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Stability of nonlinear waves in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

du

dt
= J∇H(u), u(t) ∈ X

where X ⊂ L2 is a phase space, J+ = −J is the symplectic operator, and

H : X → R is the Hamiltonian function.

Assume existence of the stationary state (nonlinear wave) u0 ∈ X such

that ∇H(u0) = 0.

Perform linearization at the stationary solution

u(t) = u0 + ve
λt
,

where λ is the spectral parameter and v ∈ X satisfies the spectral

problem

JD
2
H(u0)v = λv,

associated with the self-adjoint Hessian operator D2H(u0).



Main Question

Consider the spectral stability problem:

JD
2
H(u0)v = λv, v ∈ X.

Let stationary solutions u0 decay exponentially as |x| → ∞ (solitary

waves, vortices, etc).

Let the skew-symmetric operator J be invertible

Let the self-adjoint operator D2H(u0) have a positive essential spectrum

and finitely many negative eigenvalues.

Question: Is there a relation between unstable eigenvalues of JD2H(u0) and

negative eigenvalues of D2H(u0)?

Remark: One-to-one correspondence clearly exists for the gradient system:

du

dt
= −∇F (u) ⇒ λv = −D2

F (u0)v.



State of the art

For simplicity, assume a zero-dimensional kernel of D2H(u0).
If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.

Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:

If D2H(u0) has no negative eigenvalue, then JD2H(u0) has no unstable
eigenvalues.
If D2H(u0) has an odd number of negative eigenvalues, then JD2H(u0)
has at least one real unstable eigenvalue.
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If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.

Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:

If D2H(u0) has no negative eigenvalue, then JD2H(u0) has no unstable
eigenvalues.
If D2H(u0) has an odd number of negative eigenvalues, then JD2H(u0)
has at least one real unstable eigenvalue.

Kapitula, Kevrekidis, Sandstede, 2004 Negative Index Theory:

Nre(JD
2
H(u0))+2Nc(JD

2
H(u0))+2N−

im(JD2
H(u0)) = Nneg(D

2
H(u0)),

where Nre is the number of positive real eigenvalues, Nc is the number

of complex eigenvalues in the first quadrant, and N−

im is the number of

positive imaginary eigenvalues of negative Krein signature.



Remarks on Krein signature

Suppose that λ ∈ iR is a simple isolated eigenvalue of JD2H(u0) with

the eigenvector v. Then, the sign of

E
′′

ω(v) = 〈D2
H(u0)v, v〉L2

is called the Krein signature of the eigenvalue λ.

If λ is an eigenvalue of JD2H(u0) with Re(λ) 6= 0 and an eigenvector v,

then

E
′′

ω(v) = 〈D2
H(u0)v, v〉L2 = 0.

If λ is a multiple isolated eigenvalue of JD2H(u0), then the number

N−

im(JD2H(u0)) of eigenvalues of “negative Krein signature" has to be

introduced via the number of negative eigenvalues of the quadratic form

E′′
ω(v) restricted at the invariant subspace of JD2H(u0) associated with

the eigenvalue λ.



Sharp stability results

Consider the spectral stability problem:

L+u = −λw, L−w = λu, u, w ∈ X,

and assume again zero-dimensional kernels of L+ and L−.

Hessian of the energy:

E
′′

ω(v) = 〈L+u, u〉L2 + 〈L−w,w〉L2 .

Pelinovsky, 2005 Sharp Negative Index Theory:

{

N−
re (JD

2H(u0)) +Nc(JD
2H(u0)) +N−

im(JD2H(u0)) = Nneg(L+),
N+

re(JD
2H(u0)) +Nc(JD

2H(u0)) +N−

im(JD2H(u0)) = Nneg(L−),

where N+
re (N−

re ) is the number of positive eigenvalues with positive

(negative) quadratic form 〈L+u, u〉L2 .



Example: NLS equation

Consider the nonlinear Schrödinger equation

iψt = −ψxx + V (x)ψ + |ψ|2ψ,

where V is an external potential.

The stationary state ψ = φe−iωt is a critical point of the energy:

Eω(u) =

∫

R

(

|ux|
2 + V |u|2 − ω|u|2 +

1

2
|u|4

)

dx.

The Hessian of the energy is

D
2
H(u0) =

[

−∂2
x + V − ω + 2|φ|2 φ2

φ̄2 −∂2
x + V − ω + 2|φ|2

]

.

The skew-symmetric operator J is

J =

[

i 0
0 −i

]

.



Example: KdV equation

Consider the Korteweg–De Vries equation

ut + f
′(u)ux + uxxx = 0,

where f is the nonlinear speed.

The travelling state u = φ(x− ct) is a critical point of the energy:

Ec(u) =

∫

R

(

u
2
x + cu

2 +

∫ u

0

f(u)du

)

dx.

The Hessian of the energy is

D
2
H(u0) = −∂2

x + c− f
′(u).

The skew-symmetric operator J = ∂x is not invertible and hence violates

assumptions of the theory.
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Main Claim: KdV-stability follows immediately from Pontryagin’s Invariant

Subspace Theorem used in M. Chugunova and D.P., “Count of eigenvalues in

the generalized eigenvalue problem", J. Math. Phys. 51 052901 (2010)



Main Result

Consider the spectral stability problem ∂xLv = λv, where L is a self-adjoint

operator with a dense domain D(L) in L2(R). Assume:

Real-valued L: λ and λ̄ are eigenvalues

Hamiltonian symmetry: λ and −λ are eigenvalues

L = L0 +KL, where

L0 is a strongly elliptic unbounded operator with constant coefficients
KL is a relatively compact perturbation of L0

There is c0 > 0 such that σ(L0) ≥ c0.

There are n(L) <∞ negative eigenvalues of L.

Ker(L) = span{f0} with f0 ∈ D(L) ∩ Ḣ−1(R).

〈L−1φ0, φ0〉 6= 0, where φ0 = ∂−1
x f ∈ L2(R) and 〈f0, φ0〉 = 0.

Theorem

Nre(∂xL) + 2Nc(∂xL) + 2N−

im(∂xL) = n(L)− n0,

where n0 = 1 if 〈L−1φ0, φ0〉 < 0 and n0 = 0 if 〈L−1φ0, φ0〉 > 0.



Extended eigenvalue problem

Consider the spectral stability problem:

∂xLv = λv, v ∈ D(L) ∩ Ḣ−1(R).

Set v = ∂xw, where w ∈ D(L∂x) ⊂ L2(R). Then, the spectral stability

problem is extended to the form

Mw = −λv, Lv = λw,

where M := −∂xL∂x.

Lemma

The extended problem has a pair of simple eigenvalues ±λ0 6= 0 with the

eigenvectors

(v0,±w0) ∈ D(L) ∩ Ḣ−1(R)×D(L∂x)

if and only if the KdV spectral problem has a pair of simple eigenvalues ±λ0

with the eigenvectors

v± = v0 ± ∂xw0.



Generalized eigenvalue problem

Recall that Ker(L) = span{f0} and that zero eigenvalue of L is isolated from

the rest of the spectrum.

Let P be the orthogonal projection from L2(R) to [span{f0}]
⊥ ⊂ L2(R).

If λ 6= 0, then w = Pw, so that we can invert L and express v as

v = λPL−1
Pw + v0, v0 ∈ Ker(L).

Substituting v, we split the other equation of the system into two parts

PMPw = −λ2
PL−1

Pw, v0 = −
1

λ
(I − P )MPw,

Lemma

The KdV spectral problem problem has a pair of simple eigenvalues ±λ0 6= 0
with the eigenvectors v± if and only if the generalized eigenvalue problem

Aw = γKw, A := PMP, K := PL−1
P,

has a double eigenvalue γ0 = −λ2
0 with the eigenvectors w± = ∂−1

x v± in

space H := D(M) ∩ [span(f0)]
⊥ ⊂ L2(R).



Shifted generalized eigenvalue problem

Complication here is that the essential spectrum of M = −∂xL∂x touches

zero. As a result, the essential spectrum of A = PMP also touches zero in

the generalized eigenvalue problem:

Aw = γKw, w ∈ H, γ = −λ2
,

Lemma

Let Aδ := A+ δK. For small positive values of δ, there is a positive

δ-independent constant d0 such that σe(Aδ) ≥ d0δ.



Shifted generalized eigenvalue problem

Complication here is that the essential spectrum of M = −∂xL∂x touches

zero. As a result, the essential spectrum of A = PMP also touches zero in

the generalized eigenvalue problem:

Aw = γKw, w ∈ H, γ = −λ2
,

Lemma

Let Aδ := A+ δK. For small positive values of δ, there is a positive

δ-independent constant d0 such that σe(Aδ) ≥ d0δ.

For small positive δ, we obtain a shifted generalized eigenvalue problem

(A+ δK)w = (γ + δ)Kw, u ∈ H,

and zero is not in the spectrum of neither K nor A+ δK.

Since A and K are self-adjoint in Hilbert space, for small positive δ, we have

the orthogonal decomposition:

H = H−

K ⊕H+
K = H−

Aδ
⊕H+

Aδ
.



Count of negative eigenvalues

Theorem (Chugunova, P.; 2010)

For small positive δ, eigenvalues of the shifted generalized eigenvalue

problem are counted as follows:

N
−

p +N
0
n +N

+
n +Nc+ = dim(H−

Aδ
), (1)

N
−

n +N
0
n +N

+
n +Nc+ = dim(H−

K), (2)

where

N−
p (N−

n ) is the number of negative eigenvalues γ whose (generalized)

eigenvectors are associated to the non-negative (non-positive) values of

the quadratic form 〈K·, ·〉.

N+
p (N+

n ) is the number of positive eigenvalues γ whose (generalized)

eigenvectors are ...

N0
p (N0

n) is the multiplicity of zero eigenvalue whose (generalized)

eigenvectors are ...

Nc+ (Nc− ) is the number of complex eigenvalues γ in the upper (lower)

half-plane.



Application of the count

Count (2) is written as follows

N
−

n +N
0
n +N

+
n +Nc+ = dim(H−

K),

By construction of K, we have dim(H−

K) = n(L)

By definition of N0
n as the multiplicity of zero eigenvalue whose

eigenvectors are associated to the non-positive values of the quadratic

form 〈K·, ·〉, we have N0
n = n0, where n0 = 1 if 〈L−1φ0, φ0〉 < 0 and

n0 = 0 if 〈L−1φ0, φ0〉 > 0.

By symmetries of the spectral stability problem,

N
−

n = Nre(∂xL), N
+
n = 2N−

im(∂xL), Nc+ = 2Nc(∂xL),

which yields the assertion of the main theorem.

Note that count (1) is not used. To use it, we would need to characterize the

spectrum of M = −∂xL∂x, the negative spectrum of A, and the negative

spectrum of Aδ. If this is done, it produces the same eigenvalue count.



Example of the fifth-order KdV equation

Consider the fifth-order KdV equation,

ut + uxxx − uxxxxx + 2uux = 0,

where the energy functional E(u) is defined in H2(R),

E(u) =
1

2

∫

R

(

u
2
x + u

2
xx + u

3
)

dx,

and the momentum functional is P (u) = ‖u‖2.

Travelling waves u = φ(x− ct) exist as critical points of E(u) + cP (u) with

speed c.

Assumption σ(L0) ≥ c0 > 0 is satisfied because

cwave(k) = k
2 + k

4 ≥ 0, k ∈ R.

Then, c > 0 for travelling solitary waves and c+ cwave(k) ≥ c > 0.

Reference: M. Chugunova, D.P., “Two-pulse solutions in the fifth-order KdV

equation", DCDS B 8, 773-800 (2007).



Two-pulse solitary waves

d4φ

dx4
−
d2φ

dx2
+ cφ = φ

2
.
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Figure : Numerical approximation of the first four two-pulse solutions.



Counts of eigenvalues:

One-pulse solutions

n(H) = 1, n0 = 1, 〈L−1
c φ, φ〉 = −

1

2

d

dc
‖φ‖2 < 0.

The one-pulse solution is a ground state (Levandosky, 1999).
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2
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dc
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The one-pulse solution is a ground state (Levandosky, 1999).

Two-pulse solutions (even numbers)

n(H) = 2, n0 = 1, Nre(∂xL) = 1.

The two-pulse solution is spectrally unstable.



Counts of eigenvalues:

One-pulse solutions

n(H) = 1, n0 = 1, 〈L−1
c φ, φ〉 = −

1

2

d

dc
‖φ‖2 < 0.

The one-pulse solution is a ground state (Levandosky, 1999).

Two-pulse solutions (even numbers)

n(H) = 2, n0 = 1, Nre(∂xL) = 1.

The two-pulse solution is spectrally unstable.

Two-pulse solutions (odd numbers)

n(H) = 3, n0 = 1, N
−

im(∂xL) = 1.

The two-pulse solution is spectrally stable and the embedded eigenvalue

of negative Krein signature persists with respect to perturbations.



First two-pulse solution

Figure : Numerical approximations of the spectra of operators L and ∂xL for the
two-pulse solution with c = 1 under an exponential weight α = 0.04.



Second two-pulse solution

Figure : The same for the second two-pulse solution.



Time-evolution of two-pulse solutions

Figure : Initial conditions have different initial separations between the two pulses.



Spectral stability of nonlinear waves - what’s next?

Boussinesq equations with non-invertible J

(Yin, 2009); (Stanislavova, Stefanov, 2012);

utt − uxx − uttxx − (u2)xx = 0

Dirac equations with sign-indefinite continuous spectrum of D2H(u0)
(Comech, 2012); (Boussaid & Comech, 2012)

{

i(ut + ux) + v + ∂ūW (u, v) = 0,
i(vt − vx) + u+ ∂v̄W (u, v) = 0,

where W is the nonlinear potential.
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