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o Hamiltonian PDE

% = JVh(u), u(t) e XR",R™)

where JT = —Jand h: X — R

o Linearization at the stationary solution

u(t) = ug + ve,
where ug € X (R, R") and A € C

o Spectral problem

JHv = \v,
where H™ = H and v € X(R", C™)



o Let stationary solutions wu( decay exponentially as |z| — oo

o Let operator J be invertible
o Let operator H have positive continuous spectrum
o Let operator H have finitely many isolated eigenvalues

o Let operator JH have continuous spectrum at the imaginary axis
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o Let operator J be invertible
o Let operator H have positive continuous spectrum
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o Let operator JH have continuous spectrum at the imaginary axis

Is there a relation between isolated and embedded eigenval-
ues of JH and isolated eigenvalues of H?

Is there a relation between unstable eigenvalues of JH with
Re(A) > 0 and negative eigenvalues of H?



o Nonlinear Schrodinger equation (NLS)
Wi = =Yg + U(l‘)w T F(W‘Z)@D

(J, H) satisfy the main assumptions

o Korteweg—De Vries equation (KdV)

J is not invertible but H satisty the main assumptions

o Massive Thirring model (MTM)
i(ur + ug) + v + OgW(u, u,v,v) =0,
i(vr —vg) +u+ OGW (u, u,v,0) =0
J is invertible but H have positive and negative continuous spectrum



Grillakis, Shatah, Strauss, 1990

o If H has no negative eigenvalue, then JH has no unstable eigenvalues.

o If H has odd number of negative eigenvalues, then JH has at least
one real unstable eigenvalue.

o Number of unstable eigenvalues of JH is bounded by the number of
negative eigenvalues of H.
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Kapitula, Kevrekidis, Sandstede, 2004

o Closure relation for negative index

N unstable(J H > + N, negative Krein(J H ) =N negative(H )



iy = =AY + Ul2)y + F(|[]*)

o Assume that there exist exponentially decaying C°° solutions

~A¢+U(z)p + F(¢°)p +wo =0,
where ¢ : R" +— R and w > 0.

o Assume that U(x) decay exponentially and F'(u) € C°°, F(0) =0

o Apply the linearization transformation,

Uiz, t) = ! (9(2) + pla)e " + O(a)ei),
where (¢,6) : R" — C? and z = i\ € C.



o The eigenvalue problem becomes

o3HY = 2,
where
(10 7 —A+w+ f(x) g(x)
3= \0-1) B g(x) —A+w+ f(x) )’
and

f(x) =Ulx) + F(¢?) + ¢°F'(¢%), glx) = ¢*F'(¢7).



o The eigenvalue problem becomes

o3HY = 2,
where
(10 7 —A+w+ f(x) g(x)
3= \0-1) B g(x) —A+w+ f(x) )’
and

f(x) =Ulx) + F(¢?) + ¢°F'(¢%), glx) = ¢*F'(¢7).

o Equivalent form:

Liu = zw, L_w = zu,
where

Ly =-A+w+ f(x) £ g(x)
and

P = (u+w,u—w)'.



o Linearized energy

h= (W, HY) = (. Low) + (w, L w)

o Skew-orthogonal projections
1
(W) = o (o, ) = () + (w0

o Constrained subspace: no kernel of JH

Xo={y € L*: (o3, ) = (o31h, ) = 0},

where
H¢O:07 03H¢1 :100
o Constrained subspace: no point spectrum of JH

X = {'(P S {<03¢]7¢> — O}szJP(JH)}a



L+
e
<
e a— L.
N
N comp
ag,H




o Assuming that dim(ker(H)) = 1,

Nneg(H) v = Nneg<H) 1 — pw),

where p(w) = 1 for 8w||qb||2L2 > 0 and p(w) = 0 otherwise.




o Assuming that dim(ker(H)) = 1,
Nueg(H)

— Nneg<H)
X0 L?

where p(w) = 1 for 8w|\qb||2L2 > 0 and p(w) = 0 otherwise.

— p(w),

o Assuming that all eigenvalues of JH are semi-simple,

X = Npeg(H) D% —2Nr;a1<‘]H>_Nimag<JH>_2Ncomp(JH>
c 0

where N ., (JH) correspond to negative Krein signatures

Nneg(H)




o Assuming that dim(ker(H)) = 1,
Nueg(H)

— Nneg<H)
X0 L?

where p(w) = 1 for 8w|\qb||2L2 > 0 and p(w) = 0 otherwise.

— p(w),

o Assuming that all eigenvalues of JH are semi-simple,

= Nueg(H)|  —2N— (JH) = Nipnag(JH)—~2Neomp(J H)
Xe X0

where N ., (JH) correspond to negative Krein signatures

Nneg(H)

o Assuming end-point conditions and simple embedded eigenvalues,

Vap € Xo o (1p, Hap) > 0



I. Bounds on the number of isolated eigenvalues:

o Calculus of constrained Hilbert spaces
o Sylvester’s Inertia Law
o Rayleigh-Ritz Theorem

o Pontryagin—Krein spaces with sign-indefinite metric



I. Bounds on the number of isolated eigenvalues:

o Calculus of constrained Hilbert spaces
o Sylvester’s Inertia Law
o Rayleigh-Ritz Theorem

o Pontryagin—Krein spaces with sign-indefinite metric

II. Positivity of the essential spectrum:
o Kato’s wave operator formalism
o Wave function decomposition

o Smoothing decay estimate on the linearized time evolution
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Liu = zw, L_w = zu,

o Let z = 2 be a simple real eigenvalue with the eigenvector (up, wp)
(up, Lyug) = (wg, L-wpg) # 0
o Let z = 129 be a simple imaginary eigenvalue with the eigenvector
(uR,iwy)
(uR, Lyug) = —(wy, L-wy) # 0
o Let z = 2 be a simple complex eigenvalue with the eigenvector
(up + tuy, wp + iwy)
(u, Lyu) = (w, L_w) = (¢, Mc) # 0,

where

_ [ (uR, Lyug) (up, Lyur)
M= ( (ur, L+upr) (uy, Lyur) )

([ (wp, L-wpg) (wg, L_wy)

B ( (wr, L_wg) (wr, L_wy) )



o Let z; and z; be two distinct eigenvalues with eigenvectors (u;, w;) and
(uj, wy)

(uj, wj) = (wi,u) =0 Visj

o Constrained subspace with no point spectrum of JH

Xe = {(u,w) € L?: {(u, wj) =0, (w,u;) = O}zjeap(JH)}»

o Main question:

=7
Xe

Nneg(H> o Nneg(H)

L2




o Let L be a self-adjoint operator on X C L? with a finite negative
ndex Npeg, empty kernel, and positive essential spectrum.

o Let X, be the constrained linear subspace on linearly independent
vectors:
X, — {v e X {(v,v)) = O}L}
o Let the matrix A be defined by
A= (v, L™ v]) 1<4,9<N

o Then,
Nyeg(L)

— Nneg<L)‘ — Nneg(A)a 1<9,7< N

X, X -



o Consider two matrices Ay and A_ for two operators Ly and L_
constrained with two sets of eigenfunctions {w;} and {u;}



o Consider two matrices Ay and A_ for two operators Ly and L_
constrained with two sets of eigenfunctions {w;} and {u;}

o Due to skew-orthogonality, the matrices A+ are block-diagonal.

o For real eigenvalue z = z; with the eigenvector (up, wp)

1 1
A+ =A. .= _<UR7 L-I-UR) — _<wR7 L_UJR).

o For imaginary eigenvalue z = 1z with the eigenvector (up, iwy)

_ 1 1
A;:] — _AjJ' — ?(uRv L_|_UR) — _Z_g(wfa L—w1)°



o For complex eigenvalue z = zp + 127 with the eigenvector
(uR +wur, wp + iw[)

_ 1 Zp 2
+ 72 L R Ji
Az’,j_Az‘,j_ZM’ J = ( )

2 2 _
2+ 27 <] “R



o For complex eigenvalue z = zp + 127 with the eigenvector
(uR +wur, wp + iw[)

1
AT = A7 = 72M, 7 = “R A1
,] ,] Z2R_|_ Z% —Z[ ZR

o Individual counts of eigenvalues

Nneg(L_|_> X — Nneg(L_l_) _Nreal(JH) Nlmag(JH) Ncomp<JH)

and ) !

Nneg(L—) = Nueg(L-)| =Ny (JH) =N oo (JH) = Neomp(JH)
c 0

o End of proof of 1



o Birman—Schwinger representation of the potentials
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o Birman—Schwinger representation of the potentials

_( fl) g(@) ) _ s
Vo= (360 fy ) = DA
and of the spectral problem

(03(=A +w) — 2)p = =B A,
such that

(I+Qu(2) ¥ =0,  Qulz) = Alos(—A+w)—2)"' BY,

o The set of isolated eigenvalues of o3.H is finite
o No resonances occur in the interior points
o There exists a spectrum-invariant Jordan-block decomposition

[P= )  Ny(JH -z @ Xc
z€op(JH)



o Assume that no resonance exist at the endpoints of g¢(JH)

o Assume that no multiple embedded eigenvalues exist in g¢(JH)

OR”ZRS



o Assume that no resonance exist at the endpoints of g¢(JH)

o Assume that no multiple embedded eigenvalues exist in g¢(JH)

OR”ZRS

o There exists isomorphisms between Hilbert spaces

W:L?— X, Z:X.— L?

o W and Z are inverse of each other, where

Vue X, Voe L : (Zu,v) = (u,v)
1 +00
+ lim — (A(o5H —N—ie) " u, Blos(—A+w)—A—ie) " lo)dA,

e—0Tt 271 — 00



o It follows from the wave operators that

W¥o3 =032, Z% 03=03W, ZosH =o3(—A+ w)Z.



o It follows from the wave operators that

W¥o3 =032, Z% 03=03W, ZosH =o3(—A+ w)Z.
oIf ¥ € X, there exists ?:b e L?, such that ¥ = W{b

o Then
(3, Hp) = (Wap, 0303 HWp) = (Wap, (03H)* Z* o31)
= (03(—=A + w)ZWah, o31h) = ((—=A + w) I, ) > 0.

o End of proof of II.
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o It becomes complex eigenvalue if it has negative energy
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o Fermi Golden Rule for an embedded real eigenvalue

o It disappears if it has positive energy

o It becomes complex eigenvalue if it has negative energy

o Jordan blocks for multiple real eigenvalues of zero energy

oNT = N_

real 7 'real

o NT | = N, £ 1 for odd multiplicity

rea

for even multiplicity

o Weighted spaces for endpoint resonance and eigenvalue

o Resonance results in real eigenvalue of positive energy

o Eigenvalue repeats the scenario of embedded eigenvalue
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o Lyapunov-Schmidt reductions near local bifurcation boundary
Wy = el (\@ sechx + 0(62)) ooy =™t (eqﬁn(x) + 0(63)) ,
where

(—85% + wn(x) — 2x SechQ(x)) ¢n(r) =0

o By continuity of eigenvalues, we count isolated eigenvalues
Nneg(H) — 277/,

where n is the number of zeros of ¢ (). Therefore,

2N (JH) + Nipag(JH) + 2Ncomp(JH) = 2n

real



n=1
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o Bounds on N;gal(J H) in terms of positive eigenvalues of H

o Relation between bifurcations of resonances in JH and H

o What if continuous spectrum of H is sign-indefinite?

o What if J i1s not invertible?

o Dynamics of nonlinear waves beyond the linearized system



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

