫ is a new small parameter.

A. Aftalion, B. Helffer, Rev. Math. Phys. 21 229-278 (2009)
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Reduction to the cubic DNLS equation

Reductions to the cubic onsite DNLS equation

Substitute
u(x , t) = ǫ1/4µ1/2 (Ψ0(x ,T ) + µΨ1(x , t)) e−i Ê0t ,

to the Gross–Pitaevskii equation with T = µt,

Ψ0(x ,T ) =
∑

n∈Z

cn(T )ψ̂n(x),

for some coefficients {cn(T )}n∈Z. Then,

i∂tΨ1 = (L − Ê0)Ψ1 +
∑

n∈Z

(

−i ċn + µ−1
∑

m∈N

Êm (cn+m + cn−m)

)

ψ̂n

+ǫ1/2G(x)|Ψ0 + µΨ1|2(Ψ0 + µΨ1).

Note that
∫

R

G(x)ψ̂4
0(x)dx ∼ 1

πǫ

∫

R

G(x)e− 2x2
ǫ dx ∼ 1

(2πǫ)1/2
G(0)

whereas overlapping integrals for products of {ψ̂n}n∈Z are negligibly small.
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Reduction to the cubic DNLS equation

Justification theorem

If Ψ1 lies in the orthogonal complement of the lowest energy band, orthogonal
projections give at the leading order

i ċn = α(cn+1 + cn−1) + β|cn|2cn,

where α = Ê1/µ and β = G(0)/(2π)1/2.

Theorem: Let c(T ) ∈ C1([0,T0], l1(Z)) be a solution of the cubic DNLS
equation, so that initial data c(0) satisfy the bound

∥

∥

∥

∥

∥

u0 − ǫ1/4µ1/2
∑

n∈Z

cn(0)ψ̂n

∥

∥

∥

∥

∥

H1

≤ C0µ
3/2

for some C0 > 0. Then, for any 0 < µ≪ 1, there exists a µ-independent
constant C > 0 such that the Gross–Pitaevskii equation has a solution
u(t) ∈ C1([0,T0/µ],H1) satisfying the bound

∀t ∈ [0,T0/µ] :

∥

∥

∥

∥

∥

u(·, t) − ǫ1/4µ1/2e−i Ê0t
∑

n∈Z

cn(T )ψ̂n

∥

∥

∥

∥

∥

H1

≤ Cµ3/2.
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Reduction to the cubic DNLS equation

Justification of time-dependent equations

The time-evolution problem can be written in the form

iψt =
(

L − Ê0

)

ψ + µR(c) + µN(c, ψ),

where
‖R(c)‖H1 ≤ CR‖c‖l1(Z)

and

‖N(c, ψ)‖H1 ≤ CN (‖c‖l1 + ‖ψ‖H1) .

Remarks:

The quadratic form norm ‖u‖H1 := (〈Lu, u〉L2)
1/2 controls the Sobolev

space norm ‖u‖H1 ≤ ‖u‖H1 H1(R).

ψ is a remainder term, which occurs after one normal-form transformation
to remove the non-resonance cubic terms.
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Reduction to the cubic DNLS equation

Local well-posedness and energy estimate

Let c(T ) ∈ C1(R, l1(Z)) and ψ0 ∈ H1(R). Then, there exists a t0 > 0 and
a unique solution ψ(t) ∈ C0([0, t0],H1(R)) ∩ C1([0, t0], L2(R)).

For any 0 < µ≪ 1 and every M > 0, there exist a µ-independent
constant CE > 0 such that

∣

∣

∣

∣

d
dt

‖ψ(t)‖H1

∣

∣

∣

∣

≤ µCE
(

‖c‖l1(Z) + ‖ψ(t)‖H1

)

(1)

as long as ‖ψ‖H1 ≤ M.

By Gronwall’s inequality, we thus have

sup
t∈[0,T0/µ]

‖ψ(t)‖H1(R) ≤
(

‖ψ(0)‖H1(R) + CE T0 sup
T∈[0,T0]

‖c(T )‖l1(Z)

)

eCE T0

D.P., G. Schneider, JDE 248, 837-849 (2010)
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Reduction to the quintic DNLS equation

Reductions to the quintic onsite DNLS equation

If G(0) = 0, then β = 0 at the leading order. In particular, let us consider

V (−x) = V (x), G(−x) = −G(x), x ∈ R.

Then,

β = ǫ1/2
∫

R

G(x)ψ̂4
0(x)dx = 0

to all orders of ǫ.

In this case,
∫

R

G(x)ψ̂2
0(x)ψ̂2

0(x − 2π)dx = 0

and the nonzero cubic intersite terms are of the same order as the linear
overlapping integrals

∫

R

G(x)ψ̂3
0(x)ψ̂0(x − 2π)dx = O(ǫ1/2µ).
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Reduction to the quintic DNLS equation

New asymptotic expansion

Consider a rescaled asymptotic exapansion

Ψ(x , t) = ǫ−1/4µ1/4
(

Ψ0 + µ1/2Ψ1 + µΨ2

)

e−i Ê0t ,

where
Ψ0 =

∑

n∈Z

cn(T )ψ̂n(x), Ψ1 =
∑

n∈Z

|cn(T )|2cn(T )ϕ̂n(x),

and
(L − Ê0)ϕ̂0(x) = −ǫ−1/2G(x)ψ̂3

0(x), x ∈ R.

If Ψ2 lies in the orthogonal complement of the lowest energy band, orthogonal
projections give at the leading order

i ċn = α(cn+1 + cn−1) + χ|cn|4cn,

where α = Ê1/µ < 0 and

χ = 3ǫ−1/2
∫

R

G(x)ψ̂3
0(x)ϕ̂0(x)dx = −3〈(L − Ê0)ϕ̂0, ϕ̂0〉 < 0.
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Numerical tests

Numerical test : existence of gap solitons

Stationary gap solitons of the Gross–Pitaevskii equation

−Φ′′(x) + V (x)Φ(x) + G(x)Φ3(x) = ωΦ(x), x ∈ R

for even V (x) and odd G(x) exist in the semi-infinite gap.
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Figure: The solution family of gap solitons for V (x) = 6(1 − cos(x)) and
G(x) = −10 sin(x): The L2-norm N versus ω (left) and the spatial profile of gap soliton
corresponding to marked point with a black circle (right).
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Numerical tests

Another existence test

Stationary quintic DNLS equation

α(cn+1 + cn−1) + χc5
n = Ωcn, n ∈ Z,

where α < 0 and χ < 0 for the lowest energy band. Positive, exponentially
decaying solutions {φn}n∈Z exist for Ω < 2α in the semi-infinite gap.

Stationary cubic intersite DNLS equation

α(cn+1 + cn−1) + γ(3c2
n(cn+1 − cn−1) − c3

n+1 + c3
n−1) = Ωcn, n ∈ Z.

No localized solutions exist for any α, γ, Ω, at least in the slowly varying
approximation

cn±1 = c(xn) ± hc′(xn) +
h2

2
c′′(xn) + O(h3),

where
αc′′(x) − γc′(x)

[

(c′)2 + 3cc′′] = Ωc(x), x ∈ R.
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Numerical tests

Reduction to the continuous NLS equation

In the continuous limit, the stationary Gross–Pitaevskii equation

−Φ′′(x) + V (x)Φ(x) + G(x)Φ3(x) = ωΦ(x), x ∈ R

admits a reduction to the stationary quintic NLS equation

αc′′(x) + χc5(x) = Ωc(x), n ∈ Z,

where α < 0 and χ < 0 for the lowest energy band.

The quintic NLS equation is critical with respect to L2 norm of the stationary
solution. However, the higher-order terms from the Gross–Pitaevskii equation
with V (x) break this criticality and result in orbitally stable stationary gap
solitons in the semi-infinite gap.
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