Spectrum of the linearized NLS problem

Dmitry Pelinovsky
Department of Mathematics, McMaster University, Canada

Collaboration:
Marina Chugunova (McMaster, Canada)
Scipio Cuccagna (Modena and Reggio Emilia, Italy)
Vitali Vougalter (Notre Dame, USA)
References:
Comm. Pure Appl. Math. 58, 1 (2005)
Proc. Roy. Soc. Lond. A 461, 783 (2005)

- Hamiltonian PDE

$$
\frac{d u}{d t}=J \nabla h(u), \quad u(t) \in X\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

where $J^{+}=-J$ and $h: X \mapsto \mathbb{R}$

- Linearization at the stationary solution
$u(t)=u_{0}+v e^{\lambda t}$,
where $u_{0} \in X\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and $\lambda \in \mathbb{C}$
- Spectral problem

$$
J H v=\lambda v
$$

where $H^{+}=H$ and $v \in X\left(\mathbb{R}^{n}, \mathbb{C}^{m}\right)$

- Let stationary solutions u_{0} decay exponentially as $|x| \rightarrow \infty$
- Let operator J be invertible
- Let operator H have positive continuous spectrum
- Let operator H have finitely many isolated eigenvalues
- Let operator $J H$ have continuous spectrum at the imaginary axis
- Let stationary solutions u_{0} decay exponentially as $|x| \rightarrow \infty$
- Let operator J be invertible
- Let operator H have positive continuous spectrum
- Let operator H have finitely many isolated eigenvalues
- Let operator $J H$ have continuous spectrum at the imaginary axis

Is there a relation between isolated and embedded eigenvalues of $J H$ and isolated eigenvalues of H ?

Is there a relation between unstable eigenvalues of $J H$ with $\operatorname{Re}(\lambda)>0$ and negative eigenvalues of H ?

- Nonlinear Schrödinger equation (NLS)

$$
i \psi_{t}=-\psi_{x x}+U(x) \psi+F\left(|\psi|^{2}\right) \psi
$$

(J, H) satisfy the main assumptions

- Korteweg-De Vries equation (KdV)

$$
u_{t}+\partial_{x}\left(f(u)+u_{x x}\right)=0
$$

J is not invertible but H satisfy the main assumptions

- Massive Thirring model (MTM)

$$
\begin{aligned}
i\left(u_{t}+u_{x}\right)+v+\partial_{\bar{u}} W(u, \bar{u}, v, \bar{v}) & =0 \\
i\left(v_{t}-v_{x}\right)+u+\partial_{\bar{v}} W(u, \bar{u}, v, \bar{v}) & =0
\end{aligned}
$$

J is invertible but H have positive and negative continuous spectrum

Grillakis, Shatah, Strauss, 1990

- If H has no negative eigenvalue, then $J H$ has no unstable eigenvalues.
- If H has odd number of negative eigenvalues, then $J H$ has at least one real unstable eigenvalue.
- Number of unstable eigenvalues of $J H$ is bounded by the number of negative eigenvalues of H.

Grillakis, Shatah, Strauss, 1990

- If H has no negative eigenvalue, then $J H$ has no unstable eigenvalues.
- If H has odd number of negative eigenvalues, then $J H$ has at least one real unstable eigenvalue.
- Number of unstable eigenvalues of $J H$ is bounded by the number of negative eigenvalues of H.

Kapitula, Kevrekidis, Sandstede, 2004

- Closure relation for negative index

$$
N_{\text {unstable }}(J H)+N_{\text {negative Krein }}(J H)=N_{\text {negative }}(H)
$$

$$
i \psi_{t}=-\Delta \psi+U(x) \psi+F\left(|\psi|^{2}\right) \psi
$$

- Assume that there exist exponentially decaying C^{∞} solutions

$$
-\Delta \phi+U(x) \phi+F\left(\phi^{2}\right) \phi+\omega \phi=0
$$

where $\phi: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $\omega>0$.

- Assume that $U(x)$ decay exponentially and $F(u) \in C^{\infty}, F(0)=0$
- Apply the linearization transformation,

$$
\psi(x, t)=e^{i \omega t}\left(\phi(x)+\varphi(x) e^{-i z t}+\bar{\theta}(x) e^{i \bar{z} t}\right)
$$

where $(\varphi, \theta): \mathbb{R}^{n} \mapsto \mathbb{C}^{2}$ and $z=i \lambda \in \mathbb{C}$.

Review of our results : formalism

- The eigenvalue problem becomes

$$
\sigma_{3} H \boldsymbol{\psi}=z \boldsymbol{\psi}
$$

where

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad H=\left(\begin{array}{cc}
-\Delta+\omega+f(x) & g(x) \\
g(x) & -\Delta+\omega+f(x)
\end{array}\right)
$$

and

$$
f(x)=U(x)+F\left(\phi^{2}\right)+\phi^{2} F^{\prime}\left(\phi^{2}\right), \quad g(x)=\phi^{2} F^{\prime}\left(\phi^{2}\right)
$$

- The eigenvalue problem becomes

$$
\sigma_{3} H \boldsymbol{\psi}=z \boldsymbol{\psi}
$$

where

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad H=\left(\begin{array}{cc}
-\Delta+\omega+f(x) & g(x) \\
g(x) & -\Delta+\omega+f(x)
\end{array}\right)
$$

and

$$
f(x)=U(x)+F\left(\phi^{2}\right)+\phi^{2} F^{\prime}\left(\phi^{2}\right), \quad g(x)=\phi^{2} F^{\prime}\left(\phi^{2}\right)
$$

- Equivalent form:

$$
L_{+} u=z w, \quad L_{-} w=z u
$$

where

$$
L_{ \pm}=-\Delta+\omega+f(x) \pm g(x)
$$

and

$$
\boldsymbol{\psi}=(u+w, u-w)^{T}
$$

- Linearized energy

$$
h=\frac{1}{2}\langle\boldsymbol{\psi}, H \boldsymbol{\psi}\rangle=\left(u, L_{+} u\right)+\left(w, L_{-} w\right)
$$

- Skew-orthogonal projections

$$
\left\langle\boldsymbol{\psi}^{*}, \boldsymbol{\psi}\right\rangle=\frac{1}{2}\left\langle\sigma_{3} \boldsymbol{\psi}, \boldsymbol{\psi}\right\rangle=(u, w)+(w, u)
$$

- Constrained subspace: no kernel of $J H$

$$
X_{0}=\left\{\boldsymbol{\psi} \in L^{2}:\left\langle\sigma_{3} \boldsymbol{\psi}_{0}, \boldsymbol{\psi}\right\rangle=\left\langle\sigma_{3} \boldsymbol{\psi}_{1}, \boldsymbol{\psi}\right\rangle=0\right\}
$$

where

$$
H \boldsymbol{\psi}_{0}=0, \quad \sigma_{3} H \boldsymbol{\psi}_{1}=\boldsymbol{\psi}_{0}
$$

- Constrained subspace: no point spectrum of $J H$

$$
X_{c}=\left\{\boldsymbol{\psi} \in X_{0}:\left\{\left\langle\sigma_{3} \boldsymbol{\psi}_{j}, \boldsymbol{\psi}\right\rangle=0\right\}_{z_{j} \in \sigma_{p}(J H)}\right\}
$$

- Assuming that $\operatorname{dim}(\operatorname{ker}(H))=1$,

$$
\left.N_{\mathrm{neg}}(H)\right|_{X_{0}}=\left.N_{\mathrm{neg}}(H)\right|_{L^{2}}-p(\omega)
$$

where $p(\omega)=1$ for $\partial_{\omega}\|\phi\|_{L^{2}}^{2}>0$ and $p(\omega)=0$ otherwise.

- Assuming that $\operatorname{dim}(\operatorname{ker}(H))=1$,

$$
\left.N_{\mathrm{neg}}(H)\right|_{X_{0}}=\left.N_{\mathrm{neg}}(H)\right|_{L^{2}}-p(\omega)
$$

where $p(\omega)=1$ for $\partial_{\omega}\|\phi\|_{L^{2}}^{2}>0$ and $p(\omega)=0$ otherwise.

- Assuming that all eigenvalues of $J H$ are semi-simple,
$\left.N_{\text {neg }}(H)\right|_{X_{c}}=\left.N_{\text {neg }}(H)\right|_{X_{0}}-2 N_{\text {real }}^{-}(J H)-N_{\text {imag }}(J H)-2 N_{\text {comp }}(J H)$ where $N_{\text {neg }}^{-}(J H)$ correspond to negative Krein signatures
- Assuming that $\operatorname{dim}(\operatorname{ker}(H))=1$,

$$
\left.N_{\mathrm{neg}}(H)\right|_{X_{0}}=\left.N_{\mathrm{neg}}(H)\right|_{L^{2}}-p(\omega)
$$

where $p(\omega)=1$ for $\partial_{\omega}\|\phi\|_{L^{2}}^{2}>0$ and $p(\omega)=0$ otherwise.

- Assuming that all eigenvalues of $J H$ are semi-simple,
$\left.N_{\text {neg }}(H)\right|_{X_{c}}=\left.N_{\text {neg }}(H)\right|_{X_{0}}-2 N_{\text {real }}^{-}(J H)-N_{\text {imag }}(J H)-2 N_{\text {comp }}(J H)$
where $N_{\text {neg }}^{-}(J H)$ correspond to negative Krein signatures
- Assuming end-point conditions and simple embedded eigenvalues,

$$
\forall \boldsymbol{\psi} \in X_{c}: \quad\langle\boldsymbol{\psi}, H \boldsymbol{\psi}\rangle>0
$$

I. Bounds on the number of isolated eigenvalues:

- Calculus of constrained Hilbert spaces
- Sylvester's Inertia Law
- Rayleigh-Ritz Theorem
- Pontryagin-Krein spaces with sign-indefinite metric
I. Bounds on the number of isolated eigenvalues:
- Calculus of constrained Hilbert spaces
- Sylvester's Inertia Law
- Rayleigh-Ritz Theorem
- Pontryagin-Krein spaces with sign-indefinite metric
II. Positivity of the essential spectrum:
- Kato's wave operator formalism
- Wave function decomposition
- Smoothing decay estimate on the linearized time evolution

$$
L_{+} u=z w, \quad L_{-} w=z u
$$

- Let $z=z_{0}$ be a simple real eigenvalue with the eigenvector $\left(u_{R}, w_{R}\right)$

$$
\left(u_{R}, L_{+} u_{R}\right)=\left(w_{R}, L_{-} w_{R}\right) \neq 0
$$

$$
L_{+} u=z w, \quad L_{-} w=z u
$$

- Let $z=z_{0}$ be a simple real eigenvalue with the eigenvector $\left(u_{R}, w_{R}\right)$

$$
\left(u_{R}, L_{+} u_{R}\right)=\left(w_{R}, L_{-} w_{R}\right) \neq 0
$$

- Let $z=i z_{0}$ be a simple imaginary eigenvalue with the eigenvector $\left(u_{R}, i w_{I}\right)$

$$
\left(u_{R}, L_{+} u_{R}\right)=-\left(w_{I}, L_{-} w_{I}\right) \neq 0
$$

$$
L_{+} u=z w, \quad L_{-} w=z u
$$

- Let $z=z_{0}$ be a simple real eigenvalue with the eigenvector $\left(u_{R}, w_{R}\right)$

$$
\left(u_{R}, L_{+} u_{R}\right)=\left(w_{R}, L_{-} w_{R}\right) \neq 0
$$

- Let $z=i z_{0}$ be a simple imaginary eigenvalue with the eigenvector $\left(u_{R}, i w_{I}\right)$

$$
\left(u_{R}, L_{+} u_{R}\right)=-\left(w_{I}, L_{-} w_{I}\right) \neq 0
$$

- Let $z=z_{0}$ be a simple complex eigenvalue with the eigenvector $\left(u_{R}+i u_{I}, w_{R}+i w_{I}\right)$

$$
\left(u, L_{+} u\right)=\left(w, L_{-} w\right)=(\mathbf{c}, M \mathbf{c}) \neq 0
$$

where

$$
M=\left(\begin{array}{cc}
\left(u_{R}, L_{+} u_{R}\right) & \left(u_{R}, L_{+} u_{I}\right) \\
\left(u_{I}, L_{+} u_{R}\right) & \left(u_{I}, L_{+} u_{I}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left(w_{R}, L_{-} w_{R}\right) & \left(w_{R}, L_{-} w_{I}\right) \\
\left(w_{I}, L_{-} w_{R}\right) & \left(w_{I}, L_{-} w_{I}\right)
\end{array}\right)
$$

- Let z_{i} and z_{j} be two distinct eigenvalues with eigenvectors $\left(u_{i}, w_{i}\right)$ and $\left(u_{j}, w_{j}\right)$

$$
\left(u_{i}, w_{j}\right)=\left(w_{i}, u_{j}\right)=0 \quad \forall i \neq j
$$

- Constrained subspace with no point spectrum of $J H$

$$
X_{c}=\left\{(u, w) \in L^{2}:\left\{\left(u, w_{j}\right)=0,\left(w, u_{j}\right)=0\right\}_{z_{j} \in \sigma_{p}(J H)}\right\}
$$

- Main question:

$$
\left.N_{\mathrm{neg}}(H)\right|_{L^{2}}-\left.N_{\mathrm{neg}}(H)\right|_{X_{c}}=?
$$

- Let L be a self-adjoint operator on $X \subset L^{2}$ with a finite negative index $N_{\text {neg, }}$, empty kernel, and positive essential spectrum.
- Let X_{c} be the constrained linear subspace on linearly independent vectors:

$$
X_{c}=\left\{v \in X:\left\{\left(v, v_{j}\right)=0\right\}_{j=1}^{N}\right\}
$$

- Let the matrix A be defined by

$$
A_{i, j}=\left(v_{i}, L^{-1} v_{j}\right), \quad 1 \leq i, j \leq N
$$

- Then,

$$
\left.N_{\mathrm{neg}}(L)\right|_{X_{c}}=\left.N_{\mathrm{neg}}(L)\right|_{X}-N_{\mathrm{neg}}(A), \quad 1 \leq i, j \leq N
$$

- Consider two matrices A_{+}and A_{-}for two operators L_{+}and L_{-} constrained with two sets of eigenfunctions $\left\{w_{j}\right\}$ and $\left\{u_{j}\right\}$
- Consider two matrices A_{+}and A_{-}for two operators L_{+}and L_{-} constrained with two sets of eigenfunctions $\left\{w_{j}\right\}$ and $\left\{u_{j}\right\}$
- Due to skew-orthogonality, the matrices $A_{ \pm}$are block-diagonal.
- For real eigenvalue $z=z_{0}$ with the eigenvector $\left(u_{R}, w_{R}\right)$

$$
A_{j, j}^{+}=A_{j, j}^{-}=\frac{1}{z_{0}^{2}}\left(u_{R}, L_{+} u_{R}\right)=\frac{1}{z_{0}^{2}}\left(w_{R}, L_{-} w_{R}\right)
$$

- For imaginary eigenvalue $z=i z_{0}$ with the eigenvector $\left(u_{R}, i w_{I}\right)$

$$
A_{j, j}^{+}=-A_{j, j}^{-}=\frac{1}{z_{0}^{2}}\left(u_{R}, L_{+} u_{R}\right)=-\frac{1}{z_{0}^{2}}\left(w_{I}, L_{-} w_{I}\right)
$$

- For complex eigenvalue $z=z_{R}+i z_{I}$ with the eigenvector $\left(u_{R}+i u_{I}, w_{R}+i w_{I}\right)$

$$
A_{i, j}^{+}=A_{i, j}^{-}=Z^{2} M, \quad Z=\frac{1}{z_{R}^{2}+z_{I}^{2}}\left(\begin{array}{cc}
z_{R} & z_{I} \\
-z_{I} & z_{R}
\end{array}\right)
$$

- For complex eigenvalue $z=z_{R}+i z_{I}$ with the eigenvector $\left(u_{R}+i u_{I}, w_{R}+i w_{I}\right)$

$$
A_{i, j}^{+}=A_{i, j}^{-}=Z^{2} M, \quad Z=\frac{1}{z_{R}^{2}+z_{I}^{2}}\left(\begin{array}{cc}
z_{R} & z_{I} \\
-z_{I} & z_{R}
\end{array}\right) .
$$

- Individual counts of eigenvalues
$\left.N_{\mathrm{neg}}\left(L_{+}\right)\right|_{X_{c}}=\left.N_{\mathrm{neg}}\left(L_{+}\right)\right|_{X_{0}}-N_{\text {real }}^{-}(J H)-N_{\text {imag }}^{-}(J H)-N_{\text {comp }}(J H)$ and

$$
\left.N_{\mathrm{neg}}\left(L_{-}\right)\right|_{X_{c}}=\left.N_{\mathrm{neg}}\left(L_{-}\right)\right|_{X_{0}}-N_{\text {real }}^{-}(J H)-N_{\text {imag }}^{+}(J H)-N_{\mathrm{comp}}(J H)
$$

- End of proof of I
- Birman-Schwinger representation of the potentials

$$
V(x)=\left(\begin{array}{ll}
f(x) & g(x) \\
g(x) & f(x)
\end{array}\right)=B^{*}(x) A(x)
$$

and of the spectral problem

$$
\left(\sigma_{3}(-\Delta+\omega)-z\right) \boldsymbol{\psi}=-B^{*} A \boldsymbol{\psi}
$$

such that

$$
\left(I+Q_{0}(z)\right) \mathbf{\Psi}=\mathbf{0}, \quad Q_{0}(z)=A\left(\sigma_{3}(-\Delta+\omega)-z\right)^{-1} B^{*}
$$

- Birman-Schwinger representation of the potentials

$$
V(x)=\left(\begin{array}{ll}
f(x) & g(x) \\
g(x) & f(x)
\end{array}\right)=B^{*}(x) A(x)
$$

and of the spectral problem

$$
\left(\sigma_{3}(-\Delta+\omega)-z\right) \boldsymbol{\psi}=-B^{*} A \boldsymbol{\psi}
$$

such that

$$
\left(I+Q_{0}(z)\right) \mathbf{\Psi}=\mathbf{0}, \quad Q_{0}(z)=A\left(\sigma_{3}(-\Delta+\omega)-z\right)^{-1} B^{*}
$$

- The set of isolated eigenvalues of $\sigma_{3} H$ is finite
- No resonances occur in the interior points
- There exists a spectrum-invariant Jordan-block decomposition

$$
L^{2}=\sum_{z \in \sigma_{p}(J H)} N_{g}(J H-z) \oplus X_{c}
$$

- Assume that no resonance exist at the endpoints of $\sigma_{e}(J H)$
- Assume that no multiple embedded eigenvalues exist in $\sigma_{e}(J H)$
- $\mathbb{R}^{n}=\mathbb{R}^{3}$
- Assume that no resonance exist at the endpoints of $\sigma_{e}(J H)$
- Assume that no multiple embedded eigenvalues exist in $\sigma_{e}(J H)$
- $\mathbb{R}^{n}=\mathbb{R}^{3}$
- There exists isomorphisms between Hilbert spaces

$$
W: L^{2} \mapsto X_{c}, \quad Z: X_{c} \mapsto L^{2}
$$

- W and Z are inverse of each other, where

$$
\begin{gathered}
\forall u \in X_{c}, \forall v \in L^{2}:\langle Z u, v\rangle=\langle u, v\rangle \\
+\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{+\infty}\left\langle A\left(\sigma_{3} H-\lambda-i \epsilon\right)^{-1} u, B\left(\sigma_{3}(-\Delta+\omega)-\lambda-i \epsilon\right)^{-1} v\right\rangle d \lambda
\end{gathered}
$$

Application of the Main Theorem II

- It follows from the wave operators that

$$
W^{*} \sigma_{3}=\sigma_{3} Z, \quad Z^{*} \sigma_{3}=\sigma_{3} W, \quad Z \sigma_{3} H=\sigma_{3}(-\Delta+\omega) Z .
$$

- It follows from the wave operators that

$$
W^{*} \sigma_{3}=\sigma_{3} Z, \quad Z^{*} \sigma_{3}=\sigma_{3} W, \quad Z \sigma_{3} H=\sigma_{3}(-\Delta+\omega) Z
$$

- If $\boldsymbol{\psi} \in X_{c}$, there exists $\hat{\boldsymbol{\psi}} \in L^{2}$, such that $\boldsymbol{\psi}=W \hat{\boldsymbol{\psi}}$.
- Then

$$
\begin{gathered}
\langle\boldsymbol{\psi}, H \boldsymbol{\psi}\rangle=\left\langle W \hat{\boldsymbol{\psi}}, \sigma_{3} \sigma_{3} H W \hat{\boldsymbol{\psi}}\right\rangle=\left\langle W \hat{\boldsymbol{\psi}},\left(\sigma_{3} H\right)^{*} Z^{*} \sigma_{3} \hat{\boldsymbol{\psi}}\right\rangle \\
=\left\langle\sigma_{3}(-\Delta+\omega) Z W \hat{\boldsymbol{\psi}}, \sigma_{3} \hat{\boldsymbol{\psi}}\right\rangle=\langle(-\Delta+\omega) I \hat{\boldsymbol{\psi}}, \hat{\boldsymbol{\psi}}\rangle>0
\end{gathered}
$$

- End of proof of II.
- Fermi Golden Rule for an embedded real eigenvalue
- It disappears if it has positive energy
- It becomes complex eigenvalue if it has negative energy
- Fermi Golden Rule for an embedded real eigenvalue
- It disappears if it has positive energy
- It becomes complex eigenvalue if it has negative energy
- Jordan blocks for multiple real eigenvalues of zero energy
- $N_{\text {real }}^{+}=N_{\text {real }}^{-}$for even multiplicity
- $N_{\text {real }}^{+}=N_{\text {real }}^{-} \pm 1$ for odd multiplicity
- Fermi Golden Rule for an embedded real eigenvalue
- It disappears if it has positive energy
- It becomes complex eigenvalue if it has negative energy
- Jordan blocks for multiple real eigenvalues of zero energy
- $N_{\text {real }}^{+}=N_{\text {real }}^{-}$for even multiplicity
- $N_{\text {real }}^{+}=N_{\text {real }}^{-} \pm 1$ for odd multiplicity
- Weighted spaces for endpoint resonance and eigenvalue
- Resonance results in real eigenvalue of positive energy
- Eigenvalue repeats the scenario of embedded eigenvalue

$$
\begin{aligned}
& i \psi_{1 t}+\psi_{1 x x}+\left(\left|\psi_{1}\right|^{2}+\chi\left|\psi_{2}\right|^{2}\right) \psi_{1}=0 \\
& i \psi_{2 t}+\psi_{2 x x}+\left(\chi\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right) \psi_{2}=0
\end{aligned}
$$

- Lyapunov-Schmidt reductions near local bifurcation boundary

$$
\psi_{1}=e^{i t}\left(\sqrt{2} \operatorname{sech} x+O\left(\epsilon^{2}\right)\right), \quad \psi_{2}=e^{i \omega t}\left(\epsilon \phi_{n}(x)+O\left(\epsilon^{3}\right)\right)
$$

where

$$
\left(-\partial_{x}^{2}+\omega_{n}(\chi)-2 \chi \operatorname{sech}^{2}(x)\right) \phi_{n}(x)=0
$$

- By continuity of eigenvalues, we count isolated eigenvalues

$$
N_{\mathrm{neg}}(H)=2 n
$$

where n is the number of zeros of $\phi_{n}(x)$. Therefore,

$$
2 N_{\text {real }}^{-}(J H)+N_{\text {imag }}(J H)+2 N_{\text {comp }}(J H)=2 n
$$

Example: two coupled NLS equations

$$
n=1
$$

$$
n=2
$$

- Bounds on $N_{\text {real }}^{+}(J H)$ in terms of positive eigenvalues of H
- Relation between bifurcations of resonances in $J H$ and H
- What if continuous spectrum of H is sign-indefinite?
- What if J is not invertible?
- Dynamics of nonlinear waves beyond the linearized system

