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Stability problem in Hamiltonian systems

◦ Hamiltonian PDE
du

dt
= J∇h(u), u(t) ∈ X(Rn,Rm)

where J+ = −J and h : X 7→ R

◦ Linearization at the stationary solution

u(t) = u0 + veλt,
where u0 ∈ X(Rn,Rm) and λ ∈ C

◦ Spectral problem

JHv = λv,

where H+ = H and v ∈ X(Rn,Cm)
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Main questions

◦ Let stationary solutions u0 decay exponentially as |x| → ∞

◦ Let operator J be invertible

◦ Let operator H have positive continuous spectrum

◦ Let operator H have finitely many isolated eigenvalues

◦ Let operator JH have continuous spectrum at the imaginary axis
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Main questions

◦ Let stationary solutions u0 decay exponentially as |x| → ∞

◦ Let operator J be invertible

◦ Let operator H have positive continuous spectrum

◦ Let operator H have finitely many isolated eigenvalues

◦ Let operator JH have continuous spectrum at the imaginary axis

Is there a relation between isolated and embedded eigenval-
ues of JH and isolated eigenvalues of H?

Is there a relation between unstable eigenvalues of JH with
Re(λ) > 0 and negative eigenvalues of H?
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Classes of Hamiltonian evolution equations

◦ Nonlinear Schrödinger equation (NLS)

iψt = −ψxx + U(x)ψ + F (|ψ|2)ψ
(J,H) satisfy the main assumptions

◦ Korteweg–De Vries equation (KdV)

ut + ∂x (f (u) + uxx) = 0
J is not invertible but H satisfy the main assumptions

◦ Massive Thirring model (MTM)

i(ut + ux) + v + ∂ūW (u, ū, v, v̄) = 0,
i(vt − vx) + u + ∂v̄W (u, ū, v, v̄) = 0

J is invertible but H have positive and negative continuous spectrum
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Review of other results

Grillakis, Shatah, Strauss, 1990

◦ If H has no negative eigenvalue, then JH has no unstable eigenvalues.

◦ If H has odd number of negative eigenvalues, then JH has at least
one real unstable eigenvalue.

◦ Number of unstable eigenvalues of JH is bounded by the number of
negative eigenvalues of H .
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Review of other results

Grillakis, Shatah, Strauss, 1990

◦ If H has no negative eigenvalue, then JH has no unstable eigenvalues.

◦ If H has odd number of negative eigenvalues, then JH has at least
one real unstable eigenvalue.

◦ Number of unstable eigenvalues of JH is bounded by the number of
negative eigenvalues of H .

Kapitula, Kevrekidis, Sandstede, 2004

◦ Closure relation for negative index

Nunstable(JH) +Nnegative Krein(JH) = Nnegative(H)
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Review of our results: formalism

iψt = −∆ψ + U(x)ψ + F (|ψ|2)ψ

◦ Assume that there exist exponentially decaying C∞ solutions

−∆φ + U(x)φ + F (φ2)φ + ωφ = 0,
where φ : Rn 7→ R and ω > 0.

◦ Assume that U(x) decay exponentially and F (u) ∈ C∞, F (0) = 0

◦ Apply the linearization transformation,

ψ(x, t) = eiωt
(
φ(x) + ϕ(x)e−izt + θ̄(x)eiz̄t

)
,

where (ϕ, θ) : Rn 7→ C2 and z = iλ ∈ C.
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Review of our results : formalism

◦ The eigenvalue problem becomes

σ3Hψ = zψ,
where

σ3 =

(
1 0
0 −1

)
, H =

(
−∆ + ω + f (x) g(x)

g(x) −∆ + ω + f (x)

)
,

and

f (x) = U(x) + F (φ2) + φ2F ′(φ2), g(x) = φ2F ′(φ2).
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Review of our results : formalism

◦ The eigenvalue problem becomes

σ3Hψ = zψ,
where

σ3 =

(
1 0
0 −1

)
, H =

(
−∆ + ω + f (x) g(x)

g(x) −∆ + ω + f (x)

)
,

and

f (x) = U(x) + F (φ2) + φ2F ′(φ2), g(x) = φ2F ′(φ2).

◦ Equivalent form:

L+u = zw, L−w = zu,
where

L± = −∆ + ω + f (x)± g(x)
and

ψ = (u + w, u− w)T .

7



Review of our main results : formalism

◦ Linearized energy

h =
1

2
〈ψ, Hψ〉 = (u, L+u) + (w,L−w)

◦ Skew-orthogonal projections

〈ψ∗,ψ〉 =
1

2
〈σ3ψ,ψ〉 = (u,w) + (w, u)

◦ Constrained subspace: no kernel of JH

X0 = {ψ ∈ L2 : 〈σ3ψ0,ψ〉 = 〈σ3ψ1,ψ〉 = 0},
where

Hψ0 = 0, σ3Hψ1 = ψ0

◦ Constrained subspace: no point spectrum of JH

Xc = {ψ ∈ X0 : {〈σ3ψj,ψ〉 = 0}zj∈σp(JH)},
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Spectrum of (L+, L−) and JH
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Review of our main results

◦ Assuming that dim(ker(H)) = 1,

Nneg(H)

∣∣∣∣
X0

= Nneg(H)

∣∣∣∣
L2
− p(ω),

where p(ω) = 1 for ∂ω‖φ‖2
L2 > 0 and p(ω) = 0 otherwise.

10
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◦ Assuming that dim(ker(H)) = 1,

Nneg(H)

∣∣∣∣
X0

= Nneg(H)

∣∣∣∣
L2
− p(ω),

where p(ω) = 1 for ∂ω‖φ‖2
L2 > 0 and p(ω) = 0 otherwise.

◦ Assuming that all eigenvalues of JH are semi-simple,

Nneg(H)

∣∣∣∣
Xc

= Nneg(H)

∣∣∣∣
X0

−2N−
real(JH)−Nimag(JH)−2Ncomp(JH)

where N−
neg(JH) correspond to negative Krein signatures
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Review of our main results

◦ Assuming that dim(ker(H)) = 1,

Nneg(H)

∣∣∣∣
X0

= Nneg(H)

∣∣∣∣
L2
− p(ω),

where p(ω) = 1 for ∂ω‖φ‖2
L2 > 0 and p(ω) = 0 otherwise.

◦ Assuming that all eigenvalues of JH are semi-simple,

Nneg(H)

∣∣∣∣
Xc

= Nneg(H)

∣∣∣∣
X0

−2N−
real(JH)−Nimag(JH)−2Ncomp(JH)

where N−
neg(JH) correspond to negative Krein signatures

◦ Assuming end-point conditions and simple embedded eigenvalues,

∀ψ ∈ Xc : 〈ψ, Hψ〉 > 0
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Methods of proofs

I. Bounds on the number of isolated eigenvalues:

◦ Calculus of constrained Hilbert spaces

◦ Sylvester’s Inertia Law

◦ Rayleigh-Ritz Theorem

◦ Pontryagin–Krein spaces with sign-indefinite metric
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Methods of proofs

I. Bounds on the number of isolated eigenvalues:

◦ Calculus of constrained Hilbert spaces

◦ Sylvester’s Inertia Law

◦ Rayleigh-Ritz Theorem

◦ Pontryagin–Krein spaces with sign-indefinite metric

II. Positivity of the essential spectrum:

◦ Kato’s wave operator formalism

◦ Wave function decomposition

◦ Smoothing decay estimate on the linearized time evolution
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Quadratic forms and skew-symmetric orthogonality

L+u = zw, L−w = zu,

◦ Let z = z0 be a simple real eigenvalue with the eigenvector (uR, wR)

(uR, L+uR) = (wR, L−wR) 6= 0
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Quadratic forms and skew-symmetric orthogonality

L+u = zw, L−w = zu,

◦ Let z = z0 be a simple real eigenvalue with the eigenvector (uR, wR)

(uR, L+uR) = (wR, L−wR) 6= 0

◦ Let z = iz0 be a simple imaginary eigenvalue with the eigenvector
(uR, iwI)

(uR, L+uR) = −(wI , L−wI) 6= 0
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Quadratic forms and skew-symmetric orthogonality

L+u = zw, L−w = zu,

◦ Let z = z0 be a simple real eigenvalue with the eigenvector (uR, wR)

(uR, L+uR) = (wR, L−wR) 6= 0

◦ Let z = iz0 be a simple imaginary eigenvalue with the eigenvector
(uR, iwI)

(uR, L+uR) = −(wI , L−wI) 6= 0

◦ Let z = z0 be a simple complex eigenvalue with the eigenvector
(uR + iuI , wR + iwI)

(u, L+u) = (w,L−w) = (c,Mc) 6= 0,
where

M =

(
(uR, L+uR) (uR, L+uI)
(uI , L+uR) (uI , L+uI)

)
=

(
(wR, L−wR) (wR, L−wI)
(wI , L−wR) (wI , L−wI)

)
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Constrained Hilbert space

◦ Let zi and zj be two distinct eigenvalues with eigenvectors (ui, wi) and
(uj, wj)

(ui, wj) = (wi, uj) = 0 ∀i 6= j

◦ Constrained subspace with no point spectrum of JH

Xc = {(u,w) ∈ L2 : {(u,wj) = 0, (w, uj) = 0}zj∈σp(JH)},

◦ Main question:

Nneg(H)

∣∣∣∣
L2
−Nneg(H)

∣∣∣∣
Xc

= ?

13



Main Theorem I : bounds on isolated eigenvalues

◦ Let L be a self-adjoint operator on X ⊂ L2 with a finite negative
index Nneg, empty kernel, and positive essential spectrum.

◦ Let Xc be the constrained linear subspace on linearly independent
vectors:

Xc =
{
v ∈ X : {(v, vj) = 0}Nj=1

}
◦ Let the matrix A be defined by

Ai,j = (vi, L
−1vj), 1 ≤ i, j ≤ N

◦ Then,

Nneg(L)

∣∣∣∣
Xc

= Nneg(L)

∣∣∣∣
X
−Nneg(A), 1 ≤ i, j ≤ N
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Application of the Main Theorem I

◦ Consider two matrices A+ and A− for two operators L+ and L−
constrained with two sets of eigenfunctions {wj} and {uj}
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Application of the Main Theorem I

◦ Consider two matrices A+ and A− for two operators L+ and L−
constrained with two sets of eigenfunctions {wj} and {uj}

◦ Due to skew-orthogonality, the matrices A± are block-diagonal.

◦ For real eigenvalue z = z0 with the eigenvector (uR, wR)

A+
j,j = A−j,j =

1

z2
0

(uR, L+uR) =
1

z2
0

(wR, L−wR).

◦ For imaginary eigenvalue z = iz0 with the eigenvector (uR, iwI)

A+
j,j = −A−j,j =

1

z2
0

(uR, L+uR) = − 1

z2
0

(wI , L−wI).
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Application of the Main Theorem I

◦ For complex eigenvalue z = zR + izI with the eigenvector
(uR + iuI , wR + iwI)

A+
i,j = A−i,j = Z2M, Z =

1

z2
R + z2

I

(
zR zI
−zI zR

)
.
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Application of the Main Theorem I

◦ For complex eigenvalue z = zR + izI with the eigenvector
(uR + iuI , wR + iwI)

A+
i,j = A−i,j = Z2M, Z =

1

z2
R + z2

I

(
zR zI
−zI zR

)
.

◦ Individual counts of eigenvalues

Nneg(L+)

∣∣∣∣
Xc

= Nneg(L+)

∣∣∣∣
X0

−N−
real(JH)−N−

imag(JH)−Ncomp(JH)

and

Nneg(L−)

∣∣∣∣
Xc

= Nneg(L−)

∣∣∣∣
X0

−N−
real(JH)−N+

imag(JH)−Ncomp(JH)

◦ End of proof of I
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Projections and decompositions

◦ Birman–Schwinger representation of the potentials

V (x) =

(
f (x) g(x)
g(x) f (x)

)
= B∗(x)A(x)

and of the spectral problem

(σ3(−∆ + ω)− z)ψ = −B∗Aψ,
such that

(I +Q0(z))Ψ = 0, Q0(z) = A (σ3(−∆ + ω)− z)−1B∗,
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Projections and decompositions

◦ Birman–Schwinger representation of the potentials

V (x) =

(
f (x) g(x)
g(x) f (x)

)
= B∗(x)A(x)

and of the spectral problem

(σ3(−∆ + ω)− z)ψ = −B∗Aψ,
such that

(I +Q0(z))Ψ = 0, Q0(z) = A (σ3(−∆ + ω)− z)−1B∗,

◦ The set of isolated eigenvalues of σ3H is finite

◦ No resonances occur in the interior points

◦ There exists a spectrum-invariant Jordan-block decomposition

L2 =
∑

z∈σp(JH)

Ng(JH − z)⊕Xc
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Main Theorem II : positivity of the essential spectrum

◦ Assume that no resonance exist at the endpoints of σe(JH)

◦ Assume that no multiple embedded eigenvalues exist in σe(JH)

◦ Rn = R3
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Main Theorem II : positivity of the essential spectrum

◦ Assume that no resonance exist at the endpoints of σe(JH)

◦ Assume that no multiple embedded eigenvalues exist in σe(JH)

◦ Rn = R3

◦ There exists isomorphisms between Hilbert spaces

W : L2 7→ Xc, Z : Xc 7→ L2

◦W and Z are inverse of each other, where

∀u ∈ Xc,∀ v ∈ L2 : 〈Zu, v〉 = 〈u, v〉

+ lim
ε→0+

1

2πi

∫ +∞

−∞
〈A(σ3H−λ−iε)−1u,B(σ3(−∆+ω)−λ−iε)−1v〉dλ,
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Application of the Main Theorem II

◦ It follows from the wave operators that

W ∗σ3 = σ3Z, Z∗σ3 = σ3W, Zσ3H = σ3(−∆ + ω)Z.
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Application of the Main Theorem II

◦ It follows from the wave operators that

W ∗σ3 = σ3Z, Z∗σ3 = σ3W, Zσ3H = σ3(−∆ + ω)Z.

◦ If ψ ∈ Xc, there exists ψ̂ ∈ L2, such that ψ = W ψ̂.

◦ Then

〈ψ, Hψ〉 = 〈W ψ̂, σ3σ3HW ψ̂〉 = 〈W ψ̂, (σ3H)∗Z∗σ3ψ̂〉
= 〈σ3(−∆ + ω)ZW ψ̂, σ3ψ̂〉 = 〈(−∆ + ω)Iψ̂, ψ̂〉 > 0.

◦ End of proof of II.
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Extensions of the main results

◦ Fermi Golden Rule for an embedded real eigenvalue

◦ It disappears if it has positive energy

◦ It becomes complex eigenvalue if it has negative energy
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Extensions of the main results

◦ Fermi Golden Rule for an embedded real eigenvalue

◦ It disappears if it has positive energy

◦ It becomes complex eigenvalue if it has negative energy

◦ Jordan blocks for multiple real eigenvalues of zero energy
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real for even multiplicity
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real = N−

real ± 1 for odd multiplicity
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Extensions of the main results

◦ Fermi Golden Rule for an embedded real eigenvalue

◦ It disappears if it has positive energy

◦ It becomes complex eigenvalue if it has negative energy

◦ Jordan blocks for multiple real eigenvalues of zero energy

◦ N+
real = N−

real for even multiplicity

◦ N+
real = N−

real ± 1 for odd multiplicity

◦ Weighted spaces for endpoint resonance and eigenvalue

◦ Resonance results in real eigenvalue of positive energy

◦ Eigenvalue repeats the scenario of embedded eigenvalue
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Example: two coupled NLS equations

iψ1t + ψ1xx +
(
|ψ1|2 + χ|ψ2|2

)
ψ1 = 0

iψ2t + ψ2xx +
(
χ|ψ1|2 + |ψ2|2

)
ψ2 = 0
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Example: two coupled NLS equations

◦ Lyapunov-Schmidt reductions near local bifurcation boundary

ψ1 = eit
(√

2 sechx +O(ε2)
)
, ψ2 = eiωt

(
εφn(x) +O(ε3)

)
,

where (
−∂2

x + ωn(χ)− 2χ sech2(x)
)
φn(x) = 0

◦ By continuity of eigenvalues, we count isolated eigenvalues

Nneg(H) = 2n,

where n is the number of zeros of φn(x). Therefore,

2N−
real(JH) +Nimag(JH) + 2Ncomp(JH) = 2n
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Example: two coupled NLS equations

n = 1
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Example: two coupled NLS equations

n = 2
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Work in progress

◦ Bounds on N+
real(JH) in terms of positive eigenvalues of H

◦ Relation between bifurcations of resonances in JH and H

◦ What if continuous spectrum of H is sign-indefinite?

◦ What if J is not invertible?

◦ Dynamics of nonlinear waves beyond the linearized system
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