Traveling waves in the Camassa–Holm equations: their stability and instability

Dmitry E. Pelinovsky (McMaster University)

joint work with Anna Geyer (TU Delft), Fabio Natali (Brazil), Stephane Lafortune (Charleston, USA) Yue Liu (Arlington, USA)

CMS Summer Meeting, Saskatchewan, Canada

May 31 - June 3, 2024

Section 1

Background and motivation

The study of traveling waves in the irrotational motion of an incompressible fluid has a long history.

The following evolution equations were used for approximations of such traveling waves in the shallow limit $a \ll h \ll \lambda$.

The study of traveling waves in the irrotational motion of an incompressible fluid has a long history.

The following evolution equations were used for approximations of such traveling waves in the shallow limit $a \ll h \ll \lambda$.

The Korteweg–de Vries (KdV) equation:

```
u_t + u_x + u_{xxx} + u \, u_x = 0
```

[Boussinesq, 1872] [Korteweg & de Vries, 1895]

Dmitry Pelinovsky, McMaster University

The study of traveling waves in the irrotational motion of an incompressible fluid has a long history.

The following evolution equations were used for approximations of such traveling waves in the shallow limit $a \ll h \ll \lambda$.

The Benjamin-Bona-Mahony (BBM) equation

 $u_t + u_x - u_{txx} + u \, u_x = 0$

[Peregrine, 1966] [Benjamin–Bona–Mahony, 1972]

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

The study of traveling waves in the irrotational motion of an incompressible fluid has a long history.

The following evolution equations were used for approximations of such traveling waves in the shallow limit $a \ll h \ll \lambda$.

The Camassa-Holm (CH) equation

$$u_t + u_x - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$$

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

CH models

The Camassa-Holm equation

$$u_t + u_x - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$$
 (CH)

was extended as the Degasperis-Procesi equation

$$u_t + u_x - u_{txx} + 4 \, u \, u_x = 3 \, u_x u_{xx} + u \, u_{xxx} \tag{DP}$$

at the same asymptotic accuracy. [Degasperis & Procesi, 1999] [Constantin & Lannes, 2009]

It is further extended as the *b*-Camassa–Holm equation

 $u_t + u_x - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$ (b-CH)

by using transformations of integrable KdV equation.

[Dullin, Gottwald, & Holm, 2001] [Degasperis, Holm & Hone, 2002]

Dmitry Pelinovsky, McMaster University

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Peaked solitary waves (*peakons*) are observed for b > 1

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Rarefactive waves are observed for $b \in (-1, 1)$

Dmitry Pelinovsky, McMaster University

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Smooth solitary waves (*leftons*) are observed for b < -1

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

Similations of the *b*-family of Camassa-Holm equations

 $u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Our objectives:

- ▷ To study the linear and nonlinear stability of the traveling waves.
- To understand differences in the stability analysis between smooth and peaked profiles of the traveling waves.

Standard approach to orbital stability of nonlinear waves

- ▷ Construct an augmented Hamiltonian $\Lambda(u)$, such that the traveling wave solution ϕ is a critical point of Λ : $\underbrace{\Lambda'(\phi) = 0}_{\text{TW-eq}}$
- ▷ Compute the spectrum of the linearized operator $\mathcal{L} = \Lambda''(\phi)$ and control the number of negative eigenvalues in $L^2(\mathbb{R})$.
- ▷ If L has only one negative simple eigenvalue and a simple zero eigenvalue, then we need to prove that the traveling wave φ is a constrained minimizer of Hamiltonian under fixed momentum, i.e. L|_{X0} ≥ 0, where X₀ is a constrained subspace of L²
- \triangleright The traveling wave ϕ is orbitally stable in energy space if local well-posedness has been proven in the energy space.

[Anna Geyer & D. P., *Stability of nonlinear waves in Hamiltonian systems*, AMS Monographs, 2025]

Dmitry Pelinovsky, McMaster University

For solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

Orbital stability of peakons in energy space

b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001] b = 3: [Lin & Liu, 2009]

For solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]

For solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]</p>

For smooth solitary waves satisfying $u(x) \rightarrow k > 0$ as $|x| \rightarrow \infty$:

Orbital stability of smooth solitons in energy space
 b = 2: [Constantin & Strauss, 2002]
 b = 3: [Li & Liu & Wu, 2020]

For solitary waves satisfying $u(x) \to 0$ as $|x| \to \infty$

- Orbital stability of peakons in energy space
 b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]
 b = 3: [Lin & Liu, 2009]
- ▷ Orbital stability of leftons in weighted Sobolev spaces b < -1: [Hone & Lafortune, 2014]</p>

For smooth solitary waves satisfying $u(x) \rightarrow k > 0$ as $|x| \rightarrow \infty$:

Orbital stability of smooth solitons in energy space
 b = 2: [Constantin & Strauss, 2002]
 b = 3: [Li & Liu & Wu, 2020]

Similar studies were developed for travelling periodic waves with smooth and peaked profiles: [Lenells, 2004-2006]

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

▷ Peakons are linearly and nonlinearly unstable in $H^1 \cap W^{1,\infty}$

b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]

- ▷ Peakons are linearly and nonlinearly unstable in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Peakons are spectrally unstable in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]

- ▷ Peakons are linearly and nonlinearly unstable in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Peakons are spectrally unstable in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Smooth solitary waves are orbitally stable in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]

- ▷ Peakons are linearly and nonlinearly unstable in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Peakons are spectrally unstable in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Smooth solitary waves are orbitally stable in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]
- Smooth periodic waves are spectrally stable in L²_{per}
 b = 2 [Geyer, Martins, Natali, & P., 2022]
 b = 3 [Geyer & P., 2024]

- ▷ Peakons are linearly and nonlinearly unstable in $H^1 \cap W^{1,\infty}$ b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]
- ▷ Peakons are spectrally unstable in L² any b ∈ ℝ: [Lafortune & P., 2022a] [Charalampidis, Parker, Kevrekidis, Lafortune, 2023]
- ▷ Smooth solitary waves are orbitally stable in H³
 b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]
- Smooth periodic waves are spectrally stable in L²_{per}
 b = 2 [Geyer, Martins, Natali, & P., 2022]
 b = 3 [Geyer & P., 2024]
- Smooth solitary waves are linearly transversely stable in 2-dim
 b = 2 [Geyer, Liu, & P., 2024]

Section 2

Properties of *b*-Camassa–Holm equation

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

The time evolution consists of two quadratic parts:

$$\boxed{u_t + uu_x} + \frac{1}{4} \varphi' * (bu^2 + (3 - b)u_x^2) = 0,$$

with Burgers advection $u_t + uu_x = 0$ and convolution smoothing.

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1} \delta = e^{-|x|}$ is the Green function.

Solutions of the Burgers equation $u_t + uu_x = 0$ with u(0, x) = f(x)admit wave breaking (gradient blowup) for $f \in W^{1,\infty}(\mathbb{R})$:

$$u(t,x) = f(x - tu(t,x)) \quad \Rightarrow \quad u_x = \frac{f'(x - tu)}{1 + tf'(x - tu)}.$$

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

We say that the dynamics leads to the wave breaking if

 $\|u(t,\cdot)\|_{L^{\infty}} < \infty, \quad \|u_x(t,\cdot)\|_{L^{\infty}} \to \infty \quad \text{as} \ t \to T < \infty$

The local differential equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be rewritten in the integral form of the perturbed Burgers equation

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

where $\varphi := 2(1 - \partial_x^2)^{-1}\delta = e^{-|x|}$ is the Green function.

For b > 1, the initial-value problem is

- ▷ locally well-posed in H^s , s > 3/2 [Escher & Yin, 2008; Zhou, 2010]
- ▷ no continuous dependence in H^s , $s \le 3/2$ [Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]
- ▷ locally well-posed in $H^1 \cap W^{1,\infty}$.

[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]

Hamiltonian structure of the *b*-CH equations

For b = 2, the Camassa–Holm equation

$$u_t - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$$

has the first three conserved quantities

$$M(u) = \int u dx, \ E(u) = \frac{1}{2} \int (u^2 + u_x^2) dx, \ F(u) = \frac{1}{2} \int (u^3 + u u_x^2) dx.$$

(CH) can be written in Hamiltonian form in three ways:

$$\begin{split} u_t &= JF'(u), \qquad \qquad J = -(1 - \partial_x^2)^{-1}\partial_x, \\ m_t &= J_m E'(m), \qquad \qquad J_m = -(m\partial_x + \partial_x m), \\ m_t &= J_m M'(m), \qquad J_m = -(2m\partial_x + m_x)(1 - \partial_x^2)^{-1}\partial_x^{-1}(2\partial_x m - m_x). \end{split}$$

where $m = u - u_{xx}$.

Hamiltonian structure of the *b*-CH equations

For b = 3, the Degasperis–Procesi equation

$$u_t - u_{txx} + 4 u u_x = 3 u_x u_{xx} + u u_{xxx}$$

has the first three conserved quantities

$$M(u) = \int u dx, \ E(u) = \frac{1}{2} \int u(1 - \partial_x^2)(4 - \partial_x^2)^{-1} u dx, \ F(u) = \frac{1}{6} \int u^3 dx.$$

(DH) can be written in Hamiltonian form in two ways:

$$u_{t} = JF'(u), \qquad J = -(1 - \partial_{x}^{2})^{-1}(4 - \partial_{x}^{2})\partial_{x},$$

$$m_{t} = J_{m}M'(m), \qquad J_{m} = -\frac{1}{2}(3m\partial_{x} + m_{x})(1 - \partial_{x}^{2})^{-1}\partial_{x}^{-1}(3\partial_{x}m - m_{x}).$$

where $m = u - u_{xx}$.

Hamiltonian structure of the *b*-CH equations

For general $b \neq 1$, the *b*-Camassa–Holm equation

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

can be written in Hamiltonian form:

$$m_t = J_m M'(m), \quad J_m := -\frac{1}{b-1} (bm\partial_x + m_x)(1 - \partial_x^2)^{-1} \partial_x^{-1} (b\partial_x m - m_x).$$

where $m = u - u_{xx}$. In addition to the conservation of mass $M(m) = \int m dx$, it has two more conserved quantities:

$$E(m) = \int m^{\frac{1}{b}} dx, \ F(m) = \int \left(\frac{m_x^2}{b^2 m^2} + 1\right) m^{-\frac{1}{b}} dx,$$

These are Casimir functionals satisfying $J_m E'(m) = 0$, $J_m F'(m) = 0$. [Degasperis, Holm, Hone, 2003]

Section 3

Stability and instability of peakons

Existence of peakons

Peakons exist in the weak form in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$

 $u(t,x) = ce^{-|x-ct|}.$

Without loss of generality, we can set c = 1. The normalized profile $\varphi(x) = e^{-|x|}$ satisfies the integral equation

$$-\varphi + \frac{1}{2}\varphi^{2} + \frac{1}{4}\varphi * (b\varphi^{2} + (3-b)(\varphi')^{2}) = 0,$$

which follows from integration of

$$u_t + uu_x + \frac{1}{4}\varphi' * (bu^2 + (3-b)u_x^2) = 0,$$

after the traveling wave reduction $u(t, x) = \varphi(x - t)$.

Orbital stability of peakons in H^1 : b = 2

Theorem (Constantin–Molinet (2001))

 φ is a unique (up to translation) minimizer of Hamiltonian F(u) in $H^1(\mathbb{R})$ subject to fixed momentum E(u).

Theorem (Constantin–Strauss (2000))

For every small $\varepsilon > 0$, if the initial data satisfies

$$\|u_0-\varphi\|_{H^1}<\left(\frac{\varepsilon}{3}\right)^4,$$

then the solution satisfies

$$\|u(t,\cdot)-\varphi(\cdot-\xi(t))\|_{H^1}<\varepsilon,\quad t\in(0,T),$$

where $\xi(t)$ is a point of maximum for $u(t, \cdot)$.

Dmitry Pelinovsky, McMaster University

Yet, we claim instability of peakons in $H^1 \cap W^{1,\infty}$: b = 2

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

Theorem (Natali–P. (2020))

For every $\delta > 0$, there exist $t_0 > 0$ and $u_0 \in H^1 \cap W^{1,\infty}$ satisfying

$$||u_0 - \varphi||_{H^1} + ||u'_0 - \varphi'||_{L^{\infty}} < \delta,$$

s.t. the unique solution $u \in C([0,T), H^1 \cap W^{1,\infty})$ with $T > t_0$ satisfies

$$\|u_x(t_0,\cdot)-\varphi'(\cdot-\xi(t_0))\|_{L^{\infty}}>1,$$

where $\xi(t)$ is a point of peak of $u(t, \cdot)$ for $t \in [0, T)$.

Yet, we claim instability of peakons in $H^1 \cap W^{1,\infty}$: b = 2

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

- ▷ If $u \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, then Q[u] is Lipschitz continuous and the method of characteristics can be used to analyze dynamics.
- ▷ If there exists a peak at $\xi(t)$ s.t. $u(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$, then it moves with the local characteristic speed as

$$\frac{d\xi}{dt} = u(t,\xi(t)), \quad t \in (0,T).$$

Yet, we claim instability of peakons in $H^1 \cap W^{1,\infty}$: b = 2

Consider solutions of the Cauchy problem:

$$\begin{cases} u_t + uu_x + Q[u] = 0, \\ u_{t=0} = u_0 \in H^1 \cap W^{1,\infty}, \end{cases} \qquad Q[u] := \frac{1}{4}\varphi' * \left(u^2 + \frac{1}{2}u_x^2\right).$$

For the peaked traveling wave $u(t, x) = \varphi(x - ct)$, $\xi'(t) = u(t, \xi(t))$ gives $c = \varphi(0) := \max_{x \in \mathbb{R}} \varphi(x)$.

Evolution of a perturbed peakon

Consider a decomposition near a single peakon:

$$u(t,x) = \varphi(x-t-a(t)) + v(t,x-t-a(t)), \quad t \in [0,T), \quad x \in \mathbb{R},$$

with the peak at $\xi(t) = t + a(t)$ for $v(t, \cdot) \in H^1(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{\xi(t)\})$. Then, $\xi'(t) = u(t, \xi(t))$ yields a'(t) = v(t, 0) and the perturbation $v(t, \cdot)$ satisfies

$$v_t = (1-\varphi)v_x + \varphi \int_0^x v(t,y)dy + \boxed{(v|_{x=0}-v)v_x - Q[v]}.$$

Translational invariance on the line is broken by the peak located at $\xi(t) = t + a(t)$.

Nonlinear evolution

For the evolution problem:

$$\begin{cases} v_t = (c - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$$

we can look for solutions with the method of characteristic curves:

$$x = X(t,s),$$
 $v(t,X(t,s)) = V(t,s).$

Nonlinear evolution

For the evolution problem:

$$\begin{cases} v_t = (c - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$$

we can look for solutions with the method of characteristic curves:

$$x = X(t,s),$$
 $v(t,X(t,s)) = V(t,s).$

The characteristic coordinates X(t, s) satisfies

$$\begin{cases} \frac{dX}{dt} = \varphi(X) - 1 + v(t, X) - v(t, 0), \quad t \in (0, T), \\ X|_{t=0} = s. \end{cases}$$

Since φ is Lipschitz, there exists the unique characteristic function X(t,s) for each $s \in \mathbb{R}$ if $v(t, \cdot)$ remains in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ The peak location X(t,0) = 0 is invariant in time.

Nonlinear evolution

For the evolution problem:

$$\begin{cases} v_t = (c - \varphi)v_x + \varphi \int_0^x v(t, y) dy + (v|_{x=0} - v)v_x - Q[v], & t \in (0, T), \\ v|_{t=0} = v_0(x), \end{cases}$$

we can look for solutions with the method of characteristic curves:

$$x = X(t,s),$$
 $v(t,X(t,s)) = V(t,s).$

From the right side of the peak, $V_0(t) = v(t, 0)$, $W_0(t) = v_x(t, 0^+)$:

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[v](0), \quad P[v] := \varphi * \left(v^2 + \frac{1}{2}v_x^2\right).$$

The proof is achieved if we show that $W_0(t)$ grows and may diverge in a finite time.

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le \|v(t,\cdot)\|_{L^{\infty}} \le \frac{1}{\sqrt{2}} \|v(t,\cdot)\|_{H^1} < \varepsilon.$$

To show instability, we use eq. on the right side of the peak:

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[v](0)$$

and since P[v] > 0, we have

$$\frac{dW_0}{dt} \le W_0 + C\varepsilon \quad \Rightarrow \quad W_0(t) \le \left[W_0(0) + C\varepsilon\right]e^t$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

If $W_0(0) = -2C\varepsilon$, then

$$W_0(t) \leq -C\varepsilon e^t$$
,

hence $|W_0(t_0)| \ge 1$ for $t_0 := -\log(C\varepsilon)$.

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le ||v(t,\cdot)||_{L^{\infty}} \le \frac{1}{\sqrt{2}} ||v(t,\cdot)||_{H^1} < \varepsilon.$$

If $W_0(0) = -2C\varepsilon$, then

$$W_0(t) \leq -C\varepsilon e^t,$$

hence $|W_0(t_0)| \ge 1$ for $t_0 := -\log(C\varepsilon)$.

The initial constraint $||v_0||_{L^{\infty}} + ||v'_0||_{L^{\infty}} < \delta$, is satisfied if $\forall \delta > 0$, $\exists \varepsilon > 0$ such that

$$\left(\frac{\varepsilon}{3}\right)^4 + 2C\varepsilon < \delta.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le \|v(t,\cdot)\|_{L^{\infty}} \le \frac{1}{\sqrt{2}} \|v(t,\cdot)\|_{H^1} < \varepsilon.$$

To show the finite-time wave breaking, we estimate

$$\frac{dW_0}{dt} = W_0 + V_0 + V_0^2 - \frac{1}{2}W_0^2 - P[v](0) \le W_0 - \frac{1}{2}W_0^2 + C\varepsilon.$$

From the orbital stability in $H^1(\mathbb{R})$ [A. Constantin, W. Strauss (2000)] If $\|v_0\|_{H^1} < (\varepsilon/3)^4$, then

$$|V_0(t)| \le \|v(t,\cdot)\|_{L^{\infty}} \le \frac{1}{\sqrt{2}} \|v(t,\cdot)\|_{H^1} < \varepsilon.$$

By the ODE comparison theory, $W_0(t) \leq \overline{W}(t)$, where the supersolution satisfies

$$\frac{d\overline{W}}{dt} = \overline{W} - \frac{1}{2}\overline{W}^2 + C\varepsilon$$

with $W_0(0) = \overline{W}(0) = -C\varepsilon$ and $\overline{W}(t) \to -\infty$ as $t \to \overline{T}$.

Illustration of the peakon instability (periodic case)

For the linearized equation $v_t = (1 - \varphi)v_x + \varphi \int_0^x v(t, y) dy$, we can

obtain exact solutions and illustrate the peakon instability.

Figure: v(t, x) versus x for t = 0, 1, 2, 4 in the case $v_0(x) = \sin(x)$.

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

Section 4

Spectral instability of peakons for any b > 1

The linearized equation is well-posed in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized equation is well-posed in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

Question: Can we show the linear instability from analysis of the linearized operator in $L^2(\mathbb{R})$?

The linearized equation is well-posed in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized operator is

$$L = (1 - \varphi)\partial_x - (b - 2)\varphi' + K,$$

where $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator. Since $\varphi \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, the natural domain of *L* in $L^2(\mathbb{R})$ is

$$\operatorname{Dom}(L) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi) v' \in L^2(\mathbb{R}) \right\}.$$

The linearized equation is well-posed in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$:

$$v_t = (1 - \varphi)v_x + (b - 2)(v|_{x=0} - v)\varphi' + \frac{1}{2}(b - 3)\varphi * (\varphi'v) - \frac{1}{2}(2b - 3)\varphi' * (\varphi v),$$

The linearized operator is

$$L = (1 - \varphi)\partial_x - (b - 2)\varphi' + K,$$

where $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator. Since $\varphi \in H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$, the natural domain of *L* in $L^2(\mathbb{R})$ is

$$\operatorname{Dom}(L) = \left\{ v \in L^2(\mathbb{R}) : \quad (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}.$$

 $H^1(\mathbb{R})$ is continuously embedded into Dom(L). However, it is not equivalent to Dom(L) because $\varphi' \in \text{Dom}(L)$ but $\varphi' \notin H^1(\mathbb{R})$.

Let *A* be a linear operator on a Banach space *X* with $Dom(A) \subset X$. The complex plane \mathbb{C} is decomposed into the resolvent set $\rho(A)$ and the spectrum $\sigma(A) = \mathbb{C} \setminus \rho(A)$, the latter consists of the following three disjoint sets:

1. the point spectrum

$$\sigma_{p}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) \neq \{0\}\},\$$

2. the residual spectrum

$$\sigma_{\mathbf{r}}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) = \{0\}, \operatorname{Ran}(A - \lambda I) \neq X\},\$$

3. the continuous spectrum

$$\sigma_{c}(A) = \{\lambda : \operatorname{Ker}(A - \lambda I) = \{0\}, \operatorname{Ran}(A - \lambda I) = X, (A - \lambda I)^{-1} : X \to X \text{ is unbounded}\}.$$

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \leq \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

 $\circ \sigma_p(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} - b \text{ if } b < \frac{5}{2} \\ \circ \sigma_r(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < b - \frac{5}{2} \text{ if } b > \frac{5}{2} \\ \circ \sigma_c(L) \text{ is located for } \operatorname{Re}(\lambda) = 0 \text{ and } \operatorname{Re}(\lambda) = \pm \left|\frac{5}{2} - b\right| \\ \circ \lambda = 0 \text{ is the embedded eigenvalue for every } b.$

 \Rightarrow the peakon is linearly unstable in Dom(L) for every $b \neq \frac{5}{2}$.

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $\begin{array}{l} \triangleright \ \sigma_p(L) \ is \ located \ for \ 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b \ if \ b < \frac{5}{2} \\ \hline \sigma_r(L) \ is \ located \ for \ 0 < |\operatorname{Re}(\lambda)| < b \frac{5}{2} \ if \ b > \frac{5}{2} \\ \hline \sigma_c(L) \ is \ located \ for \ \operatorname{Re}(\lambda) = 0 \ and \ \operatorname{Re}(\lambda) = \pm \left|\frac{5}{2} b\right| \end{array}$
- $\triangleright \ \lambda = 0$ is the embedded eigenvalue for every b.

b = 2: $||v(t, \cdot)||_{L^2}$ grows due to point spectrum b = 3: $||v(t, \cdot)||_{L^2}$ grows due to residual spectrum

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with $Dom(L) \subset L^2(\mathbb{R})$

$$\sigma(L) = \left\{ \lambda \in \mathbb{C} : |\operatorname{Re}(\lambda)| \le \left| \frac{5}{2} - b \right| \right\}.$$

Moreover,

- $\circ \sigma_p(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < \frac{5}{2} b \text{ if } b < \frac{5}{2} \\ \circ \sigma_r(L) \text{ is located for } 0 < |\operatorname{Re}(\lambda)| < b \frac{5}{2} \text{ if } b > \frac{5}{2} \\ \circ \sigma_c(L) \text{ is located for } \operatorname{Re}(\lambda) = 0 \text{ and } \operatorname{Re}(\lambda) = \pm \left|\frac{5}{2} b\right|$
- $\triangleright \ \lambda = 0$ is the embedded eigenvalue for every b.

Instability in the vertical strip holds for peaked waves in the reduced Ostrovsky equation $u_t + uu_x = \partial_x^{-1} u$ [Geyer & P. (2020)] and for Euler flows [Shvidkoy & Latushkin (2003)]

Proofs of spectral instability

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\text{Dom}(L) = \text{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Proofs of spectral instability

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\text{Dom}(L) = \text{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Theorem (Geyer & P (2020))

If $\sigma_p(L) \cap \rho(L_0)$ and $\sigma_p(L_0) \cap \rho(L)$ are empty, then $\sigma(L) = \sigma(L_0)$.

Theorem (Bühler & Salamon (2018))

If $\sigma_{p}(L)$ is empty, then $\sigma_{r}(L) = \sigma_{p}(L^{*})$.

Proofs of spectral instability

Recall that $L = L_0 + K$, where $L_0 := (1 - \varphi)\partial_x - (b - 2)\varphi'$ with $\text{Dom}(L) = \text{Dom}(L_0) = \left\{ v \in L^2(\mathbb{R}) : (1 - \varphi)v' \in L^2(\mathbb{R}) \right\}$

and $K : L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is a compact (Hilbert–Schmidt) operator.

Truncated equation $L_0 v = \lambda v$ is the first-order equation

$$(1-\varphi)\frac{dv}{dx} + (2-b)\varphi'v = \lambda v$$

with the exact solution

$$v(x) = \begin{cases} v_+ e^{\lambda x} (1 - e^{-x})^{2+\lambda-b}, & x > 0, \\ v_- e^{\lambda x} (1 - e^x)^{2-\lambda-b}, & x < 0, \end{cases}$$

The solution $v \in L^2(\mathbb{R})$ if $v_+ = 0$ and $0 < \operatorname{Re}(\lambda) < \frac{5}{2} - b$.

Section 5

Stability of smooth solitary waves

Existence of smooth solitary waves: b > 1

Smooth traveling waves of the form $u(x, t) = \phi(x - ct)$ satisfy

$$-(c-\phi)(\phi'''-\phi') + b\phi'(\phi''-\phi) = 0.$$

Existence of smooth solitary waves: b > 1

Smooth traveling waves of the form $u(x, t) = \phi(x - ct)$ satisfy

$$-(c-\phi)(\phi'''-\phi') + b\phi'(\phi''-\phi) = 0.$$

After multiplication by $(c - \phi)^{b-1}$, the equation can be integrated into

$$-(c-\phi)^b(\phi''-\phi)=a, \quad a\in\mathbb{R}.$$

Further integration gives

$$\frac{1}{2}(b-1)[(\phi')^2 - \phi^2] + \frac{a}{(c-\phi)^{b-1}} = g, \quad g \in \mathbb{R}.$$

Smooth waves with c > 0 exist if $\phi < c$.

Existence of smooth solitary waves: b > 1

Newton's particle with mass m = b - 1 and potential energy $U(\phi)$

$$\frac{1}{2}(b-1)(\phi')^2 + U(\phi) = g, \quad U(\phi) = -\frac{1}{2}(b-1)\phi^2 + \frac{a}{(c-\phi)^{b-1}}.$$

There exists $a_0 > 0$ such that for every $a \in (0, a_0)$ two critical points of $U(\phi)$ exists with ordering $0 < \phi_1 < \phi_2 < c$.

Properties of smooth solitary waves: b > 1

For every c > 0, the family of solitary waves has one additional parameter, which can be chosen as $k \in (0, k_0)$ such that

 $\phi(x) \to k$ as $|x| \to \infty$ exponentially.

Moreover, $0 < \phi < c$ and

$$\mu = \phi - \phi'' = k \frac{(c-k)^b}{(c-\phi)^b} > 0.$$

Hamiltonian structure of the *b*-CH equations

Recall that the *b*-Camassa–Holm equation with $b \neq 1$

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

has conserved quantities

$$E(m) = \int m^{\frac{1}{b}} dx, \quad F(m) = \int \left(\frac{m_x^2}{b^2 m^2} + 1\right) m^{-\frac{1}{b}} dx,$$

where $m = u - u_{xx}$.

Hamiltonian structure of the *b*-CH equations

Recall that the *b*-Camassa–Holm equation with $b \neq 1$

$$u_t - u_{txx} + (b+1) u u_x = b u_x u_{xx} + u u_{xxx}$$

has conserved quantities

$$E(m) = \int m^{\frac{1}{b}} dx, \quad F(m) = \int \left(\frac{m_x^2}{b^2 m^2} + 1\right) m^{-\frac{1}{b}} dx,$$

where $m = u - u_{xx}$.

The conserved quantities can be redefined as

$$\hat{E}(m) = \int_{\mathbb{R}} \left[m^{\frac{1}{b}} - k^{\frac{1}{b}} \right] dx, \quad \hat{F}(m) = \int_{\mathbb{R}} \left[\left(\frac{m_x^2}{b^2 m^2} + 1 \right) m^{-\frac{1}{b}} - k^{-\frac{1}{b}} \right] dx$$

in the set of functions with fixed k > 0:

$$X_k = \left\{ m - k \in H^1(\mathbb{R}) : \quad m(x) > 0, \ x \in \mathbb{R} \right\}.$$

Dmitry Pelinovsky, McMaster University

Stability of smooth solitary waves: b > 1

Let $m(t, x) = \mu(x - ct)$ with $\mu \in X_k$. We say that the travelling wave is orbitally stable in X_k if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $m_0 \in X_k$ satisfying $||m_0 - \mu||_{H^1} < \delta$, there exists a unique solution $m \in C^0(\mathbb{R}, X_k)$ of the *b*-CH equation satisfying

$$\inf_{x_0\in\mathbb{R}}\|m(t,\cdot)-\mu(\cdot-x_0)\|_{H^1}<\varepsilon,\quad t\in\mathbb{R}.$$

Theorem (Lafortune–P, Physica D **440** (2022) 133477)

For every c > 0 and $k \in (0, k_0)$, there exists a unique solitary wave $m(t, x) = \mu(x - ct)$ of the b-CH equation, which is orbitally stable in X_k if the mapping

$$k \mapsto Q(\phi) := \int_{\mathbb{R}} \left[b\left(\frac{c-k}{c-\phi}\right) - \left(\frac{c-k}{c-\phi}\right)^b - b + 1 \right] dx$$

is strictly increasing.

Dmitry Pelinovsky, McMaster University

Stability of smooth solitary waves: b > 1

Let $m(t, x) = \mu(x - ct)$ with $\mu \in X_k$. We say that the travelling wave is orbitally stable in X_k if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $m_0 \in X_k$ satisfying $||m_0 - \mu||_{H^1} < \delta$, there exists a unique solution $m \in C^0(\mathbb{R}, X_k)$ of the *b*-CH equation satisfying

$$\inf_{x_0\in\mathbb{R}}\|m(t,\cdot)-\mu(\cdot-x_0)\|_{H^1}<\varepsilon,\quad t\in\mathbb{R}.$$

For general b > 1, we confirmed the stability criterioin numerically:

Dmitry Pelinovsky, McMaster University

Traveling waves in the CH equation

Stability of smooth solitary waves: b > 1

Let $m(t,x) = \mu(x - ct)$ with $\mu \in X_k$. We say that the travelling wave is orbitally stable in X_k if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $m_0 \in X_k$ satisfying $||m_0 - \mu||_{H^1} < \delta$, there exists a unique solution $m \in C^0(\mathbb{R}, X_k)$ of the *b*-CH equation satisfying

$$\inf_{x_0\in\mathbb{R}}\|m(t,\cdot)-\mu(\cdot-x_0)\|_{H^1}<\varepsilon,\quad t\in\mathbb{R}.$$

For b = 2 and b = 3, we proved monotonicity with explicit computation.

For every b > 1, monotonicity $k \mapsto Q(\phi)$ was proven in [Long & Liu, 2023] by using the period function for planar ODEs.

Proof of orbital stability of smooth solitary waves

1. We verify that the solitary wave $\mu \in X_k$ is a critical point of the augmented Hamiltonian

$$\Lambda_{\omega_1,\omega_2}(m) := \hat{M}(m) - \omega_1 \hat{E}(m) - \omega_2 \hat{F}(m),$$

for some (ω_1, ω_2) that depend on (b, c, k).

Proof of orbital stability of smooth solitary waves

1. We verify that the solitary wave $\mu \in X_k$ is a critical point of the augmented Hamiltonian

$$\Lambda_{\omega_1,\omega_2}(m) := \hat{M}(m) - \omega_1 \hat{E}(m) - \omega_2 \hat{F}(m),$$

for some (ω_1, ω_2) that depend on (b, c, k).

2. Expansion of the augmented Hamiltonian with small $\tilde{m} \in H^1(\mathbb{R})$ is

$$\Lambda_{\omega_1,\omega_2}(\mu+\tilde{m}) - \Lambda_{\omega_1,\omega_2}(\mu) = \langle \mathcal{L}\tilde{m},\tilde{m}\rangle + \|\tilde{m}\|_{H^1}^3,$$

where \mathcal{L} is the Sturm–Liouville operator in $L^2(\mathbb{R})$ with the dense domain $H^2(\mathbb{R})$. Since $\mathcal{L}\mu' = 0$ and $\mu'(x)$ has only one zero on \mathbb{R} , \mathcal{L} admits exactly one simple negative eigenvalue and a simple zero eigenvalue.

Proof of orbital stability of smooth solitary waves

3. Since

$$b\hat{E}(m) - k^{\frac{1}{b}-1}\hat{M}(m)$$

is conserved in time, perturbations \tilde{m} can be restricted to the class

$$\langle \mu^{\frac{1}{b}-1} - k^{\frac{1}{b}-1}, \tilde{m} \rangle = 0.$$
Proof of orbital stability of smooth solitary waves

3. Since

$$b\hat{E}(m) - k^{\frac{1}{b}-1}\hat{M}(m)$$

is conserved in time, perturbations \tilde{m} can be restricted to the class

$$\langle \mu^{\frac{1}{b}-1} - k^{\frac{1}{b}-1}, \tilde{m} \rangle = 0.$$

4. $\mathcal{L}|_{\{v_0\}^{\perp}} \ge 0$ is coercive in the H^1 norm if and only if the mapping

$$k \mapsto Q(\phi) := \int_{\mathbb{R}} \left[b\left(\frac{c-k}{c-\phi}\right) - \left(\frac{c-k}{c-\phi}\right)^b - b + 1 \right] dx$$

is strictly increasing.

Section 6

Transverse stability of smooth solitary waves

2D generalization of the CH equation

The following 2D model was derived for fluids:

 $(u_t - u_{txx} + 3uu_x - 2u_xu_{xx} - uu_{xxx})_x + u_{yy} = 0$

[R.M. Chen (2006)] [G. Gui, Y. Liu, W. Luo, Z. Yin (2021)]

2D generalization of the CH equation

The following 2D model was derived for fluids:

 $(u_t - u_{txx} + 3uu_x - 2u_xu_{xx} - uu_{xxx})_x + u_{yy} = 0$

[R.M. Chen (2006)] [G. Gui, Y. Liu, W. Luo, Z. Yin (2021)]

In the small-amplitude and long-scale expansion,

$$u(x, y, t) = k + \varepsilon^2 v(\varepsilon(x - 3kt), \varepsilon^2 y, \varepsilon^3 t), \quad \varepsilon > 0,$$

the 2D-CH equation formally reduces to the KP-II equation

$$v_T + 2kv_{XXX} + 3vv_X + \partial_X^{-1}v_{YY} = 0.$$

The line soliton $v(X, T) = \operatorname{sech}^2\left(\frac{X-T}{2\sqrt{2k}}\right)$ is transversely stable in the **KP-II equation.** [T. Mizumachi & N. Tzvetkov (2012)] [T. Mizumachi (2015)]

Two theorems on transverse stability of line solitons

For the 2D-CH equation

$$(u_t - u_{txx} + 3uu_x - 2u_xu_{xx} - uu_{xxx})_x + u_{yy} = 0$$

we proved the following

- ▷ For every $\varepsilon > 0$, the linear stability problem contains a pair of resonances located in the left half-plane of the complex plane and no eigenvalues with Re(λ) ≥ 0 near $\lambda = 0$.
- \triangleright For every small $\varepsilon > 0$, the line solitons are linearly stable with respect to transverse perturbations.

[A. Geyer, Y. Liu, & D.P., Journal de Mathématiques Pures et Appliquées (2024)]

Summary

I have reviewed traveling waves in the *b*-CH equation in 1D:

 $u_t - u_{txx} + (b+1)uu_x = bu_x u_{xx} + uu_{xxx}$

which models unidirectional small-amplitude shallow water waves.

- ▷ Peaked traveling waves are unstable in $H^1 \cap W^{1,\infty}$
 - ▷ LWP only holds in $H^1 \cap W^{1,\infty}$.
 - ▷ For b = 2, perturbations are bounded in H^1 and growing in $W^{1,\infty}$.
 - \triangleright Spectral instability of peakons holds for every *b*.
- ▷ Smooth traveling waves are stable in H^3 for b > 1
 - ▷ LWP and GWP hold for perturbations with m = u u'' > 0
 - \triangleright Hamiltonian formulation exists for every b > 1
 - > TW is constrained minimizer of the augmented Hamiltonian.

MANY THANKS FOR YOUR ATTENTION!

Dmitry Pelinovsky, McMaster University