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Section 1

Background and motivation
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Toy models for fluids

The study of traveling waves in the irrotational motion of an
incompressible fluid has a long history.

The following evolution equations were used for approximations of
such traveling waves in the shallow limit a� h� λ.
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Toy models for fluids

The study of traveling waves in the irrotational motion of an
incompressible fluid has a long history.

The following evolution equations were used for approximations of
such traveling waves in the shallow limit a� h� λ.

The Korteweg–de Vries (KdV) equation:

ut + ux + uxxx + u ux = 0

[Boussinesq, 1872] [Korteweg & de Vries, 1895]
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Toy models for fluids

The study of traveling waves in the irrotational motion of an
incompressible fluid has a long history.

The following evolution equations were used for approximations of
such traveling waves in the shallow limit a� h� λ.

The Benjamin–Bona–Mahony (BBM) equation

ut + ux − utxx + u ux = 0

[Peregrine, 1966] [Benjamin–Bona–Mahony, 1972]
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Toy models for fluids

The study of traveling waves in the irrotational motion of an
incompressible fluid has a long history.

The following evolution equations were used for approximations of
such traveling waves in the shallow limit a� h� λ.

The Camassa–Holm (CH) equation

ut + ux − utxx + 3 u ux = 2 uxuxx + u uxxx

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]
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CH models

The Camassa-Holm equation

ut + ux − utxx + 3 u ux = 2 uxuxx + u uxxx (CH)

was extended as the Degasperis–Procesi equation

ut + ux − utxx + 4 u ux = 3 uxuxx + u uxxx (DP)

at the same asymptotic accuracy.
[Degasperis & Procesi, 1999] [Constantin & Lannes, 2009]

It is further extended as the b-Camassa–Holm equation

ut + ux − utxx + (b + 1) u ux = b uxuxx + u uxxx (b-CH)

by using transformations of integrable KdV equation.
[Dullin, Gottwald, & Holm, 2001] [Degasperis, Holm & Hone, 2002]
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Peaked solitary waves (peakons) are observed for b > 1
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Rarefactive waves are observed for b ∈ (−1, 1)
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Smooth solitary waves (leftons) are observed for b < −1
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Solitary waves in b-CH model

Similations of the b-family of Camassa-Holm equations

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

starting with Gaussian initial data u(0, x) [Holm & Staley, 2003]

Our objectives:

. To study the linear and nonlinear stability of the traveling waves.

. To understand differences in the stability analysis between
smooth and peaked profiles of the traveling waves.
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Standard approach to orbital stability of nonlinear waves

. Construct an augmented Hamiltonian Λ(u), such that the
traveling wave solution φ is a critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

. Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the number of negative eigenvalues in L2(R).

. If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then we need to prove that the traveling wave φ is a
constrained minimizer of Hamiltonian under fixed momentum,
i.e. L|X0 ≥ 0, where X0 is a constrained subspace of L2

. The traveling wave φ is orbitally stable in energy space if local
well-posedness has been proven in the energy space.

[Anna Geyer & D. P., Stability of nonlinear waves in Hamiltonian
systems, AMS Monographs, 2025]
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Stability of solitary waves: state-of-the-art before

For solitary waves satisfying u(x)→ 0 as |x| → ∞

. Orbital stability of peakons in energy space
b = 2: [Constantin & Strauss, 2000] [Constantin & Molinet, 2001]

b = 3: [Lin & Liu, 2009]

. Orbital stability of leftons in weighted Sobolev spaces
b < −1: [Hone & Lafortune, 2014]

For smooth solitary waves satisfying u(x)→ k > 0 as |x| → ∞:

. Orbital stability of smooth solitons in energy space
b = 2: [Constantin & Strauss, 2002]

b = 3: [Li & Liu & Wu, 2020]

Similar studies were developed for travelling periodic waves
with smooth and peaked profiles: [Lenells, 2004-2006]
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Stability of solitary waves: state-of-the-art after

. Peakons are linearly and nonlinearly unstable in H1 ∩W1,∞

b = 2: [Natali & P., 2020] [Madiyeva & P., 2021]

. Peakons are spectrally unstable in L2

any b ∈ R: [Lafortune & P., 2022a]

[Charalampidis, Parker, Kevrekidis, Lafortune, 2023]

. Smooth solitary waves are orbitally stable in H3

b > 1: [Lafortune & P., 2022b] [Long & Liu, 2023]

. Smooth periodic waves are spectrally stable in L2
per

b = 2 [Geyer, Martins, Natali, & P., 2022]

b = 3 [Geyer & P., 2024]

. Smooth solitary waves are linearly transversely stable in 2-dim
b = 2 [Geyer, Liu, & P., 2024]
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Section 2

Properties of b-Camassa–Holm equation
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

The time evolution consists of two quadratic parts:

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

with Burgers advection ut + uux = 0 and convolution smoothing.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

Solutions of the Burgers equation ut + uux = 0 with u(0, x) = f (x)
admit wave breaking (gradient blowup) for f ∈ W1,∞(R):

u(t, x) = f (x− tu(t, x)) ⇒ ux =
f ′(x− tu)

1 + tf ′(x− tu)
.
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

We say that the dynamics leads to the wave breaking if

‖u(t, ·)‖L∞ <∞, ‖ux(t, ·)‖L∞ →∞ as t→ T <∞
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Properties of the Camassa-Holm equation on the line

The local differential equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

where ϕ := 2(1− ∂2
x )−1δ = e−|x| is the Green function.

For b > 1, the initial-value problem is

. locally well-posed in Hs, s > 3/2 [Escher & Yin, 2008; Zhou, 2010]

. no continuous dependence in Hs, s ≤ 3/2
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

. locally well-posed in H1 ∩W1,∞.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]
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Hamiltonian structure of the b-CH equations

For b = 2, the Camassa–Holm equation

ut − utxx + 3 u ux = 2 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
(u2+u2

x)dx, F(u) =
1
2

∫
(u3+uu2

x) dx.

(CH) can be written in Hamiltonian form in three ways:

ut = JF′(u), J = −(1− ∂2
x )−1∂x,

mt = JmE′(m), Jm = − (m∂x + ∂xm) ,

mt = JmM′(m), Jm = −(2m∂x + mx)(1− ∂2
x )−1∂−1

x (2∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For b = 3, the Degasperis–Procesi equation

ut − utxx + 4 u ux = 3 uxuxx + u uxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1
2

∫
u(1−∂2

x )(4−∂2
x )−1udx, F(u) =

1
6

∫
u3dx.

(DH) can be written in Hamiltonian form in two ways:

ut = JF′(u), J = −(1− ∂2
x )−1(4− ∂2

x )∂x,

mt = JmM′(m), Jm = −1
2

(3m∂x + mx)(1− ∂2
x )−1∂−1

x (3∂xm− mx).

where m = u− uxx.
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Hamiltonian structure of the b-CH equations

For general b 6= 1, the b-Camassa–Holm equation

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

can be written in Hamiltonian form:

mt = JmM′(m), Jm := − 1
b− 1

(bm∂x+mx)(1−∂2
x )−1∂−1

x (b∂xm−mx).

where m = u− uxx. In addition to the conservation of mass
M(m) =

∫
mdx, it has two more conserved quantities:

E(m) =

∫
m

1
b dx, F(m) =

∫ (
m2

x

b2m2 + 1
)

m−
1
b dx,

These are Casimir functionals satisfying JmE′(m) = 0, JmF′(m) = 0.
[Degasperis, Holm, Hone, 2003]
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Section 3

Stability and instability of peakons
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Existence of peakons

Peakons exist in the weak form in H1(R) ∩W1,∞(R)

u(t, x) = ce−|x−ct|.

Without loss of generality, we can set c = 1. The normalized profile
ϕ(x) = e−|x| satisfies the integral equation

−ϕ+
1
2
ϕ2 +

1
4
ϕ ∗

(
bϕ2 + (3− b)(ϕ′)2) = 0,

which follows from integration of

ut + uux +
1
4
ϕ′ ∗

(
bu2 + (3− b)u2

x
)

= 0,

after the traveling wave reduction u(t, x) = ϕ(x− t).
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Orbital stability of peakons in H1: b = 2

Theorem (Constantin–Molinet (2001))

ϕ is a unique (up to translation) minimizer of Hamiltonian F(u) in
H1(R) subject to fixed momentum E(u).

Theorem (Constantin–Strauss (2000))

For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0,T),

where ξ(t) is a point of maximum for u(t, ·).
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Yet, we claim instability of peakons in H1 ∩W1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

Theorem (Natali–P. (2020))

For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

s.t. the unique solution u ∈ C([0,T),H1 ∩W1,∞) with T > t0 satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0,T).

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 15 / 34



Yet, we claim instability of peakons in H1 ∩W1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

. If u ∈ H1(R) ∩W1,∞(R), then Q[u] is Lipschitz continuous and
the method of characteristics can be used to analyze dynamics.

. If there exists a peak at ξ(t) s.t. u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}),
then it moves with the local characteristic speed as

dξ
dt

= u(t, ξ(t)), t ∈ (0,T).
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Yet, we claim instability of peakons in H1 ∩W1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux + Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W1,∞,

Q[u] :=
1
4
ϕ′ ∗

(
u2 +

1
2

u2
x

)
.

For the peaked traveling wave u(t, x) = ϕ(x− ct),
ξ′(t) = u(t, ξ(t)) gives c = ϕ(0) := max

x∈R
ϕ(x).

-5 0 5
0

0.2

0.4

0.6

0.8

1

c = u(0)
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Evolution of a perturbed peakon

Consider a decomposition near a single peakon:

u(t, x) = ϕ(x− t − a(t)) + v(t, x− t − a(t)), t ∈ [0,T), x ∈ R,

with the peak at ξ(t) = t + a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then, ξ′(t) = u(t, ξ(t)) yields a′(t) = v(t, 0) and the perturbation
v(t, ·) satisfies

vt = (1− ϕ)vx + ϕ

∫ x

0
v(t, y)dy + (v|x=0 − v)vx − Q[v].

Translational invariance on the line is broken by the peak located at
ξ(t) = t + a(t).
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Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).
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Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

The characteristic coordinates X(t, s) satisfies{ dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0,T),
X|t=0 = s.

Since ϕ is Lipschitz, there exists the unique characteristic function
X(t, s) for each s ∈ R if v(t, ·) remains in H1(R) ∩W1,∞(R)
The peak location X(t, 0) = 0 is invariant in time.

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 17 / 34



Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0 v(t, y)dy + (v|x=0 − v)vx − Q[v], t ∈ (0,T),

v|t=0 = v0(x),

we can look for solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V(t, s).

From the right side of the peak, V0(t) = v(t, 0), W0(t) = vx(t, 0+):

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0), P[v] := ϕ ∗

(
v2 +

1
2

v2
x

)
.

The proof is achieved if we show that W0(t) grows and may diverge in
a finite time.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show instability, we use eq. on the right side of the peak:

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0)

and since P[v] > 0, we have

dW0

dt
≤ W0 + Cε ⇒ W0(t) ≤ [W0(0) + Cε] et
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If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).
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|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).

The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied
if ∀δ > 0, ∃ε > 0 such that(ε

3

)4
+ 2Cε < δ.

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 18 / 34



Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show the finite-time wave breaking, we estimate

dW0

dt
= W0 + V0 + V2

0 −
1
2

W2
0 − P[v](0) ≤ W0 −

1
2

W2
0 + Cε.
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Proof of the nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]

If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

By the ODE comparison theory, W0(t) ≤ W(t), where the
supersolution satisfies

dW
dt

= W − 1
2

W2
+ Cε

with W0(0) = W(0) = −Cε and W(t)→ −∞ as t→ T .
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Illustration of the peakon instability (periodic case)

For the linearized equation vt = (1− ϕ)vx + ϕ

∫ x

0
v(t, y)dy , we can

obtain exact solutions and illustrate the peakon instability.
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Figure: v(t, x) versus x for t = 0, 1, 2, 4 in the case v0(x) = sin(x).
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Section 4

Spectral instability of peakons for any b > 1
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Linear evolution equation for a perturbed peakon

The linearized equation is well-posed in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),
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Linear evolution equation for a perturbed peakon

The linearized equation is well-posed in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

Question: Can we show the linear instability from analysis of the
linearized operator in L2(R)?
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Linear evolution equation for a perturbed peakon

The linearized equation is well-posed in H1(R) ∩W1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1
2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.
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+
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2

(b− 3)ϕ ∗ (ϕ′v)− 1
2

(2b− 3)ϕ′ ∗ (ϕv),

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ + K,

where K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}
.

H1(R) is continuously embedded into Dom(L). However, it is not
equivalent to Dom(L) because ϕ′ ∈ Dom(L) but ϕ′ /∈ H1(R).
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Spectrum of a linear operator

Let A be a linear operator on a Banach space X with Dom(A) ⊂ X.
The complex plane C is decomposed into the resolvent set ρ(A) and
the spectrum σ(A) = C \ ρ(A), the latter consists of the following
three disjoint sets:

1. the point spectrum

σp(A) = {λ : Ker(A− λI) 6= {0}},

2. the residual spectrum

σr(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) 6= X},

3. the continuous spectrum

σc(A) = {λ : Ker(A− λI) = {0}, Ran(A− λI) = X,

(A− λI)−1 : X → X is unbounded}.
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Spectrum of a linear operator

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

⇒ the peakon is linearly unstable in Dom(L) for every b 6= 5
2 .
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Spectrum of a linear operator

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

b = 2: ‖v(t, ·)‖L2 grows due to point spectrum

b = 3: ‖v(t, ·)‖L2 grows due to residual spectrum
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Spectrum of a linear operator

Theorem (Lafortune–P, SIMA 54 (2022) 4572–4590)

The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
. σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

. σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

. σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5

2 − b
∣∣

. λ = 0 is the embedded eigenvalue for every b.

Instability in the vertical strip holds for peaked waves in the reduced
Ostrovsky equation ut + uux = ∂−1

x u [Geyer & P. (2020)] and for Euler
flows [Shvidkoy & Latushkin (2003)]
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Proofs of spectral instability

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.
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Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Theorem (Geyer & P (2020))

If σp(L) ∩ ρ(L0) and σp(L0) ∩ ρ(L) are empty, then σ(L) = σ(L0).

Theorem (Bühler & Salamon (2018))

If σp(L) is empty, then σr(L) = σp(L∗).
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Proofs of spectral instability

Recall that L = L0 + K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{

v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)
}

and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

Truncated equation L0v = λv is the first-order equation

(1− ϕ)
dv
dx

+ (2− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+eλx(1− e−x)2+λ−b, x > 0,
v−eλx(1− ex)2−λ−b, x < 0,

The solution v ∈ L2(R) if v+ = 0 and 0 < Re(λ) < 5
2 − b.
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Section 5

Stability of smooth solitary waves
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Existence of smooth solitary waves: b > 1

Smooth traveling waves of the form u(x, t) = φ(x− ct) satisfy

−(c− φ)(φ′′′ − φ′) + bφ′(φ′′ − φ) = 0.

After multiplication by (c− φ)b−1, the equation can be integrated into

−(c− φ)b(φ′′ − φ) = a, a ∈ R.

Further integration gives

1
2

(b− 1)[(φ′)2 − φ2] +
a

(c− φ)b−1 = g, g ∈ R.

Smooth waves with c > 0 exist if φ < c.

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 25 / 34



Existence of smooth solitary waves: b > 1

Smooth traveling waves of the form u(x, t) = φ(x− ct) satisfy

−(c− φ)(φ′′′ − φ′) + bφ′(φ′′ − φ) = 0.

After multiplication by (c− φ)b−1, the equation can be integrated into

−(c− φ)b(φ′′ − φ) = a, a ∈ R.

Further integration gives

1
2

(b− 1)[(φ′)2 − φ2] +
a

(c− φ)b−1 = g, g ∈ R.

Smooth waves with c > 0 exist if φ < c.

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 25 / 34



Existence of smooth solitary waves: b > 1

Newton’s particle with mass m = b− 1 and potential energy U(φ)

1
2

(b− 1)(φ′)2 + U(φ) = g, U(φ) = −1
2

(b− 1)φ2 +
a

(c− φ)b−1 .

There exists a0 > 0 such that for every a ∈ (0, a0) two critical points
of U(φ) exists with ordering 0 < φ1 < φ2 < c.
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Properties of smooth solitary waves: b > 1

For every c > 0, the family of solitary waves has one additional
parameter, which can be chosen as k ∈ (0, k0) such that

φ(x)→ k as |x| → ∞ exponentially.

Moreover, 0 < φ < c and

µ = φ− φ′′ = k
(c− k)b

(c− φ)b > 0.
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Hamiltonian structure of the b-CH equations

Recall that the b-Camassa–Holm equation with b 6= 1

ut − utxx + (b + 1) u ux = b uxuxx + u uxxx

has conserved quantities

E(m) =

∫
m

1
b dx, F(m) =

∫ (
m2

x

b2m2 + 1
)

m−
1
b dx,

where m = u− uxx.

The conserved quantities can be redefined as

Ê(m) =

∫
R

[
m

1
b − k

1
b

]
dx, F̂(m) =

∫
R

[(
m2

x

b2m2 + 1
)

m−
1
b − k−

1
b

]
dx

in the set of functions with fixed k > 0:

Xk =
{

m− k ∈ H1(R) : m(x) > 0, x ∈ R
}
.
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Stability of smooth solitary waves: b > 1

Let m(t, x) = µ(x− ct) with µ ∈ Xk. We say that the travelling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such that
for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

Theorem (Lafortune–P, Physica D 440 (2022) 133477)

For every c > 0 and k ∈ (0, k0), there exists a unique solitary wave
m(t, x) = µ(x− ct) of the b-CH equation, which is orbitally stable in
Xk if the mapping

k 7→ Q(φ) :=

∫
R

[
b
(

c− k
c− φ

)
−
(

c− k
c− φ

)b

− b + 1

]
dx

is strictly increasing.
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Stability of smooth solitary waves: b > 1

Let m(t, x) = µ(x− ct) with µ ∈ Xk. We say that the travelling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such that
for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

For general b > 1, we confirmed the stability criterioin numerically:
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Stability of smooth solitary waves: b > 1

Let m(t, x) = µ(x− ct) with µ ∈ Xk. We say that the travelling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such that
for every m0 ∈ Xk satisfying ‖m0 − µ‖H1 < δ, there exists a unique
solution m ∈ C0(R,Xk) of the b-CH equation satisfying

inf
x0∈R
‖m(t, ·)− µ(· − x0)‖H1 < ε, t ∈ R.

For b = 2 and b = 3, we proved monotonicity with explicit
computation.

For every b > 1, monotonicity k 7→ Q(φ) was proven in [Long & Liu,

2023] by using the period function for planar ODEs.

Dmitry Pelinovsky, McMaster University Traveling waves in the CH equation 29 / 34



Proof of orbital stability of smooth solitary waves

1. We verify that the solitary wave µ ∈ Xk is a critical point of the
augmented Hamiltonian

Λω1,ω2(m) := M̂(m)− ω1Ê(m)− ω2F̂(m),

for some (ω1, ω2) that depend on (b, c, k).
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Proof of orbital stability of smooth solitary waves

1. We verify that the solitary wave µ ∈ Xk is a critical point of the
augmented Hamiltonian

Λω1,ω2(m) := M̂(m)− ω1Ê(m)− ω2F̂(m),

for some (ω1, ω2) that depend on (b, c, k).

2. Expansion of the augmented Hamiltonian with small m̃ ∈ H1(R)
is

Λω1,ω2(µ+ m̃)− Λω1,ω2(µ) = 〈Lm̃, m̃〉+ ‖m̃‖3
H1 ,

where L is the Sturm–Liouville operator in L2(R) with the dense
domain H2(R). Since Lµ′ = 0 and µ′(x) has only one zero on R,
L admits exactly one simple negative eigenvalue and a simple
zero eigenvalue.
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Proof of orbital stability of smooth solitary waves

3. Since
bÊ(m)− k

1
b−1M̂(m)

is conserved in time, perturbations m̃ can be restricted to the class

〈µ
1
b−1 − k

1
b−1, m̃〉 = 0.
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bÊ(m)− k

1
b−1M̂(m)

is conserved in time, perturbations m̃ can be restricted to the class

〈µ
1
b−1 − k

1
b−1, m̃〉 = 0.

4. L|{v0}⊥ ≥ 0 is coercive in the H1 norm if and only if the mapping

k 7→ Q(φ) :=

∫
R

[
b
(

c− k
c− φ

)
−
(

c− k
c− φ

)b

− b + 1

]
dx

is strictly increasing.
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Section 6

Transverse stability of smooth solitary waves
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2D generalization of the CH equation

The following 2D model was derived for fluids:

(ut − utxx + 3uux − 2uxuxx − uuxxx)x + uyy = 0

[R.M. Chen (2006)] [G. Gui, Y. Liu, W. Luo, Z. Yin (2021)]

In the small-amplitude and long-scale expansion,

u(x, y, t) = k + ε2v(ε(x− 3kt), ε2y, ε3t), ε > 0,

the 2D-CH equation formally reduces to the KP-II equation

vT + 2kvXXX + 3vvX + ∂−1
X vYY = 0.

The line soliton v(X,T) = sech2
(

X−T
2
√

2k

)
is transversely stable in the

KP-II equation. [T. Mizumachi & N. Tzvetkov (2012)] [T. Mizumachi (2015)]
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Two theorems on transverse stability of line solitons

For the 2D-CH equation

(ut − utxx + 3uux − 2uxuxx − uuxxx)x + uyy = 0

we proved the following

. For every ε > 0, the linear stability problem contains a pair of
resonances located in the left half-plane of the complex plane
and no eigenvalues with Re(λ) ≥ 0 near λ = 0.

. For every small ε > 0, the line solitons are linearly stable with
respect to transverse perturbations.

[A. Geyer, Y. Liu, & D.P., Journal de Mathématiques Pures et Appliquées (2024)]
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Summary

I have reviewed traveling waves in the b-CH equation in 1D:

ut − utxx + (b + 1)uux = buxuxx + uuxxx

which models unidirectional small-amplitude shallow water waves.

. Peaked traveling waves are unstable in H1 ∩W1,∞

. LWP only holds in H1 ∩W1,∞.

. For b = 2, perturbations are bounded in H1 and growing in W1,∞.

. Spectral instability of peakons holds for every b.

. Smooth traveling waves are stable in H3 for b > 1
. LWP and GWP hold for perturbations with m = u− u′′ > 0
. Hamiltonian formulation exists for every b > 1
. TW is constrained minimizer of the augmented Hamiltonian.

MANY THANKS FOR YOUR ATTENTION!
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