Spectral stability of nonlinear waves in KdV equations

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada http://dmpeli.math.mcmaster.ca

IMACS Conference on Nonlinear Evolution Equations March 25-27, 2013, Athens GA, USA

Thanks to contributions of

- Marina Chugunova (now at Claremont Graduate University)

Stability of nonlinear waves in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

$$
\frac{d u}{d t}=J \nabla H(u), \quad u(t) \in X
$$

where $X \subset L^{2}$ is a phase space, $J^{+}=-J$ is the symplectic operator, and $H: X \rightarrow \mathbb{R}$ is the Hamiltonian function.

- Assume existence of the stationary state (nonlinear wave) $u_{0} \in X$ such that $\nabla H\left(u_{0}\right)=0$.
- Perform linearization at the stationary solution

$$
u(t)=u_{0}+v e^{\lambda t}
$$

where λ is the spectral parameter and $v \in X$ satisfies the spectral problem

$$
J D^{2} H\left(u_{0}\right) v=\lambda v,
$$

associated with the self-adjoint Hessian operator $D^{2} H\left(u_{0}\right)$.

Main Question

Consider the spectral stability problem:

$$
J D^{2} H\left(u_{0}\right) v=\lambda v, \quad v \in X
$$

- Let stationary solutions u_{0} decay exponentially as $|x| \rightarrow \infty$ (solitary waves, vortices, etc).
- Let the skew-symmetric operator J be invertible
- Let the self-adjoint operator $D^{2} H\left(u_{0}\right)$ have a positive essential spectrum and finitely many negative eigenvalues.

Question: Is there a relation between unstable eigenvalues of $J D^{2} H\left(u_{0}\right)$ and negative eigenvalues of $D^{2} H\left(u_{0}\right)$?

Remark: One-to-one correspondence clearly exists for the gradient system:

$$
\frac{d u}{d t}=-\nabla F(u) \quad \Rightarrow \quad \lambda v=-D^{2} F\left(u_{0}\right) v
$$

State of the art

For simplicity, assume a zero-dimensional kernel of $D^{2} H\left(u_{0}\right)$. If λ is an eigenvalue, so is $-\lambda, \bar{\lambda}$, and $-\bar{\lambda}$.

- Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
- If $D^{2} H\left(u_{0}\right)$ has no negative eigenvalue, then $J D^{2} H\left(u_{0}\right)$ has no unstable eigenvalues.
- If $D^{2} H\left(u_{0}\right)$ has an odd number of negative eigenvalues, then $J D^{2} H\left(u_{0}\right)$ has at least one real unstable eigenvalue.

State of the art

For simplicity, assume a zero-dimensional kernel of $D^{2} H\left(u_{0}\right)$. If λ is an eigenvalue, so is $-\lambda, \bar{\lambda}$, and $-\bar{\lambda}$.

- Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
- If $D^{2} H\left(u_{0}\right)$ has no negative eigenvalue, then $J D^{2} H\left(u_{0}\right)$ has no unstable eigenvalues.
- If $D^{2} H\left(u_{0}\right)$ has an odd number of negative eigenvalues, then $J D^{2} H\left(u_{0}\right)$ has at least one real unstable eigenvalue.
- Kapitula, Kevrekidis, Sandstede, 2004 Negative Index Theory:
$N_{\mathrm{re}}\left(J D^{2} H\left(u_{0}\right)\right)+2 N_{\mathrm{c}}\left(J D^{2} H\left(u_{0}\right)\right)+2 N_{\mathrm{im}}^{-}\left(J D^{2} H\left(u_{0}\right)\right)=N_{\mathrm{neg}}\left(D^{2} H\left(u_{0}\right)\right)$,
where N_{re} is the number of positive real eigenvalues, N_{c} is the number of complex eigenvalues in the first quadrant, and N_{im}^{-}is the number of positive imaginary eigenvalues of negative Krein signature.

Remarks on Krein signature

- Suppose that $\lambda \in i \mathbb{R}$ is a simple isolated eigenvalue of $J D^{2} H\left(u_{0}\right)$ with the eigenvector v. Then, the sign of

$$
E_{\omega}^{\prime \prime}(v)=\left\langle D^{2} H\left(u_{0}\right) v, v\right\rangle_{L^{2}}
$$

is called the Krein signature of the eigenvalue λ.

- If λ is an eigenvalue of $J D^{2} H\left(u_{0}\right)$ with $\operatorname{Re}(\lambda) \neq 0$ and an eigenvector v, then

$$
E_{\omega}^{\prime \prime}(v)=\left\langle D^{2} H\left(u_{0}\right) v, v\right\rangle_{L^{2}}=0 .
$$

- If λ is a multiple isolated eigenvalue of $J D^{2} H\left(u_{0}\right)$, then the number $N_{\mathrm{im}}^{-}\left(J D^{2} H\left(u_{0}\right)\right)$ of eigenvalues of "negative Krein signature" has to be introduced via the number of negative eigenvalues of the quadratic form $E_{\omega}^{\prime \prime}(v)$ restricted at the invariant subspace of $J D^{2} H\left(u_{0}\right)$ associated with the eigenvalue λ.

Sharp stability results

Consider the spectral stability problem:

$$
L_{+} u=-\lambda w, \quad L_{-} w=\lambda u, \quad u, w \in X
$$

and assume again zero-dimensional kernels of L_{+}and L_{-}.

- Hessian of the energy:

$$
E_{\omega}^{\prime \prime}(v)=\left\langle L_{+} u, u\right\rangle_{L^{2}}+\left\langle L_{-} w, w\right\rangle_{L^{2}}
$$

- Pelinovsky, 2005 Sharp Negative Index Theory:

$$
\left\{\begin{array}{l}
N_{\mathrm{re}}^{-}\left(J D^{2} H\left(u_{0}\right)\right)+N_{\mathrm{c}}\left(J D^{2} H\left(u_{0}\right)\right)+N_{\mathrm{i}}^{-}\left(J D^{2} H\left(u_{0}\right)\right)=N_{\mathrm{neg}}\left(L_{+}\right), \\
N_{\mathrm{re}}^{+}\left(J D^{2} H\left(u_{0}\right)\right)+N_{\mathrm{c}}\left(J D^{2} H\left(u_{0}\right)\right)+N_{\mathrm{im}}^{-}\left(J D^{2} H\left(u_{0}\right)\right)=N_{\mathrm{neg}}\left(L_{-}\right),
\end{array}\right.
$$

where $N_{\mathrm{re}}^{+}\left(N_{\mathrm{re}}^{-}\right)$is the number of positive eigenvalues with positive (negative) quadratic form $\left\langle L_{+} u, u\right\rangle_{L^{2}}$.

Example: NLS equation

Consider the nonlinear Schrödinger equation

$$
i \psi_{t}=-\psi_{x x}+V(x) \psi+|\psi|^{2} \psi
$$

where V is an external potential.

- The stationary state $\psi=\phi e^{-i \omega t}$ is a critical point of the energy:

$$
E_{\omega}(u)=\int_{\mathbb{R}}\left(\left|u_{x}\right|^{2}+V|u|^{2}-\omega|u|^{2}+\frac{1}{2}|u|^{4}\right) d x
$$

- The Hessian of the energy is

$$
D^{2} H\left(u_{0}\right)=\left[\begin{array}{cc}
-\partial_{x}^{2}+V-\omega+2|\phi|^{2} & \phi^{2} \\
\bar{\phi}^{2} & -\partial_{x}^{2}+V-\omega+2|\phi|^{2}
\end{array}\right] .
$$

- The skew-symmetric operator J is

$$
J=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] .
$$

Example: KdV equation

Consider the Korteweg-De Vries equation

$$
u_{t}+f^{\prime}(u) u_{x}+u_{x x x}=0
$$

where f is the nonlinear speed.

- The travelling state $u=\phi(x-c t)$ is a critical point of the energy:

$$
E_{c}(u)=\int_{\mathbb{R}}\left(u_{x}^{2}+c u^{2}+\int_{0}^{u} f(u) d u\right) d x
$$

- The Hessian of the energy is

$$
D^{2} H\left(u_{0}\right)=-\partial_{x}^{2}+c-f^{\prime}(u)
$$

- The skew-symmetric operator $J=\partial_{x}$ is not invertible and hence violates assumptions of the theory.

Literature background

- Orbital stability theory: Bona-Souganidis-Strauss (1987); Angulo-Nataly (2008); Angula-Scialom-Banquet (2011)
- Evans function and asymptotic stability: Pego-Weinstein (1992); Pego-Weinstein (1994)
- Spectral stability of periodic waves: Haragus-Kapitula (2008); Deconinck-Kapitula (2010)
- Spectral stability of solitary waves: Lin (2008); Kapitula-Stefanov (2012).

Literature background

- Orbital stability theory: Bona-Souganidis-Strauss (1987); Angulo-Nataly (2008); Angula-Scialom-Banquet (2011)
- Evans function and asymptotic stability: Pego-Weinstein (1992); Pego-Weinstein (1994)
- Spectral stability of periodic waves: Haragus-Kapitula (2008); Deconinck-Kapitula (2010)
- Spectral stability of solitary waves: Lin (2008); Kapitula-Stefanov (2012).

Main Claim: KdV-stability follows immediately from Pontryagin's Invariant Subspace Theorem used in M. Chugunova and D.P., "Count of eigenvalues in the generalized eigenvalue problem", J. Math. Phys. 51052901 (2010)

Main Result

Consider the spectral stability problem $\partial_{x} \mathcal{L} v=\lambda v$, where \mathcal{L} is a self-adjoint operator with a dense domain $D(\mathcal{L})$ in $L^{2}(\mathbb{R})$. Assume:

- Real-valued $\mathcal{L}: \lambda$ and $\bar{\lambda}$ are eigenvalues
- Hamiltonian symmetry: λ and $-\lambda$ are eigenvalues
- $\mathcal{L}=\mathcal{L}_{0}+K_{\mathcal{L}}$, where
- \mathcal{L}_{0} is a strongly elliptic unbounded operator with constant coefficients
- $K_{\mathcal{L}}$ is a relatively compact perturbation of \mathcal{L}_{0}
- There is $c_{0}>0$ such that $\sigma\left(\mathcal{L}_{0}\right) \geq c_{0}$.
- There are $n(\mathcal{L})<\infty$ negative eigenvalues of \mathcal{L}.
- $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left\{f_{0}\right\}$ with $f_{0} \in D(\mathcal{L}) \cap \dot{H}^{-1}(\mathbb{R})$.
- $\left\langle\mathcal{L}^{-1} \phi_{0}, \phi_{0}\right\rangle \neq 0$, where $\phi_{0}=\partial_{x}^{-1} f \in L^{2}(\mathbb{R})$ and $\left\langle f_{0}, \phi_{0}\right\rangle=0$.

Theorem

$$
\begin{array}{r}
N_{\mathrm{re}}\left(\partial_{x} \mathcal{L}\right)+2 N_{\mathrm{c}}\left(\partial_{x} \mathcal{L}\right)+2 N_{\mathrm{im}}^{-}\left(\partial_{x} \mathcal{L}\right)=n(\mathcal{L})-n_{0}, \\
\text { where } n_{0}=1
\end{array} \text { if }\left\langle\mathcal{L}^{-1} \phi_{0}, \phi_{0}\right\rangle<0 \text { and } n_{0}=0 \text { if }\left\langle\mathcal{L}^{-1} \phi_{0}, \phi_{0}\right\rangle>0 . ~ \$
$$

Extended eigenvalue problem

Consider the spectral stability problem:

$$
\partial_{x} \mathcal{L} v=\lambda v, \quad v \in D(\mathcal{L}) \cap \dot{H}^{-1}(\mathbb{R}) .
$$

Set $v=\partial_{x} w$, where $w \in D\left(\mathcal{L} \partial_{x}\right) \subset L^{2}(\mathbb{R})$. Then, the spectral stability problem is extended to the form

$$
\mathcal{M} w=-\lambda v, \quad \mathcal{L} v=\lambda w,
$$

where $\mathcal{M}:=-\partial_{x} \mathcal{L} \partial_{x}$.

Lemma

The extended problem has a pair of simple eigenvalues $\pm \lambda_{0} \neq 0$ with the eigenvectors

$$
\left(v_{0}, \pm w_{0}\right) \in D(\mathcal{L}) \cap \dot{H}^{-1}(\mathbb{R}) \times D\left(\mathcal{L} \partial_{x}\right)
$$

if and only if the $K d V$ spectral problem has a pair of simple eigenvalues $\pm \lambda_{0}$ with the eigenvectors

$$
v_{ \pm}=v_{0} \pm \partial_{x} w_{0}
$$

Generalized eigenvalue problem

Recall that $\operatorname{Ker}(\mathcal{L})=\operatorname{span}\left\{f_{0}\right\}$ and that zero eigenvalue of \mathcal{L} is isolated from the rest of the spectrum.

- Let P be the orthogonal projection from $L^{2}(\mathbb{R})$ to $\left[\operatorname{span}\left\{f_{0}\right\}\right]^{\perp} \subset L^{2}(\mathbb{R})$.
- If $\lambda \neq 0$, then $w=P w$, so that we can invert \mathcal{L} and express v as

$$
v=\lambda P \mathcal{L}^{-1} P w+v_{0}, \quad v_{0} \in \operatorname{Ker}(\mathcal{L})
$$

- Substituting v, we split the other equation of the system into two parts

$$
P \mathcal{M P} w=-\lambda^{2} P \mathcal{L}^{-1} P w, \quad v_{0}=-\frac{1}{\lambda}(I-P) \mathcal{M} P w
$$

Lemma

The KdV spectral problem problem has a pair of simple eigenvalues $\pm \lambda_{0} \neq 0$ with the eigenvectors $v_{ \pm}$if and only if the generalized eigenvalue problem

$$
A w=\gamma K w, \quad A:=P \mathcal{M} P, \quad K:=P \mathcal{L}^{-1} P
$$

has a double eigenvalue $\gamma_{0}=-\lambda_{0}^{2}$ with the eigenvectors $w_{ \pm}=\partial_{x}^{-1} v_{ \pm}$in space $\mathcal{H}:=D(\mathcal{M}) \cap\left[\operatorname{span}\left(f_{0}\right)\right]^{\perp} \subset L^{2}(\mathbb{R})$.

Shifted generalized eigenvalue problem

Complication here is that the essential spectrum of $\mathcal{M}=-\partial_{x} \mathcal{L} \partial_{x}$ touches zero. As a result, the essential spectrum of $A=P \mathcal{M} P$ also touches zero in the generalized eigenvalue problem:

$$
A w=\gamma K w, \quad w \in \mathcal{H}, \quad \gamma=-\lambda^{2}
$$

Lemma

Let $A_{\delta}:=A+\delta K$. For small positive values of δ, there is a positive δ-independent constant d_{0} such that $\sigma_{e}\left(A_{\delta}\right) \geq d_{0} \delta$.

Shifted generalized eigenvalue problem

Complication here is that the essential spectrum of $\mathcal{M}=-\partial_{x} \mathcal{L} \partial_{x}$ touches zero. As a result, the essential spectrum of $A=P \mathcal{M} P$ also touches zero in the generalized eigenvalue problem:

$$
A w=\gamma K w, \quad w \in \mathcal{H}, \quad \gamma=-\lambda^{2}
$$

Lemma

Let $A_{\delta}:=A+\delta K$. For small positive values of δ, there is a positive δ-independent constant d_{0} such that $\sigma_{e}\left(A_{\delta}\right) \geq d_{0} \delta$.

For small positive δ, we obtain a shifted generalized eigenvalue problem

$$
(A+\delta K) w=(\gamma+\delta) K w, \quad u \in \mathcal{H}
$$

and zero is not in the spectrum of neither K nor $A+\delta K$.
Since A and K are self-adjoint in Hilbert space, for small positive δ, we have the orthogonal decomposition:

$$
\mathcal{H}=\mathcal{H}_{K}^{-} \oplus \mathcal{H}_{K}^{+}=\mathcal{H}_{A_{\delta}}^{-} \oplus \mathcal{H}_{A_{\delta}}^{+}
$$

Count of negative eigenvalues

Theorem (Chugunova, P.; 2010)

For small positive δ, eigenvalues of the shifted generalized eigenvalue problem are counted as follows:

$$
\begin{align*}
& N_{p}^{-}+N_{n}^{0}+N_{n}^{+}+N_{c^{+}}=\operatorname{dim}\left(\mathcal{H}_{A_{\delta}}^{-}\right) \tag{1}\\
& N_{n}^{-}+N_{n}^{0}+N_{n}^{+}+N_{c^{+}}=\operatorname{dim}\left(\mathcal{H}_{K}^{-}\right) \tag{2}
\end{align*}
$$

where

- $N_{p}^{-}\left(N_{n}^{-}\right)$is the number of negative eigenvalues γ whose (generalized) eigenvectors are associated to the non-negative (non-positive) values of the quadratic form $\langle K \cdot, \cdot\rangle$.
- $N_{p}^{+}\left(N_{n}^{+}\right)$is the number of positive eigenvalues γ whose (generalized) eigenvectors are ...
- $N_{p}^{0}\left(N_{n}^{0}\right)$ is the multiplicity of zero eigenvalue whose (generalized) eigenvectors are ...
- $N_{c^{+}}\left(N_{c^{-}}\right)$is the number of complex eigenvalues γ in the upper (lower) half-plane.

Application of the count

Count (2) is written as follows

$$
N_{n}^{-}+N_{n}^{0}+N_{n}^{+}+N_{c^{+}}=\operatorname{dim}\left(\mathcal{H}_{K}^{-}\right)
$$

- By construction of K, we have $\operatorname{dim}\left(\mathcal{H}_{K}^{-}\right)=n(\mathcal{L})$
- By definition of N_{n}^{0} as the multiplicity of zero eigenvalue whose eigenvectors are associated to the non-positive values of the quadratic form $\langle K \cdot, \cdot\rangle$, we have $N_{n}^{0}=n_{0}$, where $n_{0}=1$ if $\left\langle\mathcal{L}^{-1} \phi_{0}, \phi_{0}\right\rangle<0$ and $n_{0}=0$ if $\left\langle\mathcal{L}^{-1} \phi_{0}, \phi_{0}\right\rangle>0$.
- By symmetries of the spectral stability problem,

$$
N_{n}^{-}=N_{\mathrm{re}}\left(\partial_{x} \mathcal{L}\right), \quad N_{n}^{+}=2 N_{\mathrm{im}}^{-}\left(\partial_{x} \mathcal{L}\right), \quad N_{c^{+}}=2 N_{\mathrm{c}}\left(\partial_{x} \mathcal{L}\right),
$$

which yields the assertion of the main theorem.
Note that count (1) is not used. To use it, we would need to characterize the spectrum of $M=-\partial_{x} \mathcal{L} \partial_{x}$, the negative spectrum of A, and the negative spectrum of A_{δ}. If this is done, it produces the same eigenvalue count.

Example of the fifth-order KdV equation

Consider the fifth-order KdV equation,

$$
u_{t}+u_{x x x}-u_{x x x x x}+2 u u_{x}=0
$$

where the energy functional $E(u)$ is defined in $H^{2}(\mathbb{R})$,

$$
E(u)=\frac{1}{2} \int_{\mathbb{R}}\left(u_{x}^{2}+u_{x x}^{2}+u^{3}\right) d x,
$$

and the momentum functional is $P(u)=\|u\|^{2}$.
Travelling waves $u=\phi(x-c t)$ exist as critical points of $E(u)+c P(u)$ with speed c.

Assumption $\sigma\left(\mathcal{L}_{0}\right) \geq c_{0}>0$ is satisfied because

$$
c_{\text {wave }}(k)=k^{2}+k^{4} \geq 0, \quad k \in \mathbb{R} .
$$

Then, $c>0$ for travelling solitary waves and $c+c_{\text {wave }}(k) \geq c>0$.
Reference: M. Chugunova, D.P., "Two-pulse solutions in the fifth-order KdV equation", DCDS B 8, 773-800 (2007).

Two-pulse solitary waves

$$
\frac{d^{4} \phi}{d x^{4}}-\frac{d^{2} \phi}{d x^{2}}+c \phi=\phi^{2} .
$$

Figure : Numerical approximation of the first four two-pulse solutions.

Counts of eigenvalues:

- One-pulse solutions

$$
n(\mathcal{H})=1, \quad n_{0}=1, \quad\left\langle\mathcal{L}_{c}^{-1} \phi, \phi\right\rangle=-\frac{1}{2} \frac{d}{d c}\|\phi\|^{2}<0 .
$$

The one-pulse solution is a ground state (Levandosky, 1999).

Counts of eigenvalues:

- One-pulse solutions

$$
n(\mathcal{H})=1, \quad n_{0}=1, \quad\left\langle\mathcal{L}_{c}^{-1} \phi, \phi\right\rangle=-\frac{1}{2} \frac{d}{d c}\|\phi\|^{2}<0
$$

The one-pulse solution is a ground state (Levandosky, 1999).

- Two-pulse solutions (even numbers)

$$
n(\mathcal{H})=2, \quad n_{0}=1, \quad N_{\mathrm{re}}\left(\partial_{x} \mathcal{L}\right)=1
$$

The two-pulse solution is spectrally unstable.

Counts of eigenvalues:

- One-pulse solutions

$$
n(\mathcal{H})=1, \quad n_{0}=1, \quad\left\langle\mathcal{L}_{c}^{-1} \phi, \phi\right\rangle=-\frac{1}{2} \frac{d}{d c}\|\phi\|^{2}<0
$$

The one-pulse solution is a ground state (Levandosky, 1999).

- Two-pulse solutions (even numbers)

$$
n(\mathcal{H})=2, \quad n_{0}=1, \quad N_{\mathrm{re}}\left(\partial_{x} \mathcal{L}\right)=1
$$

The two-pulse solution is spectrally unstable.

- Two-pulse solutions (odd numbers)

$$
n(\mathcal{H})=3, \quad n_{0}=1, \quad N_{\mathrm{im}}^{-}\left(\partial_{x} \mathcal{L}\right)=1
$$

The two-pulse solution is spectrally stable and the embedded eigenvalue of negative Krein signature persists with respect to perturbations.

First two-pulse solution

Figure : Numerical approximations of the spectra of operators \mathcal{L} and $\partial_{x} \mathcal{L}$ for the two-pulse solution with $c=1$ under an exponential weight $\alpha=0.04$.

Second two-pulse solution

Figure : The same for the second two-pulse solution.

Time-evolution of two-pulse solutions

Figure : Initial conditions have different initial separations between the two pulses.

Spectral stability of nonlinear waves - what's next?

- Boussinesq equations with non-invertible J (Yin, 2009); (Stanislavova, Stefanov, 2012);

$$
u_{t t}-u_{x x}-u_{t t x x}-\left(u^{2}\right)_{x x}=0
$$

- Dirac equations with sign-indefinite continuous spectrum of $D^{2} H\left(u_{0}\right)$ (Comech, 2012); (Boussaid \& Comech, 2012)

$$
\left\{\begin{array}{l}
i\left(u_{t}+u_{x}\right)+v+\partial_{\bar{u}} W(u, v)=0 \\
i\left(v_{t}-v_{x}\right)+u+\partial_{\bar{v}} W(u, v)=0
\end{array}\right.
$$

where W is the nonlinear potential.

