Persistence and stability of discrete vortices Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

$$i\dot{u}_{n,m} + \epsilon \left(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1} - 4u_{n,m} \right) + |u_{n,m}|^2 u_{n,m} = 0, \qquad (n,m) \in \mathbb{Z}^2$$

Joint work with P. Kevrekidis (University of Massachusetts)

> "Discrete and Continuous Models in Nonlinear Optics" SIAM Conference on Dynamical Systems, May 26, 2005

Experimental motivations

Bose-Einstein condensates in optical lattices
Light-induced photonic lattices
Coupled optical waveguides

Persistence of localized solutions Implicit Function Theorem Lyapunov–Schmidt reductions

Stability of localized solutions

- \Box Splitting of zero eigenvalues
- \Box Negative index theory

Experimental pictures

• Discrete solitons

• Discrete vortices

$$i\dot{u}_{n,m} + \epsilon \left(u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1} - 4u_{n,m} \right) + |u_{n,m}|^2 u_{n,m} = 0, \qquad (n,m) \in \mathbb{Z}^2$$

• Vector space
$$\Omega = l^2(\mathbb{Z}^2, \mathbb{C})$$
 for $\{u_{n,m}\}_{(n,m)\in\mathbb{Z}^2}$:
 $(\mathbf{u}, \mathbf{w})_{\Omega} = \sum_{(n,m)\in\mathbb{Z}^2} \bar{u}_{n,m} w_{n,m}$

• Hamiltonian formulation:

$$i\dot{u}_{n,m} = \frac{\partial H}{\partial \bar{u}_{n,m}},$$

where

$$H = \sum_{(n,m)\in\mathbb{Z}^2} \epsilon |u_{n+1,m} - u_{n,m}|^2 + |u_{n,m+1} - u_{n,m}|^2 - \frac{1}{2}|u_{n,m}|^4$$

• Existence problem for time-periodic localized solutions

$$u_{n,m}(t) = \phi_{n,m} e^{i(1-4\epsilon)t+i\theta_0}, \qquad \theta_0 \in \mathbb{R}$$

such that

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

• Existence problem for time-periodic localized solutions

$$u_{n,m}(t) = \phi_{n,m} e^{i(1-4\epsilon)t+i\theta_0}, \qquad \theta_0 \in \mathbb{R}$$

such that

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

• Stability problem for time-periodic localized solutions

$$u_{n,m}(t) = e^{i(1-4\epsilon)t + i\theta_0} \left(\phi_{n,m} + a_{n,m}e^{\lambda t} + \bar{b}_{n,m}e^{\bar{\lambda}t}\right)$$

such that

$$(1 - 2|\phi_{n,m}|^2) a_{n,m} - \phi_{n,m}^2 b_{n,m} - \epsilon (a_{n+1,m} + a_{n-1,m} + a_{n,m+1} + a_{n,m-1}) = i\lambda a_{n,m} - \bar{\phi}_{n,m}^2 a_{n,m} + (1 - 2|\phi_{n,m}|^2) b_{n,m} - \epsilon (b_{n+1,m} + b_{n-1,m} + b_{n,m+1} + b_{n,m-1}) = -i\lambda b_{n,m}$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{a}, \mathbf{b}) \in \Omega \times \Omega$

• Existence problem for time-periodic localized solutions

$$u_{n,m}(t) = \phi_{n,m} e^{i(1-4\epsilon)t + i\theta_0}, \qquad \theta_0 \in \mathbb{R}$$

such that

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon \left(\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1}\right)$$

• Stability problem for time-periodic localized solutions

$$u_{n,m}(t) = e^{i(1-4\epsilon)t + i\theta_0} \left(\phi_{n,m} + a_{n,m}e^{\lambda t} + \bar{b}_{n,m}e^{\bar{\lambda}t}\right)$$

such that

$$(1 - 2|\phi_{n,m}|^2) a_{n,m} - \phi_{n,m}^2 b_{n,m} - \epsilon (a_{n+1,m} + a_{n-1,m} + a_{n,m+1} + a_{n,m-1}) = i\lambda a_{n,m} - \bar{\phi}_{n,m}^2 a_{n,m} + (1 - 2|\phi_{n,m}|^2) b_{n,m} - \epsilon (b_{n+1,m} + b_{n-1,m} + b_{n,m+1} + b_{n,m-1}) = -i\lambda b_{n,m}$$

where $\lambda \in \mathbb{C}$ and $(\mathbf{a}, \mathbf{b}) \in \Omega \times \Omega$

• Time-dependent nonlinear dynamics of localized solutions

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon (\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1})$$

Limiting solution:

$$\epsilon = 0: \quad \phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$$

Examples of a square discrete contour S

$$(1 - |\phi_{n,m}|^2)\phi_{n,m} = \epsilon (\phi_{n+1,m} + \phi_{n-1,m} + \phi_{n,m+1} + \phi_{n,m-1})$$

Limiting solution:

$$\epsilon = 0: \quad \phi_{n,m}^{(0)} = \begin{cases} e^{i\theta_{n,m}}, & (n,m) \in S, \\ 0, & (n,m) \in \mathbb{Z}^2 \backslash S, \end{cases}$$

Examples of a square discrete contour S

What phase configurations $\theta_{n,m}$ can be continued for $\epsilon \neq 0$?

Proposition: Let $N = \dim(S)$ and \mathcal{T} be the torus on $[0, 2\pi]^N$. There exists a vector-valued function $\mathbf{g} : \mathcal{T} \mapsto \mathbb{R}^N$, such that the limiting solution is continued to $\epsilon \neq 0$ if and only if $\boldsymbol{\theta} \in \mathcal{T}$ is a root of $\mathbf{g}(\boldsymbol{\theta}, \epsilon) = \mathbf{0}$.

• The Jacobian of the nonlinear system:

$$\mathcal{H} = \begin{pmatrix} 1 - 2|\phi_{n,m}|^2 & -\phi_{n,m}^2 \\ -\bar{\phi}_{n,m}^2 & 1 - 2|\phi_{n,m}|^2 \end{pmatrix} - \epsilon \delta_{\pm 1,\pm 1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• \mathcal{H} is a self-adjoint Fredholm operator of index zero: $\dim(\ker(\mathcal{H}^{(0)}) = N$

$$\mathbf{g}(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = \sum_{k=1}^{\infty} \boldsymbol{\epsilon}^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

$$\mathbf{g}(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = \sum_{k=1}^{\infty} \boldsymbol{\epsilon}^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \boldsymbol{\epsilon}) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \boldsymbol{\epsilon}) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

$$\mathbf{g}(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = \sum_{k=1}^{\infty} \boldsymbol{\epsilon}^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \epsilon) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

• Let $\boldsymbol{\theta}_*$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathcal{M}_1 = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}_*)$. If dim(ker(\mathcal{M}_1)) = 1, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.

$$\mathbf{g}(\boldsymbol{\theta}, \boldsymbol{\epsilon}) = \sum_{k=1}^{\infty} \boldsymbol{\epsilon}^k \mathbf{g}^{(k)}(\boldsymbol{\theta})$$

• Gauge symmetry:

$$\mathbf{g}(\boldsymbol{\theta}_*, \epsilon) = \mathbf{0} \quad \mapsto \quad \mathbf{g}(\boldsymbol{\theta}_* + \theta_0 \mathbf{p}_0, \epsilon) = \mathbf{0},$$

where $\mathbf{p}_0 = (1, 1, ..., 1)$.

- Let $\boldsymbol{\theta}_*$ be the root of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$ and $\mathcal{M}_1 = \mathcal{D}\mathbf{g}^{(1)}(\boldsymbol{\theta}_*)$. If dim(ker(\mathcal{M}_1)) = 1, there exists a unique continuation of the limiting solution for $\epsilon \neq 0$.
- Let $\boldsymbol{\theta}_*$ be a (1 + d)-parameter solution of $\mathbf{g}^{(1)}(\boldsymbol{\theta}) = \mathbf{0}$. The limiting solution can not be continued to $\epsilon \neq 0$ if $\mathbf{g}^{(2)}(\boldsymbol{\theta}_*)$ is not orthogonal to $\ker(\mathcal{M}_1)$.

First-order reductions : classification of solutions

$$\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta}) = \sin(\theta_{j} - \theta_{j+1}) + \sin(\theta_{j} - \theta_{j-1}) = 0, \ 1 \le j \le 4M$$

First-order reductions : classification of solutions

$$\mathbf{g}_{j}^{(1)}(\boldsymbol{\theta}) = \sin(\theta_{j} - \theta_{j+1}) + \sin(\theta_{j} - \theta_{j-1}) = 0, \ 1 \le j \le 4M$$

 \circ (1) Discrete solitons

$$\theta_j = \{0, \pi\}, \qquad 1 \le j \le 4M$$

 \circ (2) Symmetric vortices of charge L

$$\theta_j = \frac{\pi L(j-1)}{2M}, \qquad 1 \le j \le 4M,$$

• (3) One-parameter asymmetric vortices of charge L = M

$$\theta_{j+1} - \theta_j = \left\{ \begin{array}{c} \theta \\ \pi - \theta \end{array} \right\} \mod(2\pi), \quad 1 \le j \le 4M$$

where

M is number of nodes at each side of the square contour *L* is the vortex charge (winding number)

First-order reductions : persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

First-order reductions : persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

• \mathcal{M}_1 has a simple zero eigenvalue if all $a_j \neq 0$ and

$$\left(\prod_{i=1}^{N} a_i\right) \left(\sum_{i=1}^{N} \frac{1}{a_i}\right) \neq 0.$$

Family (1) persists for $\epsilon \neq 0$

First-order reductions : persistence of solutions

$$\mathcal{M}_{1} = \begin{pmatrix} a_{1} + a_{2} & -a_{2} & 0 & \dots & a_{1} \\ -a_{2} & a_{2} + a_{3} & -a_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ -a_{1} & 0 & 0 & \dots & a_{N-1} + a_{N} \end{pmatrix}, \quad a_{j} = \cos(\theta_{j+1} - \theta_{j})$$

• \mathcal{M}_1 has a simple zero eigenvalue if all $a_j \neq 0$ and

$$\left(\prod_{i=1}^{N} a_i\right) \left(\sum_{i=1}^{N} \frac{1}{a_i}\right) \neq 0.$$

Family (1) persists for $\epsilon \neq 0$

• If all
$$a_j = a = \cos(\frac{\pi L}{2M})$$
, eigenvalues of \mathcal{M}_1 are:
 $\lambda_n = 4a \sin^2 \frac{\pi n}{4M}, \quad 1 \le n \le 4M$
Family (2) persists for $\epsilon \ne 0$ and $L \ne M$

Second-order reductions : termination of solutions

- If all $a_j = \pm a = \cos \theta$, there are 2M 1 negative eigenvalues of \mathcal{M}_1 , 2 zero eigenvalues and 2M 1 positive eigenvalues of \mathcal{M}_1 .
- Persistence of family (3) depends on $\mathbf{g}^{(2)}(\boldsymbol{\theta})$ $\mathbf{g}_{j}^{(2)} = \frac{1}{2}\sin(\theta_{j+1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j+1}) + \cos(\theta_{j+2} - \theta_{j+1})\right]$ $+ \frac{1}{2}\sin(\theta_{j-1} - \theta_{j})\left[\cos(\theta_{j} - \theta_{j-1}) + \cos(\theta_{j-2} - \theta_{j-1})\right]$
- If $\ker(\mathcal{M}_1) = \{\mathbf{p}_0, \mathbf{p}_1\}$, then $(\mathbf{g}^{(2)}, \mathbf{p}_1) \neq 0$.

• Family (3) terminates except for one symmetric configuration:

$$\theta_1 = 0, \quad \theta_2 = \theta, \qquad \theta_3 = \pi, \quad \theta_4 = \pi + \theta,$$

Higher-order reductions : termination of the last family

• Symbolic software algorithm is used on a squared domain of N_0 -by- N_0 lattice nodes, where $N_0 = 2K + 2M + 1$, and K is the order of the Lyapunov-Schmidt reductions.

Higher-order reductions : termination of the last family

- Symbolic software algorithm is used on a squared domain of N_0 -by- N_0 lattice nodes, where $N_0 = 2K + 2M + 1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta}) = 0$ for k = 1, 2, 3, 4, 5 but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1} \theta_j = \frac{\pi}{2}$.
- Moreover, $(\mathbf{g}^{(6)}, \mathbf{p}_1) \neq 0$.

Higher-order reductions : termination of the last family

- Symbolic software algorithm is used on a squared domain of N_0 -by- N_0 lattice nodes, where $N_0 = 2K + 2M + 1$, and K is the order of the Lyapunov-Schmidt reductions.
- Super-symmetric family (3) has $\mathbf{g}^{(k)}(\boldsymbol{\theta}) = 0$ for k = 1, 2, 3, 4, 5 but $\mathbf{g}^{(6)}(\boldsymbol{\theta}) \neq 0$, unless $\theta_{j+1} \theta_j = \frac{\pi}{2}$.
- Moreover, $(\mathbf{g}^{(6)}, \mathbf{p}_1) \neq 0$.
- All asymmetric vortices (3) terminate

Zero eigenvalues of the stability problem

• Matrix-vector Hamiltonian form of the stability problem:

$$\mathcal{H}\boldsymbol{\psi}=i\lambda\sigma\boldsymbol{\psi},$$

where

ψ ∈ l²(Z², C²)
ℋ is the Jacobian (energy) operator
σ is the diagonal matrix of (1, -1)

Zero eigenvalues of the stability problem

• Matrix-vector Hamiltonian form of the stability problem:

$$\mathcal{H}\boldsymbol{\psi}=i\lambda\sigma\boldsymbol{\psi},$$

where

ψ ∈ l²(Z², C²)
ℋ is the Jacobian (energy) operator
σ is the diagonal matrix of (1, -1)

Eigenvalues of \mathcal{H} at $\epsilon = 0$: • $\gamma = -2$ of multiplicity N• $\gamma = 0$ of multiplicity N• $\gamma = +1$ of multiplicity ∞

Eigenvalues of \mathcal{JH} at $\epsilon = 0$:

- $\lambda = 0$ of multiplicity 2N
- $\lambda = +i$ of multiplicity ∞
- $\lambda = -i$ of multiplicity ∞

Zero eigenvalues of the stability problem

• Matrix-vector Hamiltonian form of the stability problem:

$$\mathcal{H}\boldsymbol{\psi}=i\lambda\sigma\boldsymbol{\psi},$$

where

ψ ∈ l²(Z², C²)
ℋ is the Jacobian (energy) operator
σ is the diagonal matrix of (1, -1)

Eigenvalues of \mathcal{H} at $\epsilon = 0$: $\circ \gamma = -2$ of multiplicity N $\circ \gamma = 0$ of multiplicity N $\circ \gamma = +1$ of multiplicity ∞

Eigenvalues of \mathcal{JH} at $\epsilon = 0$:

- $\lambda = 0$ of multiplicity 2N
- $\lambda = +i$ of multiplicity ∞
- $\gamma = +1$ of multiplicity ∞ $\lambda = -i$ of multiplicity ∞

How do zero eigenvalues split?

Stability of solutions in Lyapunov-Schmidt reductions

• First-order splitting of zero eigenvalues of \mathcal{H} : $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}$

• First-order splitting of zero eigenvalues of \mathcal{JH} : $\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$

Stability of solutions in Lyapunov-Schmidt reductions

• First-order splitting of zero eigenvalues of \mathcal{H} : $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}$

• First-order splitting of zero eigenvalues of \mathcal{JH} : $\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$

• Second-order splitting of zero eigenvalues of \mathcal{H} : $\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}$

• Second-order splitting of zero eigenvalues of \mathcal{JH} : $\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c} + \lambda \mathcal{L}_2 \mathbf{c}$ where $M_2^T = M_2$ and $L_2^T = -L_2$.

Stability of solutions in Lyapunov-Schmidt reductions

• First-order splitting of zero eigenvalues of \mathcal{H} : $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}$

• First-order splitting of zero eigenvalues of \mathcal{JH} : $\mathcal{M}_1 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c}$

• Second-order splitting of zero eigenvalues of \mathcal{H} : $\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}$

• Second-order splitting of zero eigenvalues of \mathcal{JH} : $\mathcal{M}_1 = 0, \qquad \mathcal{M}_2 \mathbf{c} = \frac{\lambda^2}{2} \mathbf{c} + \lambda \mathcal{L}_2 \mathbf{c}$ where $M_2^T = M_2$ and $L_2^T = -L_2$.

• Six-order splitting : symbolic software algorithm

Numerical analysis: symmetric vortex with L = 1 and M = 2

 $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{M}_1) = 0, z(\mathcal{M}_1) = 1, p(\mathcal{M}_1) = 7$

Numerical analysis: symmetric vortex with L = 3 and M = 2

 $\mathcal{M}_1 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{M}_1) = 7, z(\mathcal{M}_1) = 1, p(\mathcal{M}_1) = 0$

Numerical analysis: symmetric vortex with L = M = 1

 $\mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{M}_2) = 0, \, z(\mathcal{M}_2) = 2, \, p(\mathcal{M}_2) = 2$

Numerical analysis: symmetric vortex with L = M = 2

 $\mathcal{M}_2 \mathbf{c} = \gamma \mathbf{c}: \quad n(\mathcal{M}_2) = 1, \, z(\mathcal{M}_2) = 2, \, p(\mathcal{M}_2) = 5$

Summary:

- Systematic classification of discrete vortices
- Rigorous study of their existence and stability
- Predictions of stable and unstable vortices

contour S_M	vortex of charge L	linearized energy ${\cal H}$	stable and unstable eigenvalues
M = 1	symmetric $L = 1$	n(H) = 5, p(H) = 2	$N_{\rm r} = 0, N_{\rm i}^+ = 1, N_{\rm i}^- = 2, N_{\rm c} = 0$
M = 2	symmetric $L = 1$	n(H)=8,p(H)=7	$N_{\rm r} = 1, N_{\rm i}^+ = 0, N_{\rm i}^- = 0, N_{\rm c} = 3$
M = 2	symmetric $L = 2$	n(H) = 10, p(H) = 5	$N_{\rm r} = 1, N_{\rm i}^+ = 2, N_{\rm i}^- = 4, N_{\rm c} = 0$
M = 2	symmetric $L = 3$	n(H) = 15, p(H) = 0	$N_{\rm r} = 0, N_{\rm i}^+ = 0, N_{\rm i}^- = 7, N_{\rm c} = 0$
M = 2	asymmetric $L = 1$	n(H)=9,p(H)=6	$N_{\rm r} = 6, N_{\rm i}^+ = 0, N_{\rm i}^- = 1, N_{\rm c} = 0$
M = 2	asymmetric $L = 3$	n(H) = 14, p(H) = 1	$N_{\rm r} = 1, N_{\rm i}^+ = 0, N_{\rm i}^- = 6, N_{\rm c} = 0$