Persistence and stability of discrete vortices

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

$$
\begin{aligned}
& i \dot{u}_{n, m}+\epsilon\left(u_{n+1, m}+u_{n-1, m}+u_{n, m+1}+u_{n, m-1}-4 u_{n, m}\right) \\
&+\left|u_{n, m}\right|^{2} u_{n, m}=0, \\
&(n, m) \in \mathbb{Z}^{2}
\end{aligned}
$$

Joint work with P. Kevrekidis (University of Massachusetts)
"Discrete and Continuous Models in Nonlinear Optics" SIAM Conference on Dynamical Systems, May 26, 2005

Experimental motivations

\square Bose-Einstein condensates in optical lattices
\square Light-induced photonic lattices
\square Coupled optical waveguides
\square Persistence of localized solutions
\square Implicit Function Theorem
\square Lyapunov-Schmidt reductions

Stability of localized solutions

\square Splitting of zero eigenvalues
\square Negative index theory

- Discrete solitons

- Discrete vortices

$$
\begin{aligned}
i \dot{u}_{n, m} & +\epsilon\left(u_{n+1, m}+u_{n-1, m}+u_{n, m+1}+u_{n, m-1}-4 u_{n, m}\right) \\
& +\left|u_{n, m}\right|^{2} u_{n, m}=0, \quad(n, m) \in \mathbb{Z}^{2}
\end{aligned}
$$

- Vector space $\Omega=l^{2}\left(\mathbb{Z}^{2}, \mathbb{C}\right)$ for $\left\{u_{n, m}\right\}_{(n, m) \in \mathbb{Z}^{2}}$:

$$
(\mathbf{u}, \mathbf{w})_{\Omega}=\sum_{(n, m) \in \mathbb{Z}^{2}} \bar{u}_{n, m} w_{n, m}
$$

- Hamiltonian formulation:

$$
i \dot{u}_{n, m}=\frac{\partial H}{\partial \bar{u}_{n, m}},
$$

where

$$
H=\sum_{(n, m) \in \mathbb{Z}^{2}} \epsilon\left|u_{n+1, m}-u_{n, m}\right|^{2}+\left|u_{n, m+1}-u_{n, m}\right|^{2}-\frac{1}{2}\left|u_{n, m}\right|^{4}
$$

- Existence problem for time-periodic localized solutions

$$
u_{n, m}(t)=\phi_{n, m} e^{i(1-4 \epsilon) t+i \theta_{0}}, \quad \theta_{0} \in \mathbb{R}
$$

such that

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right) .
$$

- Existence problem for time-periodic localized solutions

$$
u_{n, m}(t)=\phi_{n, m} e^{i(1-4 \epsilon) t+i \theta_{0}}, \quad \theta_{0} \in \mathbb{R}
$$

such that

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right) .
$$

- Stability problem for time-periodic localized solutions

$$
u_{n, m}(t)=e^{i(1-4 \epsilon) t+i \theta_{0}}\left(\phi_{n, m}+a_{n, m} e^{\lambda t}+\bar{b}_{n, m} e^{\bar{\lambda} t}\right)
$$

such that

$$
\begin{aligned}
\left(1-2\left|\phi_{n, m}\right|^{2}\right) a_{n, m}-\phi_{n, m}^{2} b_{n, m}-\epsilon\left(a_{n+1, m}+a_{n-1, m}+a_{n, m+1}+a_{n, m-1}\right) & =i \lambda a_{n, m} \\
-\bar{\phi}_{n, m}^{2} a_{n, m}+\left(1-2\left|\phi_{n, m}\right|^{2}\right) b_{n, m}-\epsilon\left(b_{n+1, m}+b_{n-1, m}+b_{n, m+1}+b_{n, m-1}\right) & =-i \lambda b_{n, m}
\end{aligned}
$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{a}, \mathbf{b}) \in \Omega \times \Omega$

- Existence problem for time-periodic localized solutions

$$
u_{n, m}(t)=\phi_{n, m} e^{i(1-4 \epsilon) t+i \theta_{0}}, \quad \theta_{0} \in \mathbb{R}
$$

such that

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right)
$$

- Stability problem for time-periodic localized solutions

$$
u_{n, m}(t)=e^{i(1-4 \epsilon) t+i \theta_{0}}\left(\phi_{n, m}+a_{n, m} e^{\lambda t}+\bar{b}_{n, m} e^{\bar{\lambda} t}\right)
$$

such that

$$
\begin{aligned}
\left(1-2\left|\phi_{n, m}\right|^{2}\right) a_{n, m}-\phi_{n, m}^{2} b_{n, m}-\epsilon\left(a_{n+1, m}+a_{n-1, m}+a_{n, m+1}+a_{n, m-1}\right) & =i \lambda a_{n, m} \\
-\bar{\phi}_{n, m}^{2} a_{n, m}+\left(1-2\left|\phi_{n, m}\right|^{2}\right) b_{n, m}-\epsilon\left(b_{n+1, m}+b_{n-1, m}+b_{n, m+1}+b_{n, m-1}\right) & =-i \lambda b_{n, m}
\end{aligned}
$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{a}, \mathbf{b}) \in \Omega \times \Omega$

- Time-dependent nonlinear dynamics of localized solutions

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right)
$$

Limiting solution:

$$
\epsilon=0: \quad \phi_{n, m}^{(0)}=\left\{\begin{array}{l}
e^{i \theta_{n, m}}, \quad(n, m) \in S, \\
0, \quad(n, m) \in \mathbb{Z}^{2} \backslash S
\end{array}\right.
$$

Examples of a square discrete contour S

$$
\left(1-\left|\phi_{n, m}\right|^{2}\right) \phi_{n, m}=\epsilon\left(\phi_{n+1, m}+\phi_{n-1, m}+\phi_{n, m+1}+\phi_{n, m-1}\right)
$$

Limiting solution:

$$
\epsilon=0: \quad \phi_{n, m}^{(0)}=\left\{\begin{array}{l}
e^{i \theta_{n, m}}, \quad(n, m) \in S, \\
0, \quad(n, m) \in \mathbb{Z}^{2} \backslash S
\end{array}\right.
$$

Examples of a square discrete contour S
What phase configurations $\theta_{n, m}$ can be continued for $\epsilon \neq 0$?

Proposition: Let $N=\operatorname{dim}(S)$ and \mathcal{T} be the torus on $[0,2 \pi]^{N}$. There exists a vector-valued function $\mathbf{g}: \mathcal{T} \mapsto \mathbb{R}^{N}$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\mathbf{0}$.

- The Jacobian of the nonlinear system:

$$
\mathcal{H}=\left(\begin{array}{cc}
1-2\left|\phi_{n, m}\right|^{2} & -\phi_{n, m}^{2} \\
-\bar{\phi}_{n, m}^{2} & 1-2\left|\phi_{n, m}\right|^{2}
\end{array}\right)-\epsilon \delta_{ \pm 1, \pm 1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$-\mathcal{H}$ is a self-adjoint Fredholm operator of index zero:

$$
\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{H}^{(0)}\right)=N\right.
$$

- Analytic functions:

$$
\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\sum_{k=1}^{\infty} \epsilon^{k} \mathbf{g}^{(k)}(\boldsymbol{\theta})
$$

- Analytic functions:

$$
\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\sum_{k=1}^{\infty} \epsilon^{k} \mathbf{g}^{(k)}(\boldsymbol{\theta})
$$

- Gauge symmetry:

$$
\mathbf{g}\left(\boldsymbol{\theta}_{*}, \epsilon\right)=\mathbf{0} \quad \mapsto \quad \mathbf{g}\left(\boldsymbol{\theta}_{*}+\theta_{0} \mathbf{p}_{0}, \epsilon\right)=\mathbf{0}
$$

where $\mathbf{p}_{0}=(1,1, \ldots, 1)$.

- Analytic functions:

$$
\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\sum_{k=1}^{\infty} \epsilon^{k} \mathbf{g}^{(k)}(\boldsymbol{\theta})
$$

- Gauge symmetry:

$$
\mathbf{g}\left(\boldsymbol{\theta}_{*}, \epsilon\right)=\mathbf{0} \quad \mapsto \quad \mathbf{g}\left(\boldsymbol{\theta}_{*}+\theta_{0} \mathbf{p}_{0}, \epsilon\right)=\mathbf{0}
$$

where $\mathbf{p}_{0}=(1,1, \ldots, 1)$.

- Let $\boldsymbol{\theta}_{*}$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta})=\mathbf{0}$ and $\mathcal{M}_{1}=\mathcal{D} \mathbf{g}^{(1)}\left(\boldsymbol{\theta}_{*}\right)$. If $\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{M}_{1}\right)\right)=1$, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.
- Analytic functions:

$$
\mathbf{g}(\boldsymbol{\theta}, \epsilon)=\sum_{k=1}^{\infty} \epsilon^{k} \mathbf{g}^{(k)}(\boldsymbol{\theta})
$$

- Gauge symmetry:

$$
\mathbf{g}\left(\boldsymbol{\theta}_{*}, \epsilon\right)=\mathbf{0} \quad \mapsto \quad \mathbf{g}\left(\boldsymbol{\theta}_{*}+\theta_{0} \mathbf{p}_{0}, \epsilon\right)=\mathbf{0}
$$

where $\mathbf{p}_{0}=(1,1, \ldots, 1)$.

- Let $\boldsymbol{\theta}_{*}$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta})=\mathbf{0}$ and $\mathcal{M}_{1}=\mathcal{D} \mathbf{g}^{(1)}\left(\boldsymbol{\theta}_{*}\right)$. If $\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{M}_{1}\right)\right)=1$, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.
- Let $\boldsymbol{\theta}_{*}$ be a $(1+d)$-parameter solution of $\mathbf{g}^{(1)}(\boldsymbol{\theta})=\mathbf{0}$. The limiting solution can not be continued to $\epsilon \neq 0$ if $\mathbf{g}^{(2)}\left(\boldsymbol{\theta}_{*}\right)$ is not orthogonal to $\operatorname{ker}\left(\mathcal{M}_{1}\right)$.

$$
\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta})=\sin \left(\theta_{j}-\theta_{j+1}\right)+\sin \left(\theta_{j}-\theta_{j-1}\right)=0, \quad 1 \leq j \leq 4 M
$$

$$
\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta})=\sin \left(\theta_{j}-\theta_{j+1}\right)+\sin \left(\theta_{j}-\theta_{j-1}\right)=0, \quad 1 \leq j \leq 4 M
$$

- (1) Discrete solitons

$$
\theta_{j}=\{0, \pi\}, \quad 1 \leq j \leq 4 M
$$

- (2) Symmetric vortices of charge L

$$
\theta_{j}=\frac{\pi L(j-1)}{2 M}, \quad 1 \leq j \leq 4 M
$$

- (3) One-parameter asymmetric vortices of charge $L=M$

$$
\theta_{j+1}-\theta_{j}=\left\{\begin{array}{c}
\theta \\
\pi-\theta
\end{array}\right\} \bmod (2 \pi), \quad 1 \leq j \leq 4 M
$$

where

- M is number of nodes at each side of the square contour
$\circ L$ is the vortex charge (winding number)

$$
\mathcal{M}_{1}=\left(\begin{array}{ccccc}
a_{1}+a_{2} & -a_{2} & 0 & \ldots & a_{1} \\
-a_{2} & a_{2}+a_{3} & -a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
-a_{1} & 0 & 0 & \ldots & a_{N-1}+a_{N}
\end{array}\right), a_{j}=\cos \left(\theta_{j+1}-\theta_{j}\right)
$$

$$
\mathcal{M}_{1}=\left(\begin{array}{ccccc}
a_{1}+a_{2} & -a_{2} & 0 & \ldots & a_{1} \\
-a_{2} & a_{2}+a_{3} & -a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
-a_{1} & 0 & 0 & \ldots & a_{N-1}+a_{N}
\end{array}\right), a_{j}=\cos \left(\theta_{j+1}-\theta_{j}\right)
$$

- \mathcal{M}_{1} has a simple zero eigenvalue if all $a_{j} \neq 0$ and

$$
\left(\prod_{i=1}^{N} a_{i}\right)\left(\sum_{i=1}^{N} \frac{1}{a_{i}}\right) \neq 0
$$

Family (1) persists for $\epsilon \neq 0$

$$
\mathcal{M}_{1}=\left(\begin{array}{ccccc}
a_{1}+a_{2} & -a_{2} & 0 & \ldots & a_{1} \\
-a_{2} & a_{2}+a_{3} & -a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
-a_{1} & 0 & 0 & \ldots & a_{N-1}+a_{N}
\end{array}\right), \quad a_{j}=\cos \left(\theta_{j+1}-\theta_{j}\right)
$$

- \mathcal{M}_{1} has a simple zero eigenvalue if all $a_{j} \neq 0$ and

$$
\left(\prod_{i=1}^{N} a_{i}\right)\left(\sum_{i=1}^{N} \frac{1}{a_{i}}\right) \neq 0
$$

Family (1) persists for $\epsilon \neq 0$

- If all $a_{j}=a=\cos \left(\frac{\pi L}{2 M}\right)$, eigenvalues of \mathcal{M}_{1} are:

$$
\lambda_{n}=4 a \sin ^{2} \frac{\pi n}{4 M}, \quad 1 \leq n \leq 4 M
$$

Family (2) persists for $\epsilon \neq 0$ and $L \neq M$

- If all $a_{j}= \pm a=\cos \theta$, there are $2 M-1$ negative eigenvalues of $\mathcal{M}_{1}, 2$ zero eigenvalues and $2 M-1$ positive eigenvalues of \mathcal{M}_{1}.
- Persistence of family (3) depends on $\mathbf{g}^{(2)}(\boldsymbol{\theta})$

$$
\begin{aligned}
& \mathbf{g}_{j}^{(2)}=\frac{1}{2} \sin \left(\theta_{j+1}-\theta_{j}\right)\left[\cos \left(\theta_{j}-\theta_{j+1}\right)+\cos \left(\theta_{j+2}-\theta_{j+1}\right)\right] \\
& \quad+\frac{1}{2} \sin \left(\theta_{j-1}-\theta_{j}\right)\left[\cos \left(\theta_{j}-\theta_{j-1}\right)+\cos \left(\theta_{j-2}-\theta_{j-1}\right)\right]
\end{aligned}
$$

- If $\operatorname{ker}\left(\mathcal{M}_{1}\right)=\left\{\mathbf{p}_{0}, \mathbf{p}_{1}\right\}$, then $\left(\mathbf{g}^{(2)}, \mathbf{p}_{1}\right) \neq 0$.
- Family (3) terminates except for one symmetric configuration:

$$
\theta_{1}=0, \quad \theta_{2}=\theta, \quad \theta_{3}=\pi, \quad \theta_{4}=\pi+\theta,
$$

- Symbolic software algorithm is used on a squared domain of N_{0}-byN_{0} lattice nodes, where $N_{0}=2 K+2 M+1$, and K is the order of the Lyapunov-Schmidt reductions.

- Symbolic software algorithm is used on a squared domain of N_{0}-byN_{0} lattice nodes, where $N_{0}=2 K+2 M+1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta})=0$ for $k=1,2,3,4,5$ but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1}-\theta_{j}=\frac{\pi}{2}$.
- Moreover, $\left(\mathbf{g}^{(6)}, \mathbf{p}_{1}\right) \neq 0$.

- Symbolic software algorithm is used on a squared domain of N_{0}-byN_{0} lattice nodes, where $N_{0}=2 K+2 M+1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta})=0$ for $k=1,2,3,4,5$ but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1}-\theta_{j}=\frac{\pi}{2}$.
- Moreover, $\left(\mathbf{g}^{(6)}, \mathbf{p}_{1}\right) \neq 0$.
- All asymmetric vortices (3) terminate
- Matrix-vector Hamiltonian form of the stability problem:

$$
\mathcal{H} \boldsymbol{\psi}=i \lambda \sigma \boldsymbol{\psi}
$$

where

- $\boldsymbol{\psi} \in l^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2}\right)$
- \mathcal{H} is the Jacobian (energy) operator
$\circ \sigma$ is the diagonal matrix of $(1,-1)$
- Matrix-vector Hamiltonian form of the stability problem:

$$
\mathcal{H} \boldsymbol{\psi}=i \lambda \sigma \psi
$$

where

- $\boldsymbol{\psi} \in l^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2}\right)$
- \mathcal{H} is the Jacobian (energy) operator
$\circ \sigma$ is the diagonal matrix of $(1,-1)$

Eigenvalues of \mathcal{H} at $\epsilon=0$:

- $\gamma=-2$ of multiplicity N
- $\gamma=0$ of multiplicity N
- $\gamma=+1$ of multiplicity ∞

Eigenvalues of $\mathcal{J H}$ at $\epsilon=0$:

- $\lambda=0$ of multiplicity $2 N$
- $\lambda=+i$ of multiplicity ∞
- $\lambda=-i$ of multiplicity ∞
- Matrix-vector Hamiltonian form of the stability problem:

$$
\mathcal{H} \boldsymbol{\psi}=i \lambda \sigma \boldsymbol{\psi}
$$

where

- $\boldsymbol{\psi} \in l^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2}\right)$
- \mathcal{H} is the Jacobian (energy) operator
$\circ \sigma$ is the diagonal matrix of $(1,-1)$

Eigenvalues of \mathcal{H} at $\epsilon=0$:

- $\gamma=-2$ of multiplicity N
- $\gamma=0$ of multiplicity N
- $\gamma=+1$ of multiplicity ∞

Eigenvalues of $\mathcal{J H}$ at $\epsilon=0$:

- $\lambda=0$ of multiplicity $2 N$
- $\lambda=+i$ of multiplicity ∞
- $\lambda=-i$ of multiplicity ∞

How do zero eigenvalues split?

- First-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}
$$

- First-order splitting of zero eigenvalues of $\mathcal{J H}$:

$$
\mathcal{M}_{1} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}
$$

- First-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}
$$

- First-order splitting of zero eigenvalues of $\mathcal{J H}$:

$$
\mathcal{M}_{1} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of $\mathcal{J H}$:

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}+\lambda \mathcal{L}_{2} \mathbf{c}
$$

where $M_{2}^{T}=M_{2}$ and $L_{2}^{T}=-L_{2}$.

- First-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}
$$

- First-order splitting of zero eigenvalues of $\mathcal{J H}$:

$$
\mathcal{M}_{1} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of \mathcal{H} :

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}
$$

- Second-order splitting of zero eigenvalues of $\mathcal{J H}$:

$$
\mathcal{M}_{1}=0, \quad \mathcal{M}_{2} \mathbf{c}=\frac{\lambda^{2}}{2} \mathbf{c}+\lambda \mathcal{L}_{2} \mathbf{c}
$$

where $M_{2}^{T}=M_{2}$ and $L_{2}^{T}=-L_{2}$.

- Six-order splitting : symbolic software algorithm

$\mathcal{M}_{1} \mathbf{c}=\gamma \mathbf{c}: \quad n\left(\mathcal{M}_{1}\right)=0, z\left(\mathcal{M}_{1}\right)=1, p\left(\mathcal{M}_{1}\right)=7$

$\mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}: \quad n\left(\mathcal{M}_{2}\right)=0, z\left(\mathcal{M}_{2}\right)=2, p\left(\mathcal{M}_{2}\right)=2$

$\mathcal{M}_{2} \mathbf{c}=\gamma \mathbf{c}: \quad n\left(\mathcal{M}_{2}\right)=1, z\left(\mathcal{M}_{2}\right)=2, p\left(\mathcal{M}_{2}\right)=5$
- Systematic classification of discrete vortices
- Rigorous study of their existence and stability
- Predictions of stable and unstable vortices

contour S_{M}	vortex of charge L	linearized energy H	stable and unstable eigenvalues
$M=1$	symmetric $L=1$	$n(H)=5, p(H)=2$	$N_{\mathrm{r}}=0, N_{\mathrm{i}}^{+}=1, N_{\mathrm{i}}^{-}=2, N_{\mathrm{c}}=0$
$M=2$	symmetric $L=1$	$n(H)=8, p(H)=7$	$N_{\mathrm{r}}=1, N_{\mathrm{i}}^{+}=0, N_{\mathrm{i}}^{-}=0, N_{\mathrm{c}}=3$
$M=2$	symmetric $L=2$	$n(H)=10, p(H)=5$	$N_{\mathrm{r}}=1, N_{\mathrm{i}}^{+}=2, N_{\mathrm{i}}^{-}=4, N_{\mathrm{c}}=0$
$M=2$	symmetric $L=3$	$n(H)=15, p(H)=0$	$N_{\mathrm{r}}=0, N_{\mathrm{i}}^{+}=0, N_{\mathrm{i}}^{-}=7, N_{\mathrm{c}}=0$
$M=2$	asymmetric $L=1$	$n(H)=9, p(H)=6$	$N_{\mathrm{r}}=6, N_{\mathrm{i}}^{+}=0, N_{\mathrm{i}}^{-}=1, N_{\mathrm{c}}=0$
$M=2$	asymmetric $L=3$	$n(H)=14, p(H)=1$	$N_{\mathrm{r}}=1, N_{\mathrm{i}}^{+}=0, N_{\mathrm{i}}^{-}=6, N_{\mathrm{c}}=0$

