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The problem

Density waves in Bose—Einstein condensates are modeled by the
Gross-Pitaevskii equation

iUy = —Uxx + V(X)u +G(x)|uj?u, x€R,
where V(x) = V(x + 27) and G(x) = G(x + 2m).
The discrete nonlinear Schrodinger (DNLS) equation
iCh + a(Cny1 +Ca1) + Blcn|?’ch =0, neZ,

for some nonzero parameters « and (3 is thought to be the correct
approximation in the tight-binding limit of narrow spectral bands.

Main Question: What happens if 5 = 0?
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The cubic DNLS equation

Derivation and justification of the cubic DNLS equation with the onsite term:

iCh + a(Cny1 +Cno1) + Blcnl?ch =0, nez,

@ G. Alfimov, P. Kevrekidis, V. Konotop, M. Salerno, PRE 66, 046608 (2002)
@ D. Bambusi, A. Sachetti, CMP 275, 1-36 (2007)

@ D.P, G. Schneider, R. MacKay, CMP 284, 803-831 (2008)

@ A. Aftalion, B. Helffer, Rev. Math. Phys. 21 229-278 (2009)

@ D.P, G. Schneider, JDE 248, 837-849 (2010)
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The extended cubic DNLS equations

Derivation of the cubic DNLS equation with the intersite terms:

ich = a(Cns1+Cno1) +7(2[Cnl?(Crs1 + Cno1) + CZ(Cns1 + Cn_1))
Y(lental’ensa + [ca1f?cn-1).

@ M. Oster, M. Johansson, and A. Eriksson, PRE 67, 056606 (2003)
@ A. Smerzi, A. Trombettoni, PRA 68, 023613 (2003)

@ FKh. Abdullaev, Yu.V. Bludov, S.V. Dmitriev, P.G. Kevrekidis, V.V.
Konotop, PRE 77, 016604 (2008)

We will show that the extended cubic DNLS equation is a wrong model. The
correct model is the quintic DNLS equation:

ién = Oé(Cn+1 + Cn_]_) + 5|Cn|4Cn.

J. Belmonte-Beitia, D.P., Applicable Analysis 89, 1335-1350 (2010)

D.Pelinovsky (McMaster University) Justification of the DNLS equation 4/19



Model example

References: E. Parkes, J. Phys. A 20, 2025-2036 (1987);
R. Grimshaw et al., Physica D 159, 35-57 (2001)

Start with the following Gardner equation
Ut + QUUy 4+ U%Uy + U =0, a € R,

and use small-amplitude slowly-varying approximation
u(x,t) = et/2 [(A(\/E(x — Cot), et)e! (ox—wat) 4 c.c) + 0(6)} :

where wo = w(ko) = k3, co = w’(ko) = 3kZ, and A(X, T) satisfies the cubic
NLS equation

. 1
At + Ew/l(kO)AXX + ﬁ|A|2A =0,
where 8 = kg — %.
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Model example (cont.)

For kg = we have § = 0, so that the cubic NLS equation is not applicable.

\/71
For ko = %, the asymptotic expansion can be rescaled as
V6

u(x,t) = e/4 KA(\/E(X — Cot), et )i (kox—wol) 1. c.c) + O(el/z)} :
where A(X, T) satisfies the cubic—quintic NLS equation
. 1 .
AT + Ew”(ko)Axx + ~|A*A +16A2Ax =0,

wherey—wf—andéfgka :2\/‘/;.
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Semi-classical theory

Let V(x) = e 2Vp(x), where Vo(x) € C®(R), Vo(X + 27) = Vo(x), and e < 1.
For instance

Vo(x) = 4sin? (2>_2( —cos(x)) = x2 + O(x*).

Let W(x; k) be the Bloch function for the lowest energy band function E (k):
LY (x; k) = E(K)W(x;K), L=—02+ e 2Vo(x),

where k € [0, 1).

Bloch and band functions satisfy E(k) = E(k + 1) = E(—k) and

V(x; k) =V(x;k +1) = e Z™Mu(x +2m k) = U(x; —k), xR, keR.
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Wannier functions

Consider Fourier series for E(k) and W(x; k) ink € R:

E(k) = Z Ene'2™™ w(x;k) = Zd}n(x)ei%rnk

nez nezZ
where {¢n(x)}nez are real-valued functions, which satisfy the reduction
Un(X) = Pn_1(X — 21) = ... = Pho(x — 27n).

These functions are referred to as the Wannier functions.

If the lowest energy band does not overlap with the other bands, 1/3n(x) decays
to zero exponentially fast as |x| — oo, and {4 }nez forms an orthonormal
basis for the subspace of L2(R) associated with the lowest energy band.
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Semi-classical theory

Construction of z/?o(x) in tight-binding approximation

The ODE system for Wannier functions
(L= 8o) do(x) = Y En ($a(x) +d-n(x)) . xR
n>1

Gaussian approximation near x = 0:
x? 1 . 1 2

V(x) ~ Ex Eo ~ pr Yo(X) ~ 12 -

WKB approximation on (0, 27):

Bo(x) ~ A(x)e ™= Jo SNy e (0,27),
where

S(x) = VVo(x),
1 X1-8'(x) .,

Note that ¢)o(x) diverges as x — 2.
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Hierarchy of overlapping integrals

From orthonormality of {¢n }ncz, we have

En = (Lo do) = [ [35005400 + < Vo0do()dn(0] dx. e

Thanks to the small parameter ¢ in the tight-binding limit, we have

... < B2 < |E1| < |Eol,

with
. 4,/No () 2 (7 T1-S(%) )
E; ~ —W exp _2/0 V VO(X)dX +/0 de = Qau,

where ;. = ¢3/2e~%/¢ is a new small parameter.

A. Aftalion, B. Helffer, Rev. Math. Phys. 21 229-278 (2009)
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Reduction to the cubic DNLS equation

Reductions to the cubic onsite DNLS equation

Substitute B
u(x,t) = /42 (Wo(x, T) + uWa(x, 1)) e =",

to the Gross—Pitaevskii equation with T = ut,
T)= ch(T)wn(X)
nez

for some coefficients {cn(T )}nez. Then,

iV, = (L - IéO)Wl + Z <—ién + Mil Z Iém (Cn+m + Cnm)) wAn

nez meN
+eM2G(x)|Wo + pW1|?(Wo + uW¥y).

Note that

_LZ 1
/RG(X)¢O dX ~ —/G € dX ~ WG(O)

whereas overlapping integrals for products of {@n}nez are_negligibly_small.
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Justification theorem

If W4 lies in the orthogonal complement of the lowest energy band, orthogonal
projections give at the leading order

iCh = a(Cny1 + Cn_1) + ﬂ|cn|20n7
where a = E; /u and 8 = G(0)/(2x)Y/2.
Theorem: Let ¢(T) € C%([0, To],1*(Z)) be a solution of the cubic DNLS

equation, so that initial data c(0) satisfy the bound

Up — e/4pt/? Z cn(0)n|| < Cou®/?

nez

H1
for some Cp > 0. Then, for any 0 < p < 1, there exists a u-independent
constant C > 0 such that the Gross—Pitaevskii equation has a solution
u(t) € CY([0, To/u], H') satisfying the bound

U(-,t) _61/4Ml/2e7iéotzcn(1—),¢’;n < CM?’/Z'
nez

vVt e [0,To/p] :

H1
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Reduction to the cubic DNLS equation

Justification of time-dependent equations

The time-evolution problem can be written in the form

= (L—Eo) v+ uR(C) + N (e, v)

where
[R(c)[l+ < Crllcllixz
and
IN(c, )32 < Cn (llc]hin + [[llae) -
Remarks:

@ The quadratic form norm ||ul|: := ({Lu, U>|_2)1/2 controls the Sobolev
space norm ||uf|y: < [[u]l72 HY(R).

@ ¢ is a remainder term, which occurs after one normal-form transformation
to remove the non-resonance cubic terms.
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Local well-posedness and energy estimate

@ Letc(T) € CY(R,1*(Z)) and ¢o € H1(R). Then, there exists a t, > 0 and
a unique solution v (t) € CO([0, to], H(R)) N C([0, to], L2(R)).

@ Forany 0 < 4 <« 1 and every M > 0, there exist a u-independent
constant Cg > 0 such that

\ 16| < 1Ce (b + 190 15e) M)

as long as [|9||+1 < M.
@ By Gronwall’s inequality, we thus have

sup [[¢(t)]lrar) < (IIw(O)Ilnl +CeTo_sup |lc(T )||I1(Z)> ecet

te[0,To/ 1] T €[0,To]

D.P, G. Schneider, JDE 248, 837-849 (2010)
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Reduction to the quintic DNLS equation

Reductions to the quintic onsite DNLS equation

If G(0) = 0, then 5 = 0 at the leading order. In particular, let us consider
V(-x)=V(x), G(—x)=-G(x), xeR.

Then,

to all orders of e.

In this case,
/G % x —2m)dx =0

and the nonzero cubic intersite terms are of the same order as the linear
overlapping integrals

/R G(X)R(x)lo(x — 2m)dx = O(e/2p).
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Reduction to the quintic DNLS equation

New asymptotic expansion

Consider a rescaled asymptotic exapansion
W(x,t) = e L/4L/4 (wo + M+ /LW2> e ikt

where
Wo = ca(T)dn(x), V1= lca(T)[Pca(T)@n(x),
nez nez
and
(L —Eo)Zo(x) = — Y2G(x)3(x), x €R.

If W lies in the orthogonal complement of the lowest energy band, orthogonal
projections give at the leading order

ich = a(Cny1 + Cno1) + X|Cn|4Cn7
where o = B3/ < 0 and

X =312 / G(x)P2(x)Fo(x)dx = —3((L — Eo)o, fo) < O.
R
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Numerical tests

Numerical test : existence of gap solitons

Stationary gap solitons of the Gross—Pitaevskii equation
—0"(x) + V(X)®(x) + G(x)P3(x) = wd(x), x €R

for even V(x) and odd G(x) exist in the semi-infinite gap.

121 b)

0.5

95 ) 4 -6 -2 0 2 6
Figure: The solution family of gap solitons for V (x) = 6(1 — cos(x)) and

G(x) = —10sin(x): The L2-norm N versus w (left) and the spatial profile of gap soliton
corresponding to marked point with a black circle (right).
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Another existence test

Stationary quintic DNLS equation
a(Chi1 +Cn1) +xCo=QcCh, NEZ,

where « < 0 and x < 0 for the lowest energy band. Positive, exponentially
decaying solutions {¢n }nez exist for Q < 2« in the semi-infinite gap.

Stationary cubic intersite DNLS equation
a(Cny1 +Cno1) +7(3¢2(Cni1 — Cao1) — €3, + €2 1) =Qcn, NEZ

No localized solutions exist for any «, ~, €2, at least in the slowly varying
approximation

h2
Cnt1 = C(Xn) £ he/(xn) + ?C"(Xn) +0(h®),

where
ac”(x) —yc'(x) [(¢/)? +3cc”] = Qc(x), x €R.
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Numerical tests

Reduction to the continuous NLS equation

In the continuous limit, the stationary Gross—Pitaevskii equation
—0"(x) + V(X)®(x) + G(x)d3(x) = wd(x), x €R
admits a reduction to the stationary quintic NLS equation
ac”(x) + xc>(x) = Qc(x), nez,
where o < 0 and x < O for the lowest energy band.

The quintic NLS equation is critical with respect to L? norm of the stationary
solution. However, the higher-order terms from the Gross—Pitaevskii equation
with V (x) break this criticality and result in orbitally stable stationary gap
solitons in the semi-infinite gap.
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