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Nonlinear wave equation

1D case:

U — Ugx + V/'(u) =0

where V/(u) is nonlinear potential (depends on a physical context)
Kink (domain walls) solutions (steady or moving):

My oo U(X, 1) = w2, limy_oo u(x, t) = u1;

U,

S =)
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Nonlinear wave equation
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Nonlinear wave equation

Example 1: the sine-Gordon equation
Ut — U +sinu = 0.

Travelling waves: (1 — c?)u,, = sinu.
u

z
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Nonlinear wave equation

Only 27-kink (antikink) solutions exist

Solutions exist for arbitrary velocity c as long as c? < 1

(z) = 4arct {iz_zo } t
u\zZ) = & arctan ex —_— , Z = X — Ct.
P V1—¢?

6]
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Nonlinear wave equation

Example 2: the double sine-Gordon equation

Ut — Uxx +sinu — 2Asin2u = 0.

e Exact 2m-kink solution exist for 1 — 4A > 0:

sinh(v/1—4A (z — zo))>
V1I—4AV1 -2 ’

u(z) = m + 2arctan <

zZ=Xx—ct

» Solution exist for arbitrary velocity ¢ as long as ¢? < 1

6/31



Nonlinear wave equation

Example 3: the ¢* equation

Upp — Usy — U+ 03 =0,

Exact kink solution, exists for any ¢ < 1,

u(z) = tanh <i> z=x—ct
B V2v1—¢c2)’ B

1

-1
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Nonlinear wave equation

Example 4: the ¢* — ¢°® equation
Ut — Uyx — u(1 — u?)(1 +yu?) = 0.

e Exact kink solution, exists for any c2<1and v > -1,

o) - VI8 T 6ytanh (3,/2(1+7) (z - 20))
\/18(1 +9) = 12ytanh? (3/2(1+7) (z - 20))
X —ct
R
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Nonlocal nonlinear wave equation

Generic form:

ug — Lu+ V'(u)=0

e L is Fourier multiplier operator: a(k) = P(k)a(k) ;
o P(k) is the symbol of the operator £;

o If P(k) = —k2, we are back to the nonlinear wave equation.
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Nonlocal nonlinear wave equation

Generic form:

ug — Lu+ V'(u) =0
L is Fourier multiplier operator: a(k) = P(k)u(k) ;
P(k) is the symbol of the operator £;

If P(k) = —k>2, we are back to the nonlinear wave equation.

Applications of nonlocal wave equations:

e discrete models (e.g. lattice models of solid state physics);
e complex dispersion (e.g. nonlinear optics);

e long-range interaction (e.g. models in solid state physics);

e specific geometry (e.g. Josephson junction theory).
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Nonlocal nonlinear wave equation

Symbols:
4 [ Xk . :
o P(k)= —2 sl (Frenkel-Kontorova model, solid state physics);
k2 .
o P(k)= IR (Kac-Baker model, spin systems);
k2
o P(k) = ———=———— (Silin-Gurevich model, Josephson junctions);
(k) v ( phson j )
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Nonlocal nonlinear wave equation

Symbols:
4 [ Xk . :
o P(k)= —2 sl (Frenkel-Kontorova model, solid state physics);
k2 .
o P(k)= IR (Kac-Baker model, spin systems);
k2
o P(k) = ———=———— (Silin-Gurevich model, Josephson junctions);
(k) v ( phson j )

In all these cases: P(k) = P,(k) depends on \ and
Py(k) = —k?> as X\ —0.

As A — 0
Uty — ﬁ)\u + V,(U) =0 = Ut — Uxx + V,(U) =0
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Nonlocal nonlinear wave equation

Main question:

What happens with kink solutions when switching from local case A =0
to nonlocal case A # 07
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The Frenkel-Kontorova model

Example 5: the Frenkel-Kontorova model (1938)
uge(x, 1) — 53 (u(x + A, t) — 2u(x, t) + u(x — A, t)) +sinu(x, t) = 0.

describes a chain of particles with nearest-neighbours interactions.

| QVAVAVA QVAVAVA' AVAVAVA| AVAVAVA QVAVAVA AVAVAVA

V,

A - a parameter of interaction between neighbours.
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The Frenkel-Kontorova model

The symbol: P(k) = —% sin? (A_;)

The results (well-known):

o There are at rest 27-kinks (on-site and inter-site) in this model.
e No travelling 2m-kinks in this model.

e Infinitely many travelling 4m-kinks in this model.

e A kink-like excitation launched at some nonzero velocity emits radiation,
slows down, and eventually stops.
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The Frenkel-Kontorova model

k|nk
radlatlon

v/c

1007 02 03 04 08 08

=

00

o slo w00  ®a00 20000 25000

(from M.Peyrard, M.D.Kruskal, Physica D, 14, p.88 (1984), initial velocity =0.8.)
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The Frenkel-Kontorova model

Why do kink solutions disappear?

Consider linearized version of the Frenkel-Kontorova model at zero
equilibrium:

uge(x, 1) — 5 (u(x + A, t) — 2u(x, t) + u(x — A, t)) + u(x, t) = 0.
Dispersion relation for Fourier transform:
4 | Ak
1+ Z sin? <7> =c%k?, keR,

For every ¢ # 0, there exists at least one pair of solutions at k = +kg.
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SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions
S e (ke
ondx TP\

Utt

) ue (X', t) dx' +sinu =0,
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SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions

o td (=X
ondx TP\

Utt

) ue (X', t) dx' +sinu =0,

The trick: N )
1 o —
q(x,t) = o [00 exp {— Ix )\X | } uy (X', t)dx’

Then g(x, t) is a solution of:

_)‘2qxx +q = ux.

k2

The Symbol: P(k) = —m
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x — ct)

czuzz +sinu=gq,

_)‘2qzz +q=1u
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x — ct)

czuzz +sinu=gq,

_)‘2qzz +q=1u

Phase space: {u (mod 27),u,q,q'}
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x — ct)

czuzz +sinu=gq,

_)‘2qzz +q=1u

Phase space: {u (mod 27),u,q,q'}

Equilibrium points:
Oo(u=v=q9g=q =0), Ox(u=7m,u =qg=4q =0)
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x — ct)

czuzz +sinu=gq,

_)‘2qzz +q=1u

Phase space: {u (mod 27),u,q,q'}

Equilibrium points:
Oo(u=v=q9g=q =0), Ox(u=7m,u =qg=4q =0)

Oy is the saddle—center point:
2
1+ 1+§\2k2 = 2k
For every ¢ # 0, there exists exactly one pair of solutions at k = +kg.

17 /31



SG equation with Kac-Baker interactions

Results:
e There are static 2m-kinks for 0 < A < 1.
o No travelling 2m-kinks in this model;

o Infinitely many 4m-kinks for discrete set of velocities;
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SG equation with Kac-Baker interactions

Results:
e There are static 2m-kinks for 0 < \ < 1.
e No travelling 27-kinks in this model;

e Infinitely many 4m-kinks for discrete set of velocities;

Summary: switching from A = 0 to A # 0 results in disappearance of
27-kink solutions in classical models.

Is this the only scenario?
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Main Claim

Consider the bifurcation problem in the general form
Lyu = F(u).

Ly - a Fourier multiplier operator with an even symbol Py (k) such that

d? .
LA%WaS)\—)O,

F(u) - an odd function such that F(uy) = F(u-) = 0 with uy = —u_
and
F'(uy)=F'(u-) >0

Dispersion equation Py(k) = F’(u) has one pair of roots k = +kg()\),
such that ko(A) — oo as A — 0.
19 /31



Main Claim

Let us consider the limiting equation v”(z) = F(u(z)) and assume:

It has an odd kink solution ug(z) for z € R such that up(z) — uy as
z — Fo0.

When up(z) is continued for z € C, the closest to real axis singularities
are located in quartets, e.g. in the upper half-plane at z. = +a + i[5,
a, B> 0.
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Main Claim

Let us consider the limiting equation v”(z) = F(u(z)) and assume:

It has an odd kink solution ug(z) for z € R such that up(z) — uy as
z — Fo0.

When up(z) is continued for z € C, the closest to real axis singularities
are located in quartets, e.g. in the upper half-plane at zL = +a + i3,
a, B> 0.

There exists an infinite set of values {\,}nen, such that for each A, the
nonlinear equation Ly,u = F(u) admits a kink solution. Moreover, the
sequence {A,}nen satisfies the asymptotic law

ko(An) ~ (nm+ @o) /o, n — o0,

where (g is uniquely defined constant. Hence, A\, — 0 as n — oo.

20 /31



Behind Main Claim

Perturbation v(z) = u(z) — up(z) satisfies the expanded equation
(Lx — F'(up)) v = Hy + N(v),
where Hy, is explicitly computed from ug and N(v) is O(v?).
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Behind Main Claim

Perturbation v(z) = u(z) — up(z) satisfies the expanded equation
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Behind Main Claim

Perturbation v(z) = u(z) — up(z) satisfies the expanded equation
(Lx — F'(up)) v = Hy + N(v),
where Hy, is explicitly computed from ug and N(v) is O(v?).

The homogeneous equation (Ly — F'(up)) v = 0 has a pair of solutions
that behave like eF0(N)z,

To satisfy the solvability condition at the leading order, we set
Jr(A) = [72 T kN2 Hy\(2)dz = 0
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Behind Main Claim

Perturbation v(z) = u(z) — up(z) satisfies the expanded equation
(Lx — F'(up)) v = Hy + N(v),
where Hy, is explicitly computed from ug and N(v) is O(v?).
The homogeneous equation (Ly — F'(up)) v = 0 has a pair of solutions
that behave like eF0(N)z,

To satisfy the solvability condition at the leading order, we set
Jr(A) = [72 T kN2 Hy\(2)dz = 0

By Darboux principle and asymptotic analysis (Murray, 1984), if
Hy(z) ~ CoA9e/™/2(z — z. )", then

47 \9| Cole= KN

Ji(/\) ~ Col 1

F(=r)[k(A)]"+

cos(ak(N) + m/2 — arg((p)).
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Nonlocal double SG model

Example 7: nonlocal double sine-Gordon model

1d > |X_X/| / I H
Upe — ﬁ&/,w exp( 3 )ux,(x) dx" = sin(u) + 2asin(2u).

Refs: Phys. Rev. Lett. 112, 054103 (2014); Physica D 282, 16 (2014)

As A — 0, the 27-kinks are given by:

up(z) = 7 + 2arctan [\/1143 sinh (\/V T_’ijz)}

Symmetric pairs of singularities exist for a > 0 at z = +a + i3:

V1—c? 4 1 — c?
a=———cosh (1+8a), f=——r——.
2y/1+4a 2y/1+4a

For fixed a > 0, there exist a discrete set of curve in the (¢, A) plane,
along which the 27-kinks exist.
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]
Nonlocal double SG model

01234567
X

Curves ¢(\) for a=1/8.
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Nonlocal double SG model

The asymptotic law as n — oc:
2akg(Ap) ~ (1 +2n), = 7w(142n)A, =(a,c),

with g = 7/2.

142n 1 3 5 7 9 11
0/(mAn) | 3.7168 | 4.9763 | 6.3699 | 7.8595 | 9.4541 | 11.1396

Table: The values of §/(7wA,) for a=1/8 and ¢ = 0.1.

24 /31



Nonlocal double SG model

Stability experiment 1
A

50 100

T

Evolution of kink-like excitation (high energy). .



Nonlocal double SG model

Stability experiment 2
A

At AL,

Evolution of kink-like excitation (low energy).
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Discrete ¢*-¢° model

Example 8: discrete ¢*-¢® model
U — A2 (u(x 4+ X) = 2u(x) + u(x = A)) + u(l — v®)(1 +yu?) = 0.
Refs: Phys. Rev. Lett. 112, 054103 (2014)

As A — 0, the kinks are given by:

u(z) = V347 tanh(nz) _ Ity
\/3(1+'y)—2'y tanh?(nz)’ \/2(1—c2) '

Symmetric pairs of singularities exist for v > 0 at zp = +a + i8:

o= 71_(:2cosh_1 <3+57) B= T L
2V1+~ 345 )’ V2(1+a)

For fixed v > 0, there exist a discrete set of curve in the (¢, \) plane,
along which the kinks exist.
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Discrete ¢*-¢° model

The asymptotic law as n — oc:
dako(Ap) ~ (3 +4n), = w(3+4n)A\, = x(v,c¢),

with g = 37 /4.

3+ 4n 3 7 11 15
x/(mA,) | 35303 | 7.3547 | 11.1520 | 15.0329

Table: The values of x/(7\,) for vy =5 and ¢ = 0.6.
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Discrete ¢* models

Example 9: discrete ¢* model
uge — A2 (u(x + A) — 2u(x) + u(x — ) + u(x) (1 — u(x)?) = 0.
Refs: Nonlinearity 19, 217 (2006)

As X\ — 0, the kinks are given by:

up(z) = tanh(nz), n = 2\/11_—62.

Singularity exists at z = imv/1 — 2.
No kinks exist for any ¢ # 0.
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Discrete ¢* models

Example 10: another discrete ¢* model
U — A2 (u(x + A) = 2u(x) + u(x — \))

+%(u(x+ A) + u(x — A)) <1 — %u(x+ A)? — %u(x - )\)2> -0

Refs: Nonlinearity 19, 217 (2006)

As A — 0, the kinks are still given by:

up(z) = tanh(nz), n = 2\/11_7.

Singularity exists at z = imv1 — ¢2.
Three moving kinks exist for three values of ¢ # 0 at fixed A # 0.
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Summary: in Examples 7-8, switching from A = 0 to A # 0 results in
selecting a countable set of velocities for radiationless kink propagation.

The first ideas about existence of such countable sets go back to the
works of V.G. Gelfreich (1990,2008).

No analytical proof of the main claim exists for now.

It has been checked for several other models: triple sine-Gordon model,
fifth-order Korteweg-de Vries equation, saturable discrete nonlinear
Schrodinger equation, ...

Apparently, it applies to more sophisticated examples, such as diatomic
Toda lattice
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