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�Experimental motivations

� Bose-Einstein condensates in optical lattices

� Light-induced photonic lattices

� Coupled optical waveguides

�Persistence of localized solutions

� Implicit Function Theorem

� Lyapunov–Schmidt reductions

�Stability of localized solutions

� Splitting of zero eigenvalues

� Negative index theory
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Experimental pictures

◦ Discrete solitons

◦ Discrete vortices
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Main Formalism

iu̇n,m + ε
(
un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m

)
+ |un,m|2un,m = 0, (n, m) ∈ Z2

◦ Vector space Ω = l2(Z2, C) for {un,m}(n,m)∈Z2:

(u,w)Ω =
∑

(n,m)∈Z2

ūn,mwn,m

◦ Hamiltonian formulation:

iu̇n,m =
∂H

∂ūn,m
,

where

H =
∑

(n,m)∈Z2

ε|un+1,m − un,m|2 + |un,m+1 − un,m|2 −
1

2
|un,m|4
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◦ Existence problem for time-periodic localized solutions

un,m(t) = φn,mei(1−4ε)t+iθ0, θ0 ∈ R
such that

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
.
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◦ Existence problem for time-periodic localized solutions

un,m(t) = φn,mei(1−4ε)t+iθ0, θ0 ∈ R
such that

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
.

◦ Stability problem for time-periodic localized solutions

un,m(t) = ei(1−4ε)t+iθ0
(
φn,m + an,meλt + b̄n,meλ̄t

)
such that(

1− 2|φn,m|2
)
an,m − φ2

n,mbn,m − ε (an+1,m + an−1,m + an,m+1 + an,m−1) = iλan,m

−φ̄2
n,man,m +

(
1− 2|φn,m|2

)
bn,m − ε (bn+1,m + bn−1,m + bn,m+1 + bn,m−1) = −iλbn,m

where λ ∈ C and (a,b) ∈ Ω× Ω
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◦ Existence problem for time-periodic localized solutions

un,m(t) = φn,mei(1−4ε)t+iθ0, θ0 ∈ R
such that

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
.

◦ Stability problem for time-periodic localized solutions

un,m(t) = ei(1−4ε)t+iθ0
(
φn,m + an,meλt + b̄n,meλ̄t

)
such that(

1− 2|φn,m|2
)
an,m − φ2

n,mbn,m − ε (an+1,m + an−1,m + an,m+1 + an,m−1) = iλan,m

−φ̄2
n,man,m +

(
1− 2|φn,m|2

)
bn,m − ε (bn+1,m + bn−1,m + bn,m+1 + bn,m−1) = −iλbn,m

where λ ∈ C and (a,b) ∈ Ω× Ω

◦ Time-dependent nonlinear dynamics of localized solutions
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Existence problem

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n, m) ∈ S,

0, (n, m) ∈ Z2\S,

Examples of a square discrete contour S
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Existence problem

(1− |φn,m|2)φn,m = ε
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
Limiting solution:

ε = 0 : φ
(0)
n,m =

{
eiθn,m, (n, m) ∈ S,

0, (n, m) ∈ Z2\S,

Examples of a square discrete contour S

What phase configurations θn,m can be continued for ε 6= 0?
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Lyapunov-Schmidt reductions

Proposition: Let N = dim(S) and T be the torus on [0, 2π]N . There
exists a vector-valued function g : T 7→ RN , such that the limiting
solution is continued to ε 6= 0 if and only if θ ∈ T is a root of g(θ, ε) = 0.

◦ The Jacobian of the nonlinear system:

H =

(
1− 2|φn,m|2 −φ2

n,m

−φ̄2
n,m 1− 2|φn,m|2

)
− εδ±1,±1

(
1 0
0 1

)

◦ H is a self-adjoint Fredholm operator of index zero:

dim(ker(H(0)) = N
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).

◦ Let θ∗ be the root of g(1)(θ) = 0 and M1 = Dg(1)(θ∗).
If dim(ker(M1)) = 1, there exists a unique continuation of the limiting
solution for ε 6= 0.
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◦ Analytic functions:

g(θ, ε) =

∞∑
k=1

εkg(k)(θ)

◦ Gauge symmetry:

g(θ∗, ε) = 0 7→ g(θ∗ + θ0p0, ε) = 0,

where p0 = (1, 1, ..., 1).

◦ Let θ∗ be the root of g(1)(θ) = 0 and M1 = Dg(1)(θ∗).
If dim(ker(M1)) = 1, there exists a unique continuation of the limiting
solution for ε 6= 0.

◦ Let θ∗ be a (1 + d)-parameter solution of g(1)(θ) = 0. The limiting

solution can not be continued to ε 6= 0 if g(2)(θ∗) is not orthogonal to
ker(M1).
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First-order reductions : classification of solutions

g
(1)
j (θ) = sin(θj − θj+1) + sin(θj − θj−1) = 0, 1 ≤ j ≤ 4M
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First-order reductions : classification of solutions

g
(1)
j (θ) = sin(θj − θj+1) + sin(θj − θj−1) = 0, 1 ≤ j ≤ 4M

◦ (1) Discrete solitons

θj = {0, π}, 1 ≤ j ≤ 4M

◦ (2) Symmetric vortices of charge L

θj =
πL(j − 1)

2M
, 1 ≤ j ≤ 4M,

◦ (3) One-parameter asymmetric vortices of charge L = M

θj+1 − θj =

{
θ

π − θ

}
mod(2π), 1 ≤ j ≤ 4M

where

◦M is number of nodes at each side of the square contour

◦ L is the vortex charge (winding number)
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)

◦M1 has a simple zero eigenvalue if all aj 6= 0 and N∏
i=1

ai

  N∑
i=1

1

ai

 6= 0.

Family (1) persists for ε 6= 0
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First-order reductions : persistence of solutions

M1 =

 a1 + a2 −a2 0 ... a1

−a2 a2 + a3 −a3 ... 0
... ... ... ... ...

−a1 0 0 ... aN−1 + aN

 , aj = cos(θj+1 − θj)

◦M1 has a simple zero eigenvalue if all aj 6= 0 and N∏
i=1

ai

  N∑
i=1

1

ai

 6= 0.

Family (1) persists for ε 6= 0

◦ If all aj = a = cos( πL
2M ), eigenvalues of M1 are:

λn = 4a sin2 πn

4M
, 1 ≤ n ≤ 4M

Family (2) persists for ε 6= 0 and L 6= M
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Second-order reductions : termination of solutions

◦ If all aj = ±a = cos θ, there are 2M − 1 negative eigenvalues of
M1, 2 zero eigenvalues and 2M − 1 positive eigenvalues of M1.

◦ Persistence of family (3) depends on g(2)(θ)

g
(2)
j =

1

2
sin(θj+1 − θj)

[
cos(θj − θj+1) + cos(θj+2 − θj+1)

]
+

1

2
sin(θj−1 − θj)

[
cos(θj − θj−1) + cos(θj−2 − θj−1)

]
◦ If ker(M1) = {p0,p1}, then (g(2),p1) 6= 0.

◦ Family (3) terminates except for one symmetric configuration:

θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ,
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Higher-order reductions : termination of the last family

◦ Symbolic software algorithm is used on a squared domain of N0-by-
N0 lattice nodes, where N0 = 2K + 2M + 1, and K is the order of
the Lyapunov-Schmidt reductions.
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Higher-order reductions : termination of the last family

◦ Symbolic software algorithm is used on a squared domain of N0-by-
N0 lattice nodes, where N0 = 2K + 2M + 1, and K is the order of
the Lyapunov-Schmidt reductions.

◦ Super-symmetric family (3) has g(k)(θ) = 0 for k = 1, 2, 3, 4, 5 but

g(6)(θ) 6= 0, unless θj+1 − θj = π
2 .

◦Moreover, (g(6),p1) 6= 0.
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Higher-order reductions : termination of the last family

◦ Symbolic software algorithm is used on a squared domain of N0-by-
N0 lattice nodes, where N0 = 2K + 2M + 1, and K is the order of
the Lyapunov-Schmidt reductions.

◦ Super-symmetric family (3) has g(k)(θ) = 0 for k = 1, 2, 3, 4, 5 but

g(6)(θ) 6= 0, unless θj+1 − θj = π
2 .

◦Moreover, (g(6),p1) 6= 0.

◦ All asymmetric vortices (3) terminate

12



Zero eigenvalues of the stability problem

◦Matrix-vector Hamiltonian form of the stability problem:

Hψ = iλσψ,
where

◦ ψ ∈ l2(Z2, C2)

◦ H is the Jacobian (energy) operator

◦ σ is the diagonal matrix of (1,−1)
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Zero eigenvalues of the stability problem

◦Matrix-vector Hamiltonian form of the stability problem:

Hψ = iλσψ,
where

◦ ψ ∈ l2(Z2, C2)

◦ H is the Jacobian (energy) operator

◦ σ is the diagonal matrix of (1,−1)

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞
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Zero eigenvalues of the stability problem

◦Matrix-vector Hamiltonian form of the stability problem:

Hψ = iλσψ,
where

◦ ψ ∈ l2(Z2, C2)

◦ H is the Jacobian (energy) operator

◦ σ is the diagonal matrix of (1,−1)

Eigenvalues of H at ε = 0:

◦ γ = −2 of multiplicity N

◦ γ = 0 of multiplicity N

◦ γ = +1 of multiplicity ∞

Eigenvalues of JH at ε = 0:

◦ λ = 0 of multiplicity 2N

◦ λ = +i of multiplicity ∞
◦ λ = −i of multiplicity ∞

How do zero eigenvalues split?
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c

◦ Second-order splitting of zero eigenvalues of H:

M1 = 0, M2c = γc

◦ Second-order splitting of zero eigenvalues of JH:

M1 = 0, M2c =
λ2

2
c + λL2c

where MT
2 = M2 and LT

2 = −L2.
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Stability of solutions in Lyapunov-Schmidt reductions

◦ First-order splitting of zero eigenvalues of H:

M1c = γc

◦ First-order splitting of zero eigenvalues of JH:

M1c =
λ2

2
c

◦ Second-order splitting of zero eigenvalues of H:

M1 = 0, M2c = γc

◦ Second-order splitting of zero eigenvalues of JH:

M1 = 0, M2c =
λ2

2
c + λL2c

where MT
2 = M2 and LT

2 = −L2.

◦ Six-order splitting : symbolic software algorithm
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Numerical analysis: symmetric vortex with L = 1 and M = 2

M1c = γc : n(M1) = 0, z(M1) = 1, p(M1) = 7
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Numerical analysis: symmetric vortex with L = 3 and M = 2

M1c = γc : n(M1) = 7, z(M1) = 1, p(M1) = 0
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Numerical analysis: symmetric vortex with L = M = 1

M2c = γc : n(M2) = 0, z(M2) = 2, p(M2) = 2
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Numerical analysis: symmetric vortex with L = M = 2

M2c = γc : n(M2) = 1, z(M2) = 2, p(M2) = 5
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Summary:

• Systematic classification of discrete vortices

•Rigorous study of their existence and stability

•Predictions of stable and unstable vortices

19


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

