Heteroclinic orbits for travelling kinks in difference and nonlocal wave equations

Dmitry E. Pelinovsky¹ and Georgi L. Alfimov²

¹ Department of Mathematics, McMaster University, Hamilton, Canada
² National Research University of Electronic Technology (MIET), Moscow, Russia

University of Pittsburg, November 20, 2015

1D case:

 $u_{tt} - u_{xx} + V'(u) = 0$

where V(u) is nonlinear potential (depends on a physical context) Kink (domain walls) solutions (steady or moving):

 $\lim_{x\to-\infty} u(x,t) = u_2$, $\lim_{x\to\infty} u(x,t) = u_1$;

Nonlinear wave equation

Travelling waves: $u(x, t) = u(x - ct) \equiv u(z)$.

ODE: $(1 - c^2)u_{zz} - V'(u) = 0$

Nonlinear wave equation

Example 1: the sine-Gordon equation

 $u_{tt}-u_{xx}+\sin u=0.$

Travelling waves: $(1 - c^2)u_{zz} = \sin u$.

- Only 2π -kink (antikink) solutions exist
- Solutions exist for arbitrary velocity c as long as $c^2 < 1$

Example 2: the double sine-Gordon equation

 $u_{tt}-u_{xx}+\sin u-2A\sin 2u=0.$

• Exact 2π -kink solution exist for 1 - 4A > 0:

$$u(z) = \pi + 2 \arctan\left(\frac{\sinh(\sqrt{1-4A}(z-z_0))}{\sqrt{1-4A}\sqrt{1-c^2}}\right),$$

$$z = x - ct$$

• Solution exist for arbitrary velocity c as long as $c^2 < 1$

Nonlinear wave equation

Example 3: the ϕ^4 equation $u_{tt} - u_{xx} - u + u^3 = 0.$

• Exact kink solution, exists for any $c^2 < 1$,

Example 4: the $\phi^4 - \phi^6$ equation $u_{tt} - u_{xx} - u(1 - u^2)(1 + \gamma u^2) = 0.$

• Exact kink solution, exists for any $c^2 < 1$ and $\gamma > -1$:,

$$u(z) = \frac{\sqrt{18 + 6\gamma} \tanh\left(\frac{1}{2}\sqrt{2(1+\gamma)}(z-z_0)\right)}{\sqrt{18(1+\gamma) - 12\gamma} \tanh^2\left(\frac{1}{2}\sqrt{2(1+\gamma)}(z-z_0)\right)}},$$
$$z = \frac{x - ct}{\sqrt{1 - c^2}}$$

Generic form:

 $u_{tt}-\mathcal{L}u+V'(u)=0$

- \mathcal{L} is Fourier multiplier operator: $\widehat{\mathcal{L}u}(k) = P(k)\hat{u}(k)$;
- P(k) is the symbol of the operator \mathcal{L} ;
- If $P(k) = -k^2$, we are back to the nonlinear wave equation.

Generic form:

 $u_{tt}-\mathcal{L}u+V'(u)=0$

- \mathcal{L} is Fourier multiplier operator: $\widehat{\mathcal{L}u}(k) = P(k)\hat{u}(k)$;
- P(k) is the symbol of the operator \mathcal{L} ;
- If $P(k) = -k^2$, we are back to the nonlinear wave equation.

Applications of nonlocal wave equations:

- discrete models (e.g. lattice models of solid state physics);
- complex dispersion (e.g. nonlinear optics);
- long-range interaction (e.g. models in solid state physics);
- specific geometry (e.g. Josephson junction theory).

Nonlocal nonlinear wave equation

Symbols:

P(k) = -⁴/_{λ²} sin² (^{λk}/₂) (Frenkel-Kontorova model, solid state physics);
P(k) = -^{k²}/_{1+λ²k²} (Kac-Baker model, spin systems);
P(k) = -^{k²}/_{√1+λ²k²} (Silin-Gurevich model, Josephson junctions);

Nonlocal nonlinear wave equation

Symbols:

P(k) = -⁴/_{λ²} sin² (^{λk}/₂) (Frenkel-Kontorova model, solid state physics);
P(k) = -^{k²}/_{1+λ²k²} (Kac-Baker model, spin systems);
P(k) = -^{k²}/_{√1+λ²k²} (Silin-Gurevich model, Josephson junctions);

In all these cases: $P(k) \equiv P_{\lambda}(k)$ depends on λ and

$${\it P}_\lambda(k)
ightarrow -k^2$$
 as $\lambda
ightarrow 0.5$

As $\lambda \rightarrow 0$

 $u_{tt} - \mathcal{L}_{\lambda}u + V'(u) = 0 \quad \Rightarrow \quad u_{tt} - u_{xx} + V'(u) = 0$

Main question:

What happens with kink solutions when switching from local case $\lambda = 0$ to nonlocal case $\lambda \neq 0$?

Example 5: the Frenkel-Kontorova model (1938) $u_{tt}(x,t) - \frac{1}{\lambda^2}(u(x+\lambda,t) - 2u(x,t) + u(x-\lambda,t)) + \sin u(x,t) = 0.$

describes a chain of particles with nearest-neighbours interactions.

 λ - a parameter of interaction between neighbours.

The symbol:
$$P(k) = -\frac{4}{\lambda^2} \sin^2\left(\frac{\lambda k}{2}\right)$$

The results (well-known):

- There are at rest 2π -kinks (on-site and inter-site) in this model.
- No travelling 2π -kinks in this model.
- Infinitely many travelling 4π -kinks in this model.
- A kink-like excitation launched at some nonzero velocity emits radiation, slows down, and eventually stops.

(from M.Peyrard, M.D.Kruskal, Physica D, 14, p.88 (1984), initial velocity =0.8.)

Why do kink solutions disappear?

Consider linearized version of the Frenkel-Kontorova model at zero equilibrium:

 $u_{tt}(x,t) - \frac{1}{\lambda^2}(u(x+\lambda,t) - 2u(x,t) + u(x-\lambda,t)) + u(x,t) = 0.$

Dispersion relation for Fourier transform:

$$1+rac{4}{\lambda^2}\sin^2\left(rac{\lambda k}{2}
ight)=c^2k^2,\quad k\in\mathbb{R},$$

For every $c \neq 0$, there exists at least one pair of solutions at $k = \pm k_0$.

Example 6: the sine-Gordon model with Kac-Baker interactions

$$u_{tt} - \frac{1}{2\lambda} \frac{d}{dx} \int_{-\infty}^{\infty} \exp\left(\frac{|x-x'|}{\lambda}\right) u_{x'}(x',t) \ dx' + \sin u = 0.$$

Example 6: the sine-Gordon model with Kac-Baker interactions

$$u_{tt} - \frac{1}{2\lambda} \frac{d}{dx} \int_{-\infty}^{\infty} \exp\left(\frac{|x-x'|}{\lambda}\right) u_{x'}(x',t) \ dx' + \sin u = 0.$$

The trick:

$$q(x,t) = rac{1}{2\lambda} \int_{-\infty}^{+\infty} \exp\left\{-rac{|x-x'|}{\lambda}
ight\} u_{x'}(x',t) dx'$$

Then q(x, t) is a solution of:

 $-\lambda^2 q_{xx} + q = u_x.$

The symbol: $P(k) = -\frac{k^2}{1+\lambda^2 k^2}$

Travelling waves: u(z) = u(x - ct)

$$c^{2}u_{zz} + \sin u = q_{z}$$
$$-\lambda^{2}q_{zz} + q = u_{z}$$

Travelling waves: u(z) = u(x - ct)

$$c^{2}u_{zz} + \sin u = q_{z}$$
$$-\lambda^{2}q_{zz} + q = u_{z}$$

Phase space: $\{u \pmod{2\pi}, u', q, q'\}$

Travelling waves: u(z) = u(x - ct)

$$c^2 u_{zz} + \sin u = q_z$$

 $-\lambda^2 q_{zz} + q = u_z$

Phase space: $\{u \pmod{2\pi}, u', q, q'\}$

Equilibrium points:

 $O_0(u = u' = q = q' = 0), \ O_{\pi}(u = \pi, u' = q = q' = 0)$

Travelling waves: u(z) = u(x - ct)

$$c^2 u_{zz} + \sin u = q_z$$

 $-\lambda^2 q_{zz} + q = u_z$

Phase space: $\{u \pmod{2\pi}, u', q, q'\}$

Equilibrium points: $O_0(u = u' = q = q' = 0), O_{\pi}(u = \pi, u' = q = q' = 0)$

 O_0 is the saddle–center point:

$$1 + \frac{k^2}{1 + \lambda^2 k^2} = c^2 k^2$$

For every $c \neq 0$, there exists exactly one pair of solutions at $k = \pm k_0$.

Results:

- There are static 2π -kinks for $0 < \lambda < 1$.
- No travelling 2π -kinks in this model;
- Infinitely many 4π -kinks for discrete set of velocities;

Results:

- There are static 2π -kinks for $0 < \lambda < 1$.
- No travelling 2π -kinks in this model;
- Infinitely many 4π -kinks for discrete set of velocities;

Summary: switching from $\lambda = 0$ to $\lambda \neq 0$ results in disappearance of 2π -kink solutions in classical models.

Is this the only scenario?

Main Claim

Consider the bifurcation problem in the general form

 $L_{\lambda}u = F(u).$

• L_{λ} - a Fourier multiplier operator with an even symbol $P_{\lambda}(k)$ such that

$$L_\lambda o rac{d^2}{dx^2}$$
 as $\lambda o 0;$

• F(u) - an odd function such that $F(u_+) = F(u_-) = 0$ with $u_+ = -u_$ and

$$F'(u_+)=F'(u_-)>0$$

• Dispersion equation $P_{\lambda}(k) = F'(u_{\pm})$ has one pair of roots $k = \pm k_0(\lambda)$, such that $k_0(\lambda) \to \infty$ as $\lambda \to 0$.

Main Claim

Let us consider the limiting equation u''(z) = F(u(z)) and assume:

- It has an odd kink solution $u_0(z)$ for $z \in \mathbb{R}$ such that $u_0(z) \to u_{\pm}$ as $z \to \pm \infty$.
- When $u_0(z)$ is continued for $z \in \mathbb{C}$, the closest to real axis singularities are located in quartets, e.g. in the upper half-plane at $z_{\pm} = \pm \alpha + i\beta$, $\alpha, \beta > 0$.

Main Claim

Let us consider the limiting equation u''(z) = F(u(z)) and assume:

- It has an odd kink solution $u_0(z)$ for $z \in \mathbb{R}$ such that $u_0(z) \to u_{\pm}$ as $z \to \pm \infty$.
- When $u_0(z)$ is continued for $z \in \mathbb{C}$, the closest to real axis singularities are located in quartets, e.g. in the upper half-plane at $z_{\pm} = \pm \alpha + i\beta$, $\alpha, \beta > 0$.

There exists an infinite set of values $\{\lambda_n\}_{n\in\mathbb{N}}$, such that for each λ_n , the nonlinear equation $L_{\lambda_n}u = F(u)$ admits a kink solution. Moreover, the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ satisfies the asymptotic law

$$k_0(\lambda_n) \sim (n\pi + \varphi_0) / \alpha, \quad n \to \infty,$$

where φ_0 is uniquely defined constant. Hence, $\lambda_n \to 0$ as $n \to \infty$.

Perturbation $v(z) = u(z) - u_0(z)$ satisfies the expanded equation $(L_\lambda - F'(u_0)) v = H_\lambda + N(v),$

where H_{λ} is explicitly computed from u_0 and N(v) is $\mathcal{O}(v^2)$.

Perturbation $v(z) = u(z) - u_0(z)$ satisfies the expanded equation

 $(L_{\lambda}-F'(u_0))\,v=H_{\lambda}+N(v),$

where H_{λ} is explicitly computed from u_0 and N(v) is $\mathcal{O}(v^2)$.

• The homogeneous equation $(L_{\lambda} - F'(u_0))v = 0$ has a pair of solutions that behave like $e^{\pm ik_0(\lambda)z}$.

Perturbation $v(z) = u(z) - u_0(z)$ satisfies the expanded equation $(L_\lambda - F'(u_0)) v = H_\lambda + N(v),$

where H_{λ} is explicitly computed from u_0 and N(v) is $\mathcal{O}(v^2)$.

• The homogeneous equation $(L_{\lambda} - F'(u_0))v = 0$ has a pair of solutions that behave like $e^{\pm ik_0(\lambda)z}$.

• To satisfy the solvability condition at the leading order, we set

 $J_{\pm}(\lambda) := \int_{-\infty}^{\infty} e^{\pm ik(\lambda)z} H_{\lambda}(z) dz = 0$

Perturbation $v(z) = u(z) - u_0(z)$ satisfies the expanded equation $(L_\lambda - F'(u_0))v = H_\lambda + N(v),$

where H_{λ} is explicitly computed from u_0 and N(v) is $\mathcal{O}(v^2)$.

• The homogeneous equation $(L_{\lambda} - F'(u_0))v = 0$ has a pair of solutions that behave like $e^{\pm ik_0(\lambda)z}$.

• To satisfy the solvability condition at the leading order, we set $J_{\pm}(\lambda) := \int_{-\infty}^{\infty} e^{\pm ik(\lambda)z} H_{\lambda}(z) dz = 0$

• By Darboux principle and asymptotic analysis (Murray, 1984), if $H_{\lambda}(z) \sim C_0 \lambda^q e^{i\pi\kappa/2} (z - z_{\pm})^{\kappa}$, then

$$J_{\pm}(\lambda) \sim rac{4\pi\lambda^q |\mathcal{C}_0| e^{-eta k(\lambda)}}{\Gamma(-\kappa) |k(\lambda)|^{\kappa+1}} \; \cos(lpha k(\lambda) + \pi/2 - rg(\mathcal{C}_0)).$$

Nonlocal double SG model

Example 7: nonlocal double sine-Gordon model

$$u_{tt} - \frac{1}{2\lambda} \frac{d}{dx} \int_{-\infty}^{\infty} \exp\left(\frac{|x-x'|}{\lambda}\right) u_{x'}(x') \ dx' = \sin(u) + 2a\sin(2u).$$

Refs: Phys. Rev. Lett. 112, 054103 (2014); Physica D 282, 16 (2014)

• As
$$\lambda \to 0$$
, the 2π -kinks are given by:
 $u_0(z) = \pi + 2 \arctan \left[\frac{1}{\sqrt{1+4a}} \sinh \left(\frac{\sqrt{1+4a}}{\sqrt{1-c^2}} z \right) \right].$

• Symmetric pairs of singularities exist for a > 0 at $z_{\pm} = \pm \alpha + i\beta$:

$$\alpha = \frac{\sqrt{1-c^2}}{2\sqrt{1+4a}} \cosh^{-1}(1+8a), \quad \beta = \frac{\pi\sqrt{1-c^2}}{2\sqrt{1+4a}}.$$

• For fixed a > 0, there exist a discrete set of curve in the (c, λ) plane, along which the 2π -kinks exist.

Nonlocal double SG model

Curves $c(\lambda)$ for a = 1/8.

The asymptotic law as $n \to \infty$:

 $2\alpha k_0(\lambda_n) \sim \pi(1+2n), \quad \Rightarrow \quad \pi(1+2n)\lambda_n = \delta(a,c),$

with $\varphi_0 = \pi/2$.

1 + 2n	1	3	5	7	9	11
$\delta/(\pi\lambda_n)$	3.7168	4.9763	6.3699	7.8595	9.4541	11.1396

Table: The values of $\delta/(\pi\lambda_n)$ for a = 1/8 and c = 0.1.

Nonlocal double SG model

Evolution of kink-like excitation (high energy).

Nonlocal double SG model

Evolution of kink-like excitation (low energy).

Discrete $\phi^4 - \phi^6$ model

Example 8: discrete $\phi^4 - \phi^6$ model $u_{tt} - \lambda^{-2}(u(x+\lambda) - 2u(x) + u(x-\lambda)) + u(1-u^2)(1+\gamma u^2) = 0.$

Refs: Phys. Rev. Lett. 112, 054103 (2014)

• As $\lambda \rightarrow 0$, the kinks are given by:

$$u_0(z) = \frac{\sqrt{3+\gamma} \tanh(\eta z)}{\sqrt{3(1+\gamma)-2\gamma} \tanh^2(\eta z)}, \ \eta = \frac{\sqrt{1+\gamma}}{\sqrt{2(1-c^2)}}.$$

• Symmetric pairs of singularities exist for $\gamma > 0$ at $z_{\pm} = \pm \alpha + i\beta$:

$$\alpha = \frac{\sqrt{1-c^2}}{2\sqrt{1+\gamma}} \cosh^{-1}\left(\frac{3+5\gamma}{3+\gamma}\right), \quad \beta = \frac{\pi\sqrt{1-c^2}}{\sqrt{2(1+a)}}.$$

• For fixed $\gamma > 0$, there exist a discrete set of curve in the (c, λ) plane, along which the kinks exist.

The asymptotic law as $n \to \infty$:

 $4\alpha k_0(\lambda_n) \sim \pi(3+4n), \quad \Rightarrow \quad \pi(3+4n)\lambda_n = \chi(\gamma, c),$

with $\varphi_0 = 3\pi/4$.

3 + 4 <i>n</i>	3	7	11	15
$\chi/(\pi\lambda_n)$	3.5303	7.3547	11.1520	15.0329

Table: The values of $\chi/(\pi\lambda_n)$ for $\gamma = 5$ and c = 0.6.

Discrete ϕ^4 models

Example 9: discrete ϕ^4 model

 $u_{tt} - \lambda^{-2}(u(x+\lambda) - 2u(x) + u(x-\lambda)) + u(x)\left(1 - u(x)^2\right) = 0.$

Refs: Nonlinearity 19, 217 (2006)

• As $\lambda \rightarrow 0$, the kinks are given by:

$$u_0(z) = \tanh(\eta z), \ \eta = \frac{1}{2\sqrt{1-c^2}}.$$

- Singularity exists at $z = i\pi\sqrt{1-c^2}$.
- No kinks exist for any $c \neq 0$.

Discrete ϕ^4 models

Example 10: another discrete ϕ^4 model

$$u_{tt} - \lambda^{-2}(u(x+\lambda) - 2u(x) + u(x-\lambda)) + \frac{1}{2}(u(x+\lambda) + u(x-\lambda))\left(1 - \frac{1}{2}u(x+\lambda)^2 - \frac{1}{2}u(x-\lambda)^2\right) = 0.$$

Refs: Nonlinearity 19, 217 (2006)

• As $\lambda \rightarrow 0$, the kinks are still given by:

$$u_0(z) = \tanh(\eta z), \ \eta = \frac{1}{2\sqrt{1-c^2}}.$$

• Singularity exists at $z = i\pi\sqrt{1-c^2}$.

• Three moving kinks exist for three values of $c \neq 0$ at fixed $\lambda \neq 0$.

Conclusion

Summary: in Examples 7-8, switching from $\lambda = 0$ to $\lambda \neq 0$ results in selecting <u>a countable set of velocities</u> for radiationless kink propagation.

• The first ideas about existence of such countable sets go back to the works of V.G. Gelfreich (1990,2008).

• No analytical proof of the main claim exists for now.

• It has been checked for several other models: triple sine-Gordon model, fifth-order Korteweg-de Vries equation, saturable discrete nonlinear Schrödinger equation, ...

• Apparently, it applies to more sophisticated examples, such as diatomic Toda lattice