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Background

Motivations:
* Navier—Stokes equations in spherical coordinates
* Thin spherical layer confining the fluid motion
* Exact stationary solution for incompressible viscous fllogvs
 Stability and evolution of the stationary solution

Possible applications:
* oil on a metal ball

* ice melting on the Earth
surface




Stationary solution

Exact solution of the stationary NS equations
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where(a, 3) are arbitrary parameters.

Properties:
* fluid flow from the North pole = 0 to the South polé = =
* azimuthal symmetry with respect 0
* no flow along the radial coordinate

The exact solution is related to Darcy’s law on a sphere: see
Leandro, Miranda, Moraes, J. Phys. A: Math.Gg$).1619 (2006)



Averaging theorem

[Temam-Ziane, 1997]: In the limit — 0, when
a thin spherical layer

Q={xeR’:1<|x|<1+e}CR’
converges to a sphere
S={(0,¢): 0<O0<7m, 0<¢<2n},

the strong global solution of the 3D NS equatians, 6, ¢, t)
converges to the strong unique global solution of the 2D NS
equations on the sphere

1 1+¢
v(0,p,t) = lim — ru(r, 0, ¢,t)dr = (0, vy, vy).
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Navier—Stokes equations

Navier—Stokes equations on the sphere:
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whereq Is a static pressure; is the vorticity,v is viscosity, and\ g
IS the Laplace—Beltrami operator on sphéte

This model was used in hydrodynamics since the works of
E. Blinova (1943) and Kochin, Kibel and Roze (1948).



Reduction to linearized problem

The stationary solution for the NS equations on the sphere:
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Stream function

Stream function formulation faot £ 0:
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Spectral problem fok # 0:
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Main results

For energy formulation, we require that

/ (1U]* + |Vi|?) sin 0df < oo.
0

. Whenv > 0, the stationary flow issymptotically stable
such that the spectrum of the linearized problem consisasseft of
simple isolated negative eigenvalues

. If the intervald € |0, ] is truncated by € [0y, 7 — 6],
the spectrum of the linearized problem consists of a setidtisd
real negative eigenvalues for sufficiently largand any
0 <ty <3



Analysis of eigenvalues

* Letx =cosf,e=1/vandu = \/v. Then,
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whereL;, = < [(1 —2?) 4] — £ is the associated Legendre

1—x2

operator defined om € [—1, 1].

* Function space

2

1__:£2Pyk($)Fz dx < 00,

ol = [ [0 - s +

1

such that

lim Wy(z) = lim (1 —2%)W¥),(z) = 0.

r—=+1 r—=+1



Analysis of eigenvalues

Since(¥y, Ly Vi) = —|| W7, , the kernel ofL is empty inH,,
andV, = L, ' ®,.

Transformationd, = (};—i)eﬂ ¢ () brings the closed equation
for p(x):

d doy o>
S 1 — 27| 1 —
- [( x )dl,] e tsst =0,

wheres = \/k2 + ¢2/4 > 0 andu = —s(s + 1).

By the ODE theory in regular singular points= +1, ¥ € H,
if and only if o — (1 — 2%)?/?2 asx — +1. The singular
componentsl — z2)~°/2 must be removed from the solution.

The essential spectrum is empty (Dunford, Schwartz, 1963).



Analysis of eigenvalues

There exists a reduction to the hypergeometric equation
0 = (1 —22)°/2F(z) with z = (1 — x)/2, where the
hypergeometric function admits the power series at 0:

F(z;a,0,7) :1—|—%z+&(a+1)5(5+1)z2+...
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whereao =0 — s, =0+ s+ 1,andy = o + 1.

The functionF'(z; «, 8, v) with oo + § — v = ¢ > 0 diverges as
2z — 1 unless the truncation of the power series occurs at
a = —n,n € 7, such that

Un = —5Sp(sp+1), s,=0c+n, neEw,

andF,,(z) is a polynomial of degree.



Approximations of eigenvalues fork = 0

p=—s(s+1)

Fore > ¢y > 00Orv < 1y < oo, real eigenvalues coalesce and split
to the complex domain witRe(\) < 0.



Analysis of eigenvalues fork = 0

* |n the same variables,

€

LO\IJO = (I)(), (I)f) + (I)O — M\ij)a

1 — z2

whereL, = -~ |(1 — 2%)-%] is the Legendre operator.

* Function spacé{, with the norm

1
1902, — / (1= 2%)|¥h(a) P < o

* The eigenvalue. = 0 with the eigenfunction®, = 0 and
U, = 1 Is algebraically simple.



Analysis of eigenvalues fork = 0

* Transformationb, = (1—_5)6/4 ¢(x) brings the closed equation

1+
for p(x):
d dy €2
- [( X )dl,] i _$2)¢+S(S+ ) =0,

with the relation

e/4
l—=z dy €
U (x) = —
H(2) <1+x> (dx+2(1—x2)gp>’

wherey = —s(s + 1).

* From the regular behavior at— 1, it follows that
o= 1-2)"F(z;a,8,y)Withz = (1 — 2)/2, 0 = ¢/2 — s,
B=¢€/24+s+1,andy =¢/2 + 1.



Analysis of eigenvalues fork = 0

* To study the behavior at — —1, we use the relation

F(za,8,7) = (1= 2)7"*PF(zv — a,7 = 8,7),
wherey —a — 3 = —¢€/2.

* When the power series fdf(z;v — «,v — 3, ) is truncated
(for s = n), the solution¥(x) isin Hy if € < 2.

* Whene > 2, the solutionV(z) is not in H, for any solution
F(za,8,7).



Analysis of eigenvalues fork = 0

* To study the behavior at — —1, we use the relation

F(za,8,7) = (1= 2)7"*PF(zv — a,7 = 8,7),
wherey —a — 3 = —¢€/2.

* When the power series fdf(z;v — «,v — 3, ) is truncated
(for s = n), the solution¥(x) isin Hy if € < 2.

* Whene > 2, the solutionV(z) is not in H, for any solution
F(za,8,7).

— er> 2?77?77



Approximations of eigenvalues fork = 0

If 1, = —s,(s, + 1) are eigenvalues of the Dirichlet problem for
ro < 1, then

. , €
lim s, =1+n for 0<e<2, llmsn:§+n for e > 2.

ro—1 ro—1

= —s(s+1): e=1(left) ande = 4 (right)



Open problem for k = 0

Consider the time-dependent heat equation
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* The nonlinear Navier—Stokes equations on the sphere reduce
exactly to the linear heat equation for

1

sin O’

Vg = vy = v(0,1), q=q(0,1).

* Whenuv(0,t) = - (0)e, the spectrum of the linear operator
is empty in space withf " [v(6, t)|? sin 8df < oo for v < .

* |s the Cauchy problem well-posed for< %’?



Summary

Navier—Stokes equations on the sphere asyaptotically
from the three-dimensional NS equations for a thin layer.

Exact stationary solutions of the NS equations in spherical
coordinates are available.

Stability of exact stationary solutions can be underst@oohf
the linearized problem, which admits reduction to the
associated Legendre and hypergeometric equations.

Convergence of eigenvalues of the associated Legendre
equations on the truncated domains may have interesting
limiting features.

Well-posedness of time-dependent linearized equatioas is
Interesting further direction of studies.



	Background
	Stationary solution
	Averaging theorem
	Navier--Stokes equations
	Reduction to linearized problem
	Stream function
	Main results
	Analysis of eigenvalues
	Analysis of eigenvalues
	Analysis of eigenvalues
	Approximations of eigenvalues for $lightyellow k 
eq 0$
	Analysis of eigenvalues for $lightyellow k = 0$
	Analysis of eigenvalues for $lightyellow k = 0$
	Analysis of eigenvalues for $lightyellow k = 0$
	Analysis of eigenvalues for $lightyellow k = 0$

	Approximations of eigenvalues for $lightyellow k = 0$
	Open problem for $lightyellow k = 0$ 
	Summary

