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Background
Motivations:
• Navier–Stokes equations in spherical coordinates
• Thin spherical layer confining the fluid motion
• Exact stationary solution for incompressible viscous fluid flows
• Stability and evolution of the stationary solution

Possible applications:
• oil on a metal ball
• ice melting on the Earth

surface
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Stationary solution
Exact solution of the stationary NS equations

ur = 0, uθ =
α

r sin θ
, uφ = 0, p = β − α2

2r2 sin2 θ
,

where (α, β) are arbitrary parameters.

Properties:
• fluid flow from the North pole θ = 0 to the South pole θ = π

• azimuthal symmetry with respect to φ
• no flow along the radial coordinate r
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Similar studies in fluid mechanics
• eigenfunction decompositions in spherical harmonics by

Blinova (1943,1956)
• spectral approximations in spherical coordinates by Ben-Yu

(1995), Furnier et al. (2004), Mohseni-Colonius (2000),
Simonnet (2000), and many others

• vortex dynamics on a sphere by Boatto-Cabral (2003), Crowdy
(2006)

• Darcy’s law in curved spaces by Parision et al. (2001),
Leandro-Miranda-Moraes (2006)

• averaging technique for Navier–Stokes equations in domains
with a thin layer by Temam-Ziane (1997), Iftimie-Raugel
(2001)
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Averaging theorem
Averaging theorem [Temam-Ziane, 1997]: In the limit ε→ 0, when
a thin spherical layer

Ω = {x ∈ R3 : 1 < |x| < 1 + ε} ⊂ R3

converges to a sphere

S = {(θ, φ) : 0 6 θ 6 π, 0 6 φ < 2π} ,

the strong global solution of the 3D NS equations u(r, θ, φ, t)
converges to the strong unique global solution of the 2D NS
equations on the sphere

v(θ, φ, t) = lim
ε→0

1

ε

∫ 1+ε

1

ru(r, θ, φ, t)dr = (0, vθ, vφ).
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Navier–Stokes equations
Navier–Stokes equations on the sphere:

∂vθ
∂t
− vφω

sin θ
+
∂q

∂θ
= ν

(
∆Svθ −

vθ
sin2 θ

− 2 cos θ

sin2 θ

∂vφ
∂φ

)
,

∂vφ
∂t

+
vθω

sin θ
+

1

sin θ

∂q

∂φ
= ν

(
∆Svφ +

2 cos θ

sin2 θ

∂vθ
∂φ
− vφ

sin2 θ

)
,

∂

∂θ
(sin θvθ) +

∂vφ
∂φ

= 0,

where q is a static pressure, ω is the vorticity, ν is viscosity, and ∆S

is the Laplace–Beltrami operator on sphere S.
The stationary solution persists the asymptotic reduction

vθ =
α

sin θ
, vφ = 0, q = β.
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Reduction to linearized problem
Linearization

vθ =
1

sin θ
+ U(θ, φ)eλt, vφ = V (θ, φ)eλt, q = Q(θ, φ)eλt

Fourier series in φ:

U(θ, φ) =
∑

k∈Z
Uk(θ)e

ikφ, V (θ, φ) =
∑

k∈Z
Vk(θ)e

ikφ

Stream function formulation Uk = ik
sin θ

Ψk(θ) and Vk = −Ψ′k(θ) for
k 6= 0 results in the spectral problem

Φk = ∆kΨk, ν∆kΦk −
Φ′k

sin θ
= λΦk.
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Function spaces
For k = 0, U0 = Q0 = 0 (translations in α and β are excluded) and
V0 = −Ψ′0(θ) solves the third-order spectral problem

d

dθ
(ν∆0Ψ0 − λΨ0)− 1

sin θ
∆0Ψ0 = 0,

where ∆k = d2

dθ2 + cos θ
sin θ

d
dθ
− k2

sin2 θ
.

For applications, we require that
∫ π

0

(
|Uk|2 + |Vk|2

)
sin θdθ <∞,

or, in the stream function formulation, for any k
∫ π

0

(
|Ψ′k|2 +

k2|Ψk|2
sin2 θ

)
sin θdθ <∞.
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Main results
Theorem 1: When ν > 0, the stationary flow is asymptotically stable
with respect to symmetry-breaking perturbations in the sense that
the spectrum of the linearized problem with k 6= 0 consists of a set
of isolated real negative eigenvalues λ of finite multiplicities.

Theorem 2: The stationary flow is asymptotically stable with respect
to symmetry-preserving perturbations with k = 0 for ν ≥ 1

2
. The

spectrum of the linearized problem is empty for 0 < ν < 1
2
.

Theorem 3: If the interval θ ∈ [0, π] is truncated by θ ∈ [θ0, π − θ0],
the spectrum of the linearized problem consists of a set of isolated
real negative eigenvalues for sufficiently large ν and any
0 < θ0 <

π
2
.
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Analysis: k 6= 0

• Let x = cos θ, ε = 1/ν and µ = λ/ν. Then,

LkΨk = Φk, LkΦk + εΦ′k = µΦk,

where Lk = d
dx

[
(1− x2) d

dx

]
− k2

1−x2 is the associated Legendre
operator defined on x ∈ [−1, 1].

• Function space

‖Ψk‖2
Hk

=

∫ 1

−1

[
(1− x2)|Ψ′k(x)|2 +

k2

1− x2
|Ψk(x)|2

]
dx <∞,

such that

lim
x→±1

Ψk(x) = lim
x→±1

(1− x2)Ψ′k(x) = 0.
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Analysis: k 6= 0

• Since (Ψk, LkΨk) = −‖Ψk‖2
Hk

, the kernel of L is empty in Hk

and Ψk = L−1
k Φk.

• Transformation Φk =
(

1−x
1+x

)ε/4
ϕ(x) brings the closed equation

for ϕ(x):

d

dx

[
(1− x2)

dϕ

dx

]
− σ2

1− x2
ϕ+ s(s+ 1)ϕ = 0,

where σ =
√
k2 + ε2/4 > 0 and µ = −s(s+ 1).

• By the ODE theory in regular singular points x = ±1, Ψ ∈ Hk

if and only if ϕ→ (1− x2)σ/2 as x→ ±1. The singular
components (1− x2)−σ/2 must be removed from the solution.

• The essential spectrum is empty (Dunford, Schwartz, 1963).
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Analysis: k 6= 0

• There exists a reduction to the hypergeometric equation
ϕ = (1− x2)σ/2F (z) with z = (1− x)/2, where the
hypergeometric function admits the power series at z = 0:

F (z;α, β, γ) = 1 +
αβ

γ1!
z +

α(α + 1)β(β + 1)

γ(γ + 1)2!
z2 + ...,

where α = σ − s, β = σ + s+ 1, and γ = σ + 1.
• The function F (z;α, β, γ) with α + β − γ = σ > 0 diverges as
z → 1 unless the truncation of the power series occurs at
α = −n, n ∈ Z, such that

µn = −sn(sn + 1), sn = σ + n, n ∈ Z,

and Fn(z) is a polynomial of degree n.
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Analysis: k = 0

• In the same variables,

L0Ψ0 = Φ0, Φ′0 +
ε

1− x2
Φ0 = µΨ′0,

where L0 = d
dx

[
(1− x2) d

dx

]
is the Legendre operator.

• Function space H0 with the norm

‖Ψ0‖2
H0

=

∫ 1

−1

(1− x2)|Ψ′0(x)|2dx <∞.

• The eigenvalue µ = 0 with the eigenfunctions Φ0 = 0 and
Ψ0 = 1 is algebraically simple.

• The essential spectrum is empty (Dunford, Schwartz, 1963).
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Analysis: k = 0

• Transformation Φ0 =
(

1−x
1+x

)ε/4
ϕ(x) brings the closed equation

for ϕ(x):

d

dx

[
(1− x2)

dϕ

dx

]
− ε2

4(1− x2)
ϕ+ s(s+ 1)ϕ = 0,

with the relation

µΨ′0(x) =

(
1− x
1 + x

)ε/4(
dϕ

dx
+

ε

2(1− x2)
ϕ

)
,

where µ = −s(s+ 1).
• From the regular behavior at x→ 1, it follows that
ϕ = (1− x2)ε/2F (z;α, β, γ) with z = (1− x)/2, α = ε/2− s,
β = ε/2 + s+ 1, and γ = ε/2 + 1.
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Analysis: k = 0

• To study the behavior at x→ −1, we use the relation

F (z;α, β, γ) = (1− z)γ−α−βF (z; γ − α, γ − β, γ),

where γ − α− β = −ε/2.
• When the power series for F (z; γ − α, γ − β, γ) is truncated

(for s = n), the solution Ψ0(x) is in H0 if ε < 2.
• When ε ≥ 2, the solution Ψ0(x) is not in H0 for any solution
F (z;α, β, γ).

⇒Where are eigenvalues for ε ≥ 2???
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Convergence results for k 6= 0

The rescaled eigenvalue problem is

LkΨk = Φk, LkΦk + εΦ′k = µΦk,

on x ∈ [−x0, x0] for 0 < x0 < 1 subject to the boundary conditions

Ψk(±x0) = Ψ′k(±x0) = 0

• The spectrum for ε = 0 consists of real negative isolated
eigenvalues µ with at most two independent eigenfunctions.

• By the perturbation theory, the spectrum remains on the real
axis for sufficiently small ε 6= 0.

• Eigenvalues µ for x0 < 1 converges to simple eigenvalues µ as
x0 → 1 for sufficiently small ε (Bailey et al., 1993).
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Approximations of eigenvalues for k 6= 0

µ = −s(s+ 1)

For ε > ε0 > 0 or ν < ν0 <∞, real eigenvalues coalesce and split
to the complex domain with Re(λ) < 0.
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Convergence results for k = 0

The transformation

ϕ(x) =
√

1− x2χ′(x)− ε+ 2x

2
√

1− x2
χ(x),

brings the associated Legendre equation to the form

d

dx

[
(1− x2)

dχ

dx

]
− ε2 + 4 + 4εx

4(1− x2)
χ = µχ,

where

Ψ′0(x) =

(
1− x
1 + x

)ε/4
χ(x)√
1− x2

.

If Ψ0(x) satisfies Neumann boundary conditions, then χ(x) satisfies
Dirichlet boundary conditions on x ∈ [−x0, x0] with 0 < x0 < 1.
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Approximations of eigenvalues for k = 0

If µn = −sn(sn + 1) are eigenvalues of the Dirichlet problem for
x0 < 1, then limx0→1 sn = 1 + n for 0 ≤ ε ≤ 2 and
limx0→1 sn = ε

2
+ n for ε ≥ 2.

µ = −s(s+ 1): ε = 1 (left) and ε = 4 (right)
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Open problem for k = 0

Consider the time-dependent heat equation

∂v

∂t
+

1

sin2 θ

∂

∂θ
(sin θ v) = ν

(
∂2v

∂θ2
+

cos θ

sin θ

∂v

∂θ
− v

sin2 θ

)

• The nonlinear Navier–Stokes equations on the sphere reduces
exactly to the linear heat equation for

vθ =
1

sin2 θ
, vφ = v(θ, t), q = q(θ, t).

• When v(θ, t) = −Ψ′0(θ)eλt, the spectrum of the linear operator
is empty in space with

∫ π
0
|v(θ, t)|2 sin θdθ <∞ for ν ≤ 1

2
.

• Is the Cauchy problem well-posed for ν ≤ 1
2
?
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Summary
• Navier–Stokes equations on the sphere arise asymptotically

from the three-dimensional NS equations for a thin layer.

• Exact stationary solutions of the NS equations in spherical
coordinates are available.

• Stability of exact stationary solutions can be understood from
the linearized problem, which admits reduction to the
associated Legendre and hypergeometric equations.

• Convergence of eigenvalues of the associated Legendre
equations on the truncated domains may have interesting
limiting features.

• Well-posedness of time-dependent linearized equations is an
interesting further directions of studies.
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