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Background

Motivations:
• Navier–Stokes equations in spherical coordinates
• Thin spherical layer confining the fluid motion
• Exact stationary solution for incompressible viscous fluidflows
• Stability and evolution of the stationary solution

Possible applications:
• oil on a metal ball
• ice melting on the Earth

surface
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Stationary solution

Exact solution of the stationary NS equations

ur = 0, uθ =
α

r sin θ
, uφ = 0, p = β −

α2

2r2 sin2 θ
,

where(α, β) are arbitrary parameters.

Properties:
• fluid flow from the North poleθ = 0 to the South poleθ = π

• azimuthal symmetry with respect toφ
• no flow along the radial coordinater

The exact solution is related to Darcy’s law on a sphere: see
Leandro, Miranda, Moraes, J. Phys. A: Math.Gen.39, 1619 (2006)
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Averaging theorem

Averaging theorem [Temam-Ziane, 1997]: In the limitε → 0, when
a thin spherical layer

Ω = {x ∈ R
3 : 1 < |x| < 1 + ε} ⊂ R

3

converges to a sphere

S = {(θ, φ) : 0 6 θ 6 π, 0 6 φ < 2π} ,

the strong global solution of the 3D NS equationsu(r, θ, φ, t)
converges to the strong unique global solution of the 2D NS
equations on the sphere

v(θ, φ, t) = lim
ε→0

1

ε

∫

1+ε

1

ru(r, θ, φ, t)dr = (0, vθ, vφ).
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Navier–Stokes equations

Navier–Stokes equations on the sphere:

∂vθ

∂t
−

vφω

sin θ
+

∂q

∂θ
= ν

(

∆Svθ −
vθ

sin2 θ
−

2 cos θ

sin2 θ

∂vφ

∂φ

)

,

∂vφ

∂t
+

vθω

sin θ
+

1

sin θ

∂q

∂φ
= ν

(

∆Svφ +
2 cos θ

sin2 θ

∂vθ

∂φ
−

vφ

sin2 θ

)

,

∂

∂θ
(sin θvθ) +

∂vφ

∂φ
= 0,

whereq is a static pressure,ω is the vorticity,ν is viscosity, and∆S

is the Laplace–Beltrami operator on sphereS.

This model was used in hydrodynamics since the works of
E. Blinova (1943) and Kochin, Kibel and Roze (1948).
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Reduction to linearized problem

The stationary solution for the NS equations on the sphere:

vθ =
α

sin θ
, vφ = 0, q = β.

Linearization

vθ =
1

sin θ
+ U(θ, φ)eλt, vφ = V (θ, φ)eλt, q = Q(θ, φ)eλt

Fourier series inφ:

U(θ, φ) =
∑

k∈Z

Uk(θ)e
ikφ, V (θ, φ) =

∑

k∈Z

Vk(θ)e
ikφ
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Stream function
Stream function formulation fork 6= 0:

Uk =
ik

sin θ
Ψk(θ), Vk = −Ψ′

k(θ)

Spectral problem fork 6= 0:

Φk = ∆kΨk, ν∆kΦk −
Φ′

k

sin θ
= λΦk,

where

∆k =
d2

dθ2
+

cos θ

sin θ

d

dθ
−

k2

sin2 θ
.
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Main results
For energy formulation, we require that

∫ π

0

(

|Uk|
2 + |Vk|

2
)

sin θdθ < ∞.

Theorem 1: Whenν > 0, the stationary flow isasymptotically stable
such that the spectrum of the linearized problem consists ofa set of
simple isolated negative eigenvaluesλ.

Theorem 2: If the intervalθ ∈ [0, π] is truncated byθ ∈ [θ0, π − θ0],
the spectrum of the linearized problem consists of a set of isolated
real negative eigenvalues for sufficiently largeν and any
0 < θ0 < π

2
.
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Analysis of eigenvalues

• Let x = cos θ, ǫ = 1/ν andµ = λ/ν. Then,

LkΨk = Φk, LkΦk + ǫΦ′

k = µΦk,

whereLk = d
dx

[

(1 − x2) d
dx

]

− k2

1−x2 is the associated Legendre
operator defined onx ∈ [−1, 1].

• Function space

‖Ψk‖
2

Hk
=

∫

1

−1

[

(1 − x2)|Ψ′

k(x)|2 +
k2

1 − x2
|Ψk(x)|2

]

dx < ∞,

such that

lim
x→±1

Ψk(x) = lim
x→±1

(1 − x2)Ψ′

k(x) = 0.
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Analysis of eigenvalues

• Since(Ψk, LkΨk) = −‖Ψk‖
2
Hk

, the kernel ofL is empty inHk

andΨk = L−1

k Φk.

• TransformationΦk =
(

1−x
1+x

)ǫ/4
ϕ(x) brings the closed equation

for ϕ(x):

d

dx

[

(1 − x2)
dϕ

dx

]

−
σ2

1 − x2
ϕ + s(s + 1)ϕ = 0,

whereσ =
√

k2 + ǫ2/4 > 0 andµ = −s(s + 1).

• By the ODE theory in regular singular pointsx = ±1, Ψ ∈ Hk

if and only if ϕ → (1 − x2)σ/2 asx → ±1. The singular
components(1 − x2)−σ/2 must be removed from the solution.

• The essential spectrum is empty (Dunford, Schwartz, 1963).
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Analysis of eigenvalues
• There exists a reduction to the hypergeometric equation

ϕ = (1 − x2)σ/2F (z) with z = (1 − x)/2, where the
hypergeometric function admits the power series atz = 0:

F (z;α, β, γ) = 1 +
αβ

γ1!
z +

α(α + 1)β(β + 1)

γ(γ + 1)2!
z2 + ...,

whereα = σ − s, β = σ + s + 1, andγ = σ + 1.
• The functionF (z;α, β, γ) with α + β − γ = σ > 0 diverges as

z → 1 unless the truncation of the power series occurs at
α = −n, n ∈ Z, such that

µn = −sn(sn + 1), sn = σ + n, n ∈ Z,

andFn(z) is a polynomial of degreen.
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Approximations of eigenvalues fork 6= 0

µ = −s(s + 1)

For ǫ > ǫ0 > 0 or ν < ν0 < ∞, real eigenvalues coalesce and split
to the complex domain withRe(λ) < 0.
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Analysis of eigenvalues fork = 0

• In the same variables,

L0Ψ0 = Φ0, Φ′

0 +
ǫ

1 − x2
Φ0 = µΨ′

0,

whereL0 = d
dx

[

(1 − x2) d
dx

]

is the Legendre operator.

• Function spaceH0 with the norm

‖Ψ0‖
2

H0
=

∫

1

−1

(1 − x2)|Ψ′

0(x)|2dx < ∞.

• The eigenvalueµ = 0 with the eigenfunctionsΦ0 = 0 and
Ψ0 = 1 is algebraically simple.
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Analysis of eigenvalues fork = 0

• TransformationΦ0 =
(

1−x
1+x

)ǫ/4
ϕ(x) brings the closed equation

for ϕ(x):

d

dx

[

(1 − x2)
dϕ

dx

]

−
ǫ2

4(1 − x2)
ϕ + s(s + 1)ϕ = 0,

with the relation

µΨ′

0(x) =

(

1 − x

1 + x

)ǫ/4 (

dϕ

dx
+

ǫ

2(1 − x2)
ϕ

)

,

whereµ = −s(s + 1).

• From the regular behavior atx → 1, it follows that
ϕ = (1 − x2)ǫ/2F (z;α, β, γ) with z = (1 − x)/2, α = ǫ/2 − s,
β = ǫ/2 + s + 1, andγ = ǫ/2 + 1.
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Analysis of eigenvalues fork = 0

• To study the behavior atx → −1, we use the relation

F (z;α, β, γ) = (1 − z)γ−α−βF (z; γ − α, γ − β, γ),

whereγ − α − β = −ǫ/2.

• When the power series forF (z; γ − α, γ − β, γ) is truncated
(for s = n), the solutionΨ0(x) is in H0 if ǫ < 2.

• Whenǫ ≥ 2, the solutionΨ0(x) is not inH0 for any solution
F (z;α, β, γ).
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Analysis of eigenvalues fork = 0

• To study the behavior atx → −1, we use the relation

F (z;α, β, γ) = (1 − z)γ−α−βF (z; γ − α, γ − β, γ),

whereγ − α − β = −ǫ/2.

• When the power series forF (z; γ − α, γ − β, γ) is truncated
(for s = n), the solutionΨ0(x) is in H0 if ǫ < 2.

• Whenǫ ≥ 2, the solutionΨ0(x) is not inH0 for any solution
F (z;α, β, γ).

⇒ Where are eigenvalues forǫ ≥ 2???
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Approximations of eigenvalues fork = 0

If µn = −sn(sn + 1) are eigenvalues of the Dirichlet problem for
x0 < 1, then

lim
x0→1

sn = 1 + n for 0 ≤ ǫ ≤ 2, lim
x0→1

sn =
ǫ

2
+ n for ǫ ≥ 2.

µ = −s(s + 1): ǫ = 1 (left) andǫ = 4 (right)
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Open problem for k = 0

Consider the time-dependent heat equation

∂v

∂t
+

1

sin2 θ

∂

∂θ
(sin θ v) = ν

(

∂2v

∂θ2
+

cos θ

sin θ

∂v

∂θ
−

v

sin2 θ

)

• The nonlinear Navier–Stokes equations on the sphere reduces
exactly to the linear heat equation for

vθ =
1

sin θ
, vφ = v(θ, t), q = q(θ, t).

• Whenv(θ, t) = −Ψ′
0(θ)e

λt, the spectrum of the linear operator
is empty in space with

∫ π

0
|v(θ, t)|2 sin θdθ < ∞ for ν ≤ 1

2
.

• Is the Cauchy problem well-posed forν ≤ 1

2
?
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Summary
• Navier–Stokes equations on the sphere ariseasymptotically

from the three-dimensional NS equations for a thin layer.

• Exact stationary solutions of the NS equations in spherical
coordinates are available.

• Stability of exact stationary solutions can be understood from
the linearized problem, which admits reduction to the
associated Legendre and hypergeometric equations.

• Convergence of eigenvalues of the associated Legendre
equations on the truncated domains may have interesting
limiting features.

• Well-posedness of time-dependent linearized equations isan
interesting further direction of studies.
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