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Stability of critical points in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

du

dt
= J H ′(u), u(t) ∈ X

where X is the phase space, J : X 7→ X is a skew-adjoint operator with a
bounded inverse, and H : X → R is the Hamilton function.

Assume existence of a critical point u0 ∈ X such that H ′(u0) = 0.

Perform linearization u(t) = u0 + veλt , where λ is the spectral
parameter and v ∈ X satisfies the spectral problem

JH ′′(u0)v = λv ,

where H ′′(u0) : X → X is a self-adjoint Hessian operator.
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Main Question

Consider the spectral problem:

JH ′′(u0)v = λv , v ∈ X .

Question: Is there a relation between unstable eigenvalues of JH ′′(u0) and
eigenvalues of H ′′(u0)?

Assumptions of the negative index theory:

The spectrum of H ′′(u0) is strictly positive except for finitely many
negative and zero eigenvalues of finite multiplicity.

The spectrum of JH ′′(u0) is purely imaginary except for finitely many
unstable eigenvalues.

Multiplicity of the zero eigenvalue of JH ′′(u0) is given by the number
of parameters in u0 (symmetries).
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Answer for gradient systems

For a gradient system:

du

dt
= −F ′(u) ⇒ λv = −F ′′(u0)v ,

there exists the exact relation between unstable eigenvalues of −F ′′(u0)
and negative eigenvalues of F ′′(u0).

Theorem

The number of unstable eigenvalues of −F ′′(u0) is equal to the number of

negative eigenvalues of F ′′(u0).

What is about Hamiltonian systems?

λv = JH ′′(u0)v , v ∈ X .

Quadruple Symmetry: If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.
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Stability Theorems for Hamiltonian Systems

Consider the spectral stability problem:

JH ′′(u0)v = λv , v ∈ X ,

under the same assumptions on J and H ′′(u0).

Stability Theorem [Grillakis–Shatah–Strauss (1990)]

Assume no symmetries/zero eigenvalues of H ′′(u0). If H ′′(u0) has no
negative eigenvalues, then JH ′′(u0) has no unstable eigenvalues and
u0 is linearly and nonlinearly stable.

Assume zero eigenvalue of H ′′(u0) of multiplicity N and related N

symmetries/conserved quantities. If H ′′(u0) has no negative
eigenvalues under N constraints, then JH ′′(u0) has no unstable
eigenvalues and u0 is orbitally stable.
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Negative Index Theorem [Kapitula–Promislow (2013)]

Assume no symmetries/zero eigenvalues of H ′′(u0). Then,

Nre(JH
′′(u0)) + 2Nc(JH

′′(u0)) + 2N−
im(JH ′′(u0)) = Nneg(H

′′(u0)) <∞,

where

Nre - number of real unstable eigenvalues;

2Nc - number of complex unstable eigenvalues;

2N−
im - number neutrally stable eigenvalues of negative Krein signature.

Definition

Suppose that λ ∈ iR is a simple isolated eigenvalue of JH ′′(u0) with the
eigenvector v . Then, the sign of the quadratic form

〈H ′′(u0)v , v〉L2 = λ〈J−1v , v〉L2

is called the Krein signature of the eigenvalue λ.
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Example: two coupled oscillators
Consider energy

H =
1

2
(y2

1 + y2
2 ) +

1

2
(ω2

1x
2
1 + ω2

2x
2
2 )

The quadratic form for H has four positive eigenvalues.

The two oscillators are stable:














ẋ1 = y1,

ẋ2 = y2,

ẏ1 = −ω2
1x1,

ẏ2 = −ω2
2x2,

⇒
{

ẍ1 + ω2
1x1 = 0,

ẍ2 + ω2
2x2 = 0.

No negative eigenvalues of H implies no unstable eigenvalues of JH, or

Nunstable(JH) = 0 = Nneg(H)
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Example: two coupled oscillators

Consider energy

H =
1

2
(y2

1 + y2
2 ) +

1

2
(ω2

1x
2
1 − λ2

2x
2
2 )

The quadratic form for H has three positive and one negative eigenvalues.

One of the two oscillators is unstable:














ẋ1 = y1,

ẋ2 = y2,

ẏ1 = −ω2
1x1,

ẏ2 = λ2
2x2,

⇒
{

ẍ1 + ω2
1x1 = 0,

ẍ2 − λ2
2x2 = 0.

Negative index count:

Nre(JH) = 1 = Nneg(H)
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Example: two coupled oscillators

Consider energy

H =
1

2
(y2
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1

2
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1x
2
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2x
2
2 )
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
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ẋ2 = y2,
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Example: two coupled oscillators

Consider energy

H =
1

2
(y2

1 − y2
2 ) +

1

2
(ω2

1x
2
1 − ω2

2x
2
2 )

The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are nevertheless stable:













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ẏ1 = −ω2
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Example: two coupled oscillators

Consider energy

H =
1

2
(y2

1 − y2
2 ) + ω2x1x2

The quadratic form for H has two positive and two negative eigenvalues.

The two oscillators are unstable with a quadruplet of complex eigenvalues:















ẋ1 = y1,

ẋ2 = −y2,

ẏ1 = −ω2x2,

ẏ2 = −ω2x1,

⇒
{

ẍ1 + ω2x2 = 0,
ẍ2 − ω2x1 = 0,

⇒ x
(4)
1 + ω4x1 = 0.

Negative index count:

2Nc(JH) = 2 = Nneg(H)
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Integrable PDEs
Many integrable PDEs can be formulated as Hamiltonian dynamical
systems in the form:

du

dt
= J H ′(u), u(t) ∈ X

where X ⊂ L2 is the phase space, J∗ = −J represents the symplectic
structure, and H : X → R is the Hamilton function.

Example: Korteweg–de Vries (KdV) equation

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0, u(t, x) : R× R → R

Hamiltonian system in the form

du

dt
=

∂

∂x

δH

δu
, where H(u) =

1

2

∫

R

[

(

∂u

∂x

)2

− 2u3

]

dx .
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Nonlinear Schrödinger equation
Example: nonlinear Schrödinger (NLS) equation

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u = 0, u(t, x) : R× R → C

Hamiltonian system in the form

du

dt
= i

δH

δū
, where H(u) =

1

2

∫

R

[

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

− 2|u|4
]

dx .

In real variables (p, q) for u = p + iq, the NLS is formulated as

d

dt

[

p

q

]

=

[

0 1
−1 0

]

[

δH
δp
δH
δq

]

,

where

H(u) =
1

2

∫

R

[

p2
x + q2

x − 2(p2 + q2)4
]

dx .
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Stability of critical points
For the Hamiltonian system

du

dt
= J H ′(u), u(t) ∈ X

Assume existence of a critical point u0 ∈ X such that H ′(u0) = 0.

Perform linearization u(t) = u0 + veλt , where λ is the spectral
parameter and v ∈ X satisfies the spectral problem

JH ′′(u0)v = λv ,

where H ′′(u0) : X → X is a self-adjoint Hessian operator.

Assumptions of the negative index theory:

The spectrum of H ′′(u0) is strictly positive except for finitely many
negative and zero eigenvalues of finite multiplicity.

The spectrum of JH ′′(u0) is purely imaginary except for finitely many
unstable eigenvalues.
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The defocusing nonlinear Schrödinger equation
The cubic NLS equation

iψt + ψxx − |ψ|2ψ = 0

has long been known for modulational stability of periodic waves.

Periodic waves are of the form ψ(x , t) = u0(x)e
−it , where

u′′0 (x) + (1 − |u0|2)u0 = 0

has the exact solution u0(x) =
√

1 − Esn
(

x
√

1+E√
2

;
√

1−E
1+E

)

with E ∈ (0, 1).

−1 −0.5 0 0.5 1
−0.8

−0.4

0

0.4

0.8

u
0

du
0/d

 x
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Orbital stability of periodic waves in H
1
per

Periodic waves are constrained minimizers of energy in H1
per:

E (ψ) =

∫
[

|ψx |2 +
1

2
(1 − |ψ|2)2

]

dx

under fixed values of

Q(ψ) =

∫

|ψ|2dx , M(ψ) =
i

2

∫

(ψ̄ψx − ψψ̄x)dx ,

if the period of perturbations coincides with the period of waves.
[Gallay–Haragus (2007)]

However, periodic waves are not constrained minimizers of E if the period
of perturbations is N multiple to the period of waves. Moreover, the
number of negative eigenvalues of E becomes unbounded if N → ∞.

Main Question: how to justify rigorously modulational stability of the
periodic waves with respect to long perturbations?
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Orbital stability of periodic waves in H
2
per

Periodic waves are critical points of the higher-order energy in H2
per:

R(ψ) =

∫
[

|ψxx |2 + 3|ψ|2|ψx |2 +
1

2
(ψ̄ψx + ψψ̄x)

2 +
1

2
|ψ|6

]

dx .

They are constrained minimizers of R under fixed Q, M for co-periodic
perturbations and are saddle points of R for N-multiple perturbations.

Bottman–Deconinck–Nivala (2011): there exists a range of values for
parameter c such that the energy functional Λc := R − cE is positively
definite at the periodic wave u0.

Gallay–Pelinovsky (2015): For all E ∈ (0, 1), the second variation of Λc at
the periodic wave u0 is nonnegative for every perturbations in H2 only if
c ∈ [c−, c+] with

c± := 2 ± 2κ

1 + κ2
, κ =

√

1 − E
1 + E .

Moreover, it is strictly positive up to symmetries in (c−, c+) if E is small.
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Theorem (Gallay–P (2015))

For all E ∈ (0, 1), the second variation of Λc at the periodic wave u0 is

nonnegative for every perturbation in H2 only if c ∈ [c−, c+]. Moreover, it

is strictly positive up to symmetries in (c−, c+) if E is small.
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−

Figure: (E , c)-plane for positivity of the second variation of Λc .
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A simple perturbative argument

Using the decomposition ψ = u0 + u + iv with real-valued perturbation
functions u and v , we can write

Λc(ψ)− Λc(u0) = 〈K+(c)u, u〉L2 + 〈K−(c)v , v〉L2 + cubic terms

where
K+(c)∂xu0 = 0 and K−(c)u0 = 0.

If E = 1, we have periodic wave of zero amplitude u0 = 0, for which

〈K±(c)u, u〉L2 =

∫

R

[

u2
xx − cu2

x + (c − 1)u2
]

dx

=

∫

(

uxx +
c

2
u
)2

dx −
(

1 − c

2

)2
∫

u2dx .

Then, 〈K±(c)u, u〉L2 ≥ 0 if c = 2. By perturbative computations, one can
find (c−, c+) near c = 2 for E < 1.
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Orbital stability of periodic waves in H
2
Nper

Theorem (Gallay–P (2015))

Assume that ψ0 ∈ H2
Nper and consider the global-in-time solution ψ to the

cubic NLS equation with initial data ψ0. For any ǫ > 0, there is δ > 0 s.t. if

‖ψ0 − u0‖H2

Nper
≤ δ,

then, for any t ∈ R, there exist numbers ξ(t) and θ(t) such that

‖e i(t+θ(t))ψ(·+ ξ(t), t)− u0‖H2

Nper
≤ ǫ.

Moreover, ξ, θ are continuous and |ξ̇(t)|+ |θ̇(t)| ≤ Cǫ.

Remark: N-periodic perturbations are considered to get coercivity of the
Lyapunov function, since the gap between zero and first positive eigenvalue
shrinks to zero as N → ∞.
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The Kadomtsev–Petviashvili (KP) equation

It is a 2D generalization of the Korteweg-de Vries (KdV) equation:

(ut + 6uux + uxxx)x = ±uyy .

The plus/minus sign corresponds to KP-I/KP-II equations.
KP stands for B. Kadomtsev and V.I. Petviashvili, who derived this
equation in 1970 to study transverse stability of 1D travelling waves.

Each sign is applicable as a model for fluid dynamics:

KP-I for high surface tension (e.g., oil);

KP-II for low surface tension (e.g., water).
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1D periodic travelling waves

1D wave satisfies the KdV equation

ut + 6uux + uxxx = 0.

Periodic travelling waves u = φ(x + ct) are found from the ODE:

cφ(x) + 3φ(x)2 + φ′′(x) = 0,

solutions are available with the Jacobian elliptic function cn.

KdV cnoidal waves are linearly and nonlinearly stable:

N. Bottman, B. Deconinck, DCDS A (2009)

B. Deconinck, T. Kapitula, Physics Letters A (2010)

M. Nivala, B. Deconinck, Physica D (2010)
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Transverse stability of periodic waves

Transverse stability of periodic waves is determined for small 2D
perturbations w :

(wt + cwx + 6(φ(x)w)x + wxxx)x = ±wyy .

or for w(x , y , t) = W (x)eλt+ipy by the spectral problem

λWx + cWxx + 6(φ(x)W )xx +Wxxxx ± p2W = 0.

Functional-analytic results in the recent literature:

KP-I: Periodic and solitary waves are transversely unstable
[Johnson–Zumbrun (2010); Rousset–Tzvetkov (2011); Hakkaev (2012)]

KP-II: Solitary waves are transversely stable
[Mizumachi–Tzvetkov (2012); T. Mizumachi (2015) (2017)]

KP-II: Stability of periodic waves is open [M. Haragus (2010)].
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Main result for KP-II

Rewrite the spectral problem as Ac,p(λ)W = 0, where

Ac,p(λ)W := λWx + cWxx + 6(φ(x)W )xx +Wxxxx − p2W .

Theorem (M.Haragus–J.Li–D.P, 2017)

For every p 6= 0, the linear operator Ac,p(λ) is invertible in Cb(R) for any

λ ∈ C with Reλ > 0. Consequently, the periodic travelling wave is

transversely spectrally stable with respect to 2D bounded perturbations.

Forgotten results on spectral transverse stability of periodic waves in KP-II:

E.A. Kuznetsov, M.D. Spector, and G. E. Falkovich, Physica D (1984).

M.D. Spector, Sov. Phys. JETP (1988).

Eigenfunctions of spectral problem are computed explicitly and
completeness of eigenfunction is analyzed formally.
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Conserved quantities for KP-II equation

KP-II
(ut + 6uux + uxxx)x + uyy = 0.

is a Hamiltonian system with conserved momentum

Q(u) =
1

2

∫

u2dxdy

and energy

E (u) =
1

2

∫

[

u2
x − 2u3 − (∂−1

x uy )
2
]

dxdy .

In particular,

∂u

∂t
=

∂

∂x

δE

δu
, where

δE

δu
= −uxx − 3u2 − ∂−2

x uyy .

E (u) is sign-indefinite near u = 0 ⇒ the energy method does not work
for global well-posedness of KP-II in energy space.
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Transverse spectral stability for periodic perturbations

Let φ(x + 2π) = φ(x), c > 1 be the periodic wave of KdV. Then, it is a
critical point of E (u)− cQ(u). Consider the spectral problem

Ac,p(λ)W = λWx + cWxx + 6(φ(x)W )xx +Wxxxx − p2W = 0,

for p 6= 0 and Re(λ) > 0. If W ∈ L2
per(0, 2π) is a solution for p 6= 0, then

W ∈ L̇2
per(0, 2π), the zero-mean subspace of L2

per(0, 2π).

Recall that ∂−1
x is a bounded operator from L̇2

per(0, 2π) to L̇2
per(0, 2π) and

rewrite Ac,p(λ)W = 0 formally as

λW = ∂xLc,pW , Lc,p := −∂2
x − c − 6φ(x) + p2∂−2

x .

The operator Lc,p : H2
per(0, 2π) → L2(0, 2π) is self-adjoint,

In fact, Lc,p is the Hessian operator of E (u)− cQ(u).
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Spectral problem for periodic perturbations

The spectral problem is defined in L̇2
per(0, 2π),

λW = ∂xLc,pW , Lc,p := −∂2
x − c − 6φ(x) + p2∂−2

x .

hence, strictly speaking, we shall write Π0Lc,pΠ0, where
Π0 : L2

per(0, 2π) → L̇2
per(0, 2π) is the orthogonal projection operator.

Theorem (J.Bronski–M.Johnson–T.Kapitula, 2011)

If σ(Π0Lc,pΠ0) ≥ 0, then no λ ∈ C with Reλ > 0 exists.

Let us check the case c = 1, when φ = 0. The spectrum of Π0Lc=1,pΠ0 is

σ(Π0Lc=1,pΠ0) = {n2 − 1 − p2n−2, n ∈ N}.

For each n ∈ N, there is a sufficiently large p ∈ R such that
n2 − 1 − p2n−2 < 0. The theorem above can not be applied.
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Orbital stability for periodic waves of KdV in 1D
The same problem happens in 1D when periodic waves are perturbed by
long perturbations. The way to prove orbital stability is to consider the
higher-order energy

R(u) =

∫

[

u2
xx − 10uu2

x + 5u4
]

dx .

which is constant for solutions of the KdV in H2. The periodic wave φ is
also a critical point of R(u)− c2Q(u) with the associated Hessian operator

Mc,p=0 = ∂4
x + 10∂xφ(x)∂x − 10cφ(x)− c2.

Unfortunately, Mc,p=0 is not positive either. However,...

Proposition (B.Deconinck–T.Kapitula, 2010)

For every c > 1, the operator Mc,p=0 − bLc,p=0 is positive for every

b ∈ (b−(c), b+(c)), where

b−(c) =

[

5

3
+

1 − 2k2

3
√

1 − k2 + k4

]

c , b+(c) =

[

5

3
+

1 + k2

3
√

1 − k2 + k4

]

c ,

where k ∈ (0, 1) is the elliptic modulus for the cnoidal periodic waves.
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A simple perturbative argument
For c = 1 and φ = 0, we have

Lc=1,p=0 = −∂2
x − 1,

Mc=1,p=0 = ∂4
x − 1.

Therefore, the linear combination of the two Hessian operators

Mc,p=0 − bLc,p=0 = ∂4
x + b∂2

x + b − 1 =

(

∂2
x +

b

2

)2

−
(

1 − b

2

)2

is positive if b = 2. By perturbative computations, one can find a
nonempty interval (b−(c), b+(c)) near b = 2 for c > 1.

From positivity of the combined Hessian operator and energy conservation
of

Λb(u) := [R(u)− c2Q(u)]− b[E (u)− cQ(u)], e.g. b = 2c ,

orbital stability of 1D periodic waves in the KdV holds in Sobolev space
H2

Nper for any N-periodic perturbation.
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Higher-order energy for KP-II equation

Recall the momentum and energy for KP-II:

Q(u) =

∫

u2dxdy , E (u) =

∫

[

u2
x − 2u3 − (∂−1

x uy )
2
]

dxdy .

Periodic wave φ is a critical point of E (u)− cQ(u).

Proposition (L.Molinet–J-C.Saut–N.Tzvetkov, 2007)

KP-II conserves the higher-order energy in H2:

R(u) =

∫
[

u2

xx − 10uu2

x + 5u4 − 10

3
u2

y +
5

9
(∂−2

x uyy )
2 +

10

3
u2∂−2

x uyy + ...

]

dxdy .

Periodic wave φ is a critical point of R(u)− c2Q(u). However, no b exists
so that φ is a minimum of [R(u)− c2Q(u)]− b[E (u)− cQ(u)].

Dmitry Pelinovsky (McMaster University) Stability of periodic waves 31 / 37



New approach - commuting linear operators

Recall the spectral problem in L̇2
per(0, 2π):

λW = ∂xLc,pW , Lc,p := −∂2
x − c − 6φ(x) + p2∂−2

x .

Let us search for a self-adjoint operator Mc,p in L̇2
per(0, 2π) such that

Lc,p∂xMc,p = Mc,p∂xLc,p.

Theorem (M.Haragus–J.Li–D.P, 2017)

Assume that Mc,p ≥ 0 and the kernel of Mc,p is contained in the kernel of

Lc,p. The spectrum of ∂xLc,p in L̇2
per(0, 2π) is purely imaginary.

Dmitry Pelinovsky (McMaster University) Stability of periodic waves 32 / 37



Algorithmic search of the commuting operator

From the existence of the higher-order variational problem R(u)− c2Q(u)
associated with the higher-order energy of KP-II, we have one option for
operator Mc,p:

Mc,p = ∂4
x + 10∂xφ(x)∂x − 10cφ(x)− c2

−10

3
p2

(

1 + φ(x)∂−2
x + ∂−1

x φ(x)∂−1
x + ∂−2

x φ(x)
)

+
5

9
p4∂−4

x .

Then, Lc,p∂xMc,p = Mc,p∂xLc,p. However,

Proposition

For every p 6= 0, no value of b ∈ R exists such that Mc,p − bLc,p is positive

in L2(R).

This outcome is related to sign-indefinite properties of E (u) and R(u) at
u = 0.
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Algorithmic search of the commuting operator
Let us search for another operator Mc,p to satisfy the commutability
relation

Lc,p∂xMc,p = Mc,p∂xLc,p.

By using symbolic computations, we have found

Mc,p = ∂4
x + 10∂xφ(x)∂x − 10cφ(x)− c2 +

5

3
p2

(

1 + c∂−2
x

)

.

Then,

Mc,p − bLc,p = Mc,p=0 − bLc,p=0 +
5

3
p2 −

(

b − 5c

3

)

p2∂−2
x .

Proposition

The operator Mc,p − 2cLc,p is positive in L2(R) for every p ∈ R.

From positivity of Mc,p − 2cLc,p, we get spectral stability of the periodic
travelling wave in the KP-II equation.
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Summary

Spectral stability theory is well-developed for critical points in
Hamiltonian systems, when the Hessian operators have finitely many
negative eigenvalues.

Orbital stability holds in Hamiltonian systems if the critical point is a
non-degenerate minimum of energy under constraints of fixed mass
and momentum.

For many integrable PDEs (NLS, KdV), one can use higher-order
Hamiltonians to conclude on orbital stability of nonlinear waves.

For the KP-II equation, one can find positive-definite operator
unrelated to conserved quantities in order to conclude on spectral
stability of nonlinear waves.
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Open questions

For defocusing NLS:

Is a regular way to prove positivity of a linear combination of Hessian
operators at the periodic wave?

Will the approach work with the other higher-order conserved
quantities of the integrable hierarchy?

For KP-II:

How is Mc,p related to conserved quantities of the KP-II?

Can we extend the proof to nonlinear orbital stability of periodic waves
in the KP-II?

Can we find commuting linear operators for non-integrable versions of
nonlinear evolution equations?
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