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Nonlinear wave equation

1D case:

utt − uxx + V ′(u) = 0
where V (u) is nonlinear potential (depends on a physical context)

Kink (domain walls) solutions (steady or moving):

limx→−∞ u(x , t) = u2, limx→∞ u(x , t) = u1;
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Nonlinear wave equation

Travelling waves: u(x , t) = u(x − ct) ≡ u(z).

ODE: (1− c2)uzz − V ′(u) = 0
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Nonlinear wave equation

Example 1: the sine-Gordon equation

utt − uxx + sin u = 0.

Travelling waves: (1− c2)uzz = sin u.
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Nonlinear wave equation

• Only 2π-kink (antikink) solutions exist

• Solutions exist for arbitrary velocity c as long as c2 < 1

u(z) = 4 arctan exp

{
± z − z0√

1− c2

}
, z = x − ct.
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Nonlinear wave equation

Example 2: the double sine-Gordon equation

utt − uxx + sin u − 2A sin 2u = 0.

• Exact 2π-kink solution exist for 1− 4A > 0:

u(z) = π + 2arctan

(
sinh(

√
1− 4A (z − z0))√

1− 4A
√
1− c2

)
,

z = x − ct

• Solution exist for arbitrary velocity c as long as c2 < 1
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Nonlinear wave equation

Example 3: the φ4 equation

utt − uxx − u + u3 = 0.

• Exact kink solution, exists for any c2 < 1,

u(z) = tanh

(
z − z0√
2
√
1− c2

)
, z = x − ct
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Nonlinear wave equation

Example 4: the φ4 − φ6 equation

utt − uxx − u(1− u2)(1 + γu2) = 0.

• Exact kink solution, exists for any c2 < 1 and γ > −1:,

u(z) =

√
18 + 6γ tanh ( 12

√
2(1 + γ) (z − z0))√

18(1 + γ)− 12γ tanh2 ( 12
√
2(1 + γ) (z − z0))

,

z =
x − ct√
1− c2
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Nonlocal nonlinear wave equation

Generic form:

utt − Lu + V ′(u) = 0

• L is Fourier multiplier operator: L̂u(k) = P(k)û(k) ;

• P(k) is the symbol of the operator L;
• If P(k) = −k2, we are back to the nonlinear wave equation.
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Nonlocal nonlinear wave equation

Generic form:

utt − Lu + V ′(u) = 0

• L is Fourier multiplier operator: L̂u(k) = P(k)û(k) ;

• P(k) is the symbol of the operator L;
• If P(k) = −k2, we are back to the nonlinear wave equation.

Applications of nonlocal wave equations:

• discrete models (e.g. lattice models of solid state physics);

• complex dispersion (e.g. nonlinear optics);

• long-range interaction (e.g. models in solid state physics);

• specific geometry (e.g. Josephson junction theory).
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Nonlocal nonlinear wave equation

Symbols:

• P(k) = − 4

λ2
sin2

(
λk

2

)
(Frenkel-Kontorova model, solid state physics);

• P(k) = − k2

1 + λ2k2
(Kac-Baker model, spin systems);

• P(k) = − k2

√
1 + λ2k2

(Silin-Gurevich model, Josephson junctions);
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Nonlocal nonlinear wave equation

Symbols:

• P(k) = − 4

λ2
sin2

(
λk

2

)
(Frenkel-Kontorova model, solid state physics);

• P(k) = − k2

1 + λ2k2
(Kac-Baker model, spin systems);

• P(k) = − k2

√
1 + λ2k2

(Silin-Gurevich model, Josephson junctions);

In all these cases: P(k) ≡ Pλ(k) depends on λ and

Pλ(k) → −k2 as λ → 0.

As λ → 0

utt − Lλu + V ′(u) = 0 ⇒ utt − uxx + V ′(u) = 0
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Nonlocal nonlinear wave equation

Main question:

What happens with kink solutions when switching from local case λ = 0
to nonlocal case λ 6= 0?
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The Frenkel-Kontorova model

Example 5: the Frenkel-Kontorova model (1938)

utt(x , t)− 1
λ2 (u(x + λ, t)− 2u(x , t) + u(x − λ, t)) + sin u(x , t) = 0.

describes a chain of particles with nearest-neighbours interactions.

λ - a parameter of interaction between neighbours.
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The Frenkel-Kontorova model

The symbol: P(k) = − 4

λ2
sin2

(
λk

2

)

The results (well-known):

• There are at rest 2π-kinks (on-site and inter-site) in this model.

• No travelling 2π-kinks in this model.

• Infinitely many travelling 4π-kinks in this model.

• A kink-like excitation launched at some nonzero velocity emits radiation,
slows down, and eventually stops.
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The Frenkel-Kontorova model

(from M.Peyrard, M.D.Kruskal, Physica D, 14, p.88 (1984), initial velocity =0.8.)
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The Frenkel-Kontorova model

Why do kink solutions disappear?

Consider linearized version of the Frenkel-Kontorova model at zero
equilibrium:

utt(x , t)− 1
λ2 (u(x + λ, t)− 2u(x , t) + u(x − λ, t)) + u(x , t) = 0.

Dispersion relation for Fourier transform:

1 +
4

λ2
sin2

(
λk

2

)
= c2k2, k ∈ R,

For every c 6= 0, there exists at least one pair of solutions at k = ±k0.
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SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions

utt −
1

2λ

d

dx

∫
∞

−∞

exp

( |x − x ′|
λ

)
ux′(x

′, t) dx ′ + sin u = 0.
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SG equation with Kac-Baker interactions

Example 6: the sine-Gordon model with Kac-Baker interactions

utt −
1

2λ

d

dx

∫
∞

−∞

exp

( |x − x ′|
λ

)
ux′(x

′, t) dx ′ + sin u = 0.

The trick:

q(x , t) =
1

2λ

∫ +∞

−∞

exp

{
−|x − x ′|

λ

}
ux′ (x

′, t)dx ′

Then q(x , t) is a solution of:

−λ2qxx + q = ux .

The symbol: P(k) = − k2

1 + λ2k2
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x − ct)

c2uzz + sin u = qz

−λ2qzz + q = uz
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x − ct)
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Phase space: {u (mod 2π), u′, q, q′}
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x − ct)
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Phase space: {u (mod 2π), u′, q, q′}
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SG equation with Kac-Baker interactions

Travelling waves: u(z) = u(x − ct)

c2uzz + sin u = qz

−λ2qzz + q = uz

Phase space: {u (mod 2π), u′, q, q′}

Equilibrium points:
O0(u = u′ = q = q′ = 0), Oπ(u = π, u′ = q = q′ = 0)

O0 is the saddle–center point:

1 + k
2

1+λ2k2 = c2k2

For every c 6= 0, there exists exactly one pair of solutions at k = ±k0.
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SG equation with Kac-Baker interactions

Results:

• There are static 2π-kinks for 0 < λ < 1.

• No travelling 2π-kinks in this model;

• Infinitely many 4π-kinks for discrete set of velocities;
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SG equation with Kac-Baker interactions

Results:

• There are static 2π-kinks for 0 < λ < 1.

• No travelling 2π-kinks in this model;

• Infinitely many 4π-kinks for discrete set of velocities;

Summary: switching from λ = 0 to λ 6= 0 results in disappearance of
2π-kink solutions in classical models.

Is this the only scenario?
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Main Claim

Consider the bifurcation problem in the general form

Lλu = F (u).

• Lλ - a Fourier multiplier operator with an even symbol Pλ(k) such that

Lλ → d2

dx2
as λ → 0;

• F (u) - an odd function such that F (u+) = F (u−) = 0 with u+ = −u−
and

F ′(u+) = F ′(u−) > 0

• Dispersion equation Pλ(k) = F ′(u±) has one pair of roots k = ±k0(λ),
such that k0(λ) → ∞ as λ → 0.
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Main Claim

Let us consider the limiting equation u′′(z) = F (u(z)) and assume:

• It has an odd kink solution u0(z) for z ∈ R such that u0(z) → u± as
z → ±∞.

• When u0(z) is continued for z ∈ C, the closest to real axis singularities
are located in quartets, e.g. in the upper half-plane at z± = ±α+ iβ,
α, β > 0.
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Main Claim

Let us consider the limiting equation u′′(z) = F (u(z)) and assume:

• It has an odd kink solution u0(z) for z ∈ R such that u0(z) → u± as
z → ±∞.

• When u0(z) is continued for z ∈ C, the closest to real axis singularities
are located in quartets, e.g. in the upper half-plane at z± = ±α+ iβ,
α, β > 0.

There exists an infinite set of values {λn}n∈N, such that for each λn, the
nonlinear equation Lλn

u = F (u) admits a kink solution. Moreover, the
sequence {λn}n∈N satisfies the asymptotic law

k0(λn) ∼ (nπ + ϕ0) /α, n → ∞,

where ϕ0 is uniquely defined constant. Hence, λn → 0 as n → ∞.
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Behind Main Claim

Perturbation v(z) = u(z)− u0(z) satisfies the expanded equation

(Lλ − F ′(u0)) v = Hλ + N(v),

where Hλ is explicitly computed from u0 and N(v) is O(v2).
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where Hλ is explicitly computed from u0 and N(v) is O(v2).

• The homogeneous equation (Lλ − F ′(u0)) v = 0 has a pair of solutions
that behave like e±ik0(λ)z .

• To satisfy the solvability condition at the leading order, we set

J±(λ) :=
∫∞
−∞ e±ik(λ)zHλ(z)dz = 0
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Behind Main Claim

Perturbation v(z) = u(z)− u0(z) satisfies the expanded equation

(Lλ − F ′(u0)) v = Hλ + N(v),

where Hλ is explicitly computed from u0 and N(v) is O(v2).

• The homogeneous equation (Lλ − F ′(u0)) v = 0 has a pair of solutions
that behave like e±ik0(λ)z .

• To satisfy the solvability condition at the leading order, we set

J±(λ) :=
∫∞
−∞ e±ik(λ)zHλ(z)dz = 0

• By Darboux principle and asymptotic analysis (Murray, 1984), if
Hλ(z) ∼ C0λ

qe iπκ/2(z − z±)
κ, then

J±(λ) ∼
4πλq |C0|e−βk(λ)

Γ(−κ)|k(λ)|κ+1
cos(αk(λ) + π/2 − arg(C0)).
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Nonlocal double SG model

Example 7: nonlocal double sine-Gordon model

utt −
1

2λ

d

dx

∫
∞

−∞

exp

( |x − x ′|
λ

)
ux′(x

′) dx ′ = sin(u) + 2a sin(2u).

Refs: Phys. Rev. Lett. 112, 054103 (2014); Physica D 282, 16 (2014)

• As λ → 0, the 2π-kinks are given by:

u0(z) = π + 2arctan
[

1√
1+4a

sinh
(√

1+4a√
1−c2

z
)]

.

• Symmetric pairs of singularities exist for a > 0 at z± = ±α+ iβ:

α =

√
1− c2

2
√
1 + 4a

cosh
−1(1 + 8a), β =

π
√
1− c2

2
√
1 + 4a

.

• For fixed a > 0, there exist a discrete set of curve in the (c , λ) plane,
along which the 2π-kinks exist.
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Nonlocal double SG model

Curves c(λ) for a = 1/8.
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Nonlocal double SG model

The asymptotic law as n → ∞:

2αk0(λn) ∼ π(1 + 2n), ⇒ π(1 + 2n)λn = δ(a, c),

with ϕ0 = π/2.

1 + 2n 1 3 5 7 9 11
δ/(πλn) 3.7168 4.9763 6.3699 7.8595 9.4541 11.1396

Table: The values of δ/(πλn) for a = 1/8 and c = 0.1.
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Nonlocal double SG model

Stability experiment 1

Evolution of kink-like excitation (high energy).
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Nonlocal double SG model

Stability experiment 2

Evolution of kink-like excitation (low energy).
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Discrete φ4-φ6 model

Example 8: discrete φ4-φ6 model

utt − λ−2(u(x + λ)− 2u(x) + u(x − λ)) + u(1 − u2)(1 + γu2) = 0.

Refs: Phys. Rev. Lett. 112, 054103 (2014)

• As λ → 0, the kinks are given by:

u0(z) =
√
3+γ tanh(ηz)√

3(1+γ)−2γ tanh2(ηz)
, η =

√
1+γ√

2(1−c2)
.

• Symmetric pairs of singularities exist for γ > 0 at z± = ±α+ iβ:

α =

√
1− c2

2
√
1 + γ

cosh
−1

(
3 + 5γ

3 + γ

)
, β =

π
√
1− c2√

2(1 + a)
.

• For fixed γ > 0, there exist a discrete set of curve in the (c , λ) plane,
along which the kinks exist.
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Discrete φ4-φ6 model

The asymptotic law as n → ∞:

4αk0(λn) ∼ π(3 + 4n), ⇒ π(3 + 4n)λn = χ(γ, c),

with ϕ0 = 3π/4.

3 + 4n 3 7 11 15
χ/(πλn) 3.5303 7.3547 11.1520 15.0329

Table: The values of χ/(πλn) for γ = 5 and c = 0.6.
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Discrete φ4 models

Example 9: discrete φ4 model

utt − λ−2(u(x + λ)− 2u(x) + u(x − λ)) + u(x)
(
1− u(x)2

)
= 0.

Refs: Nonlinearity 19, 217 (2006)

• As λ → 0, the kinks are given by:

u0(z) = tanh(ηz), η = 1
2
√
1−c2

.

• Singularity exists at z = iπ
√
1− c2.

• No kinks exist for any c 6= 0.
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Discrete φ4 models

Example 10: another discrete φ4 model

utt − λ−2(u(x + λ)− 2u(x) + u(x − λ))

+
1

2
(u(x + λ) + u(x − λ))

(
1− 1

2
u(x + λ)2 − 1

2
u(x − λ)2

)
= 0.

Refs: Nonlinearity 19, 217 (2006)

• As λ → 0, the kinks are still given by:

u0(z) = tanh(ηz), η = 1
2
√
1−c2

.

• Singularity exists at z = iπ
√
1− c2.

• Three moving kinks exist for three values of c 6= 0 at fixed λ 6= 0.

30 / 31



Conclusion

Summary: in Examples 7-8, switching from λ = 0 to λ 6= 0 results in
selecting a countable set of velocities for radiationless kink propagation.

• The first ideas about existence of such countable sets go back to the
works of V.G. Gelfreich (1990,2008).

• No analytical proof of the main claim exists for now.

• It has been checked for several other models: triple sine-Gordon model,
fifth-order Korteweg-de Vries equation, saturable discrete nonlinear
Schrödinger equation, ...

• Apparently, it applies to more sophisticated examples, such as diatomic
Toda lattice
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