Stationary and moving gap solitons in periodic potentials

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

Joint work with Guido Schneider (Institute of Analysis, Modeling and Dynamics, University of Stuttgart, Germany)

References:

Applicable Analysis, **86**, 1017-1036 (2007) Mathematical Methods for Physical Sciences, submitted (2007)

Motivations

Examples:

Complex-valued Maxwell equation

$$\nabla^2 E - \left(1 + V(x) + \sigma |E|^2\right) E_{tt} = 0$$

and the Gross-Pitaevskii equation

$$iE_t = -\nabla^2 E + V(x)E + \sigma |E|^2 E_t$$

where
$$E(x,t) : \mathbb{R}^N \times \mathbb{R} \mapsto \mathbb{C}$$
,
 $V(x) = V(x + 2\pi e_j) : \mathbb{R}^N \mapsto \mathbb{R}$,
and $\sigma = \pm 1$.

Gap solitons are localized stationary solutions of nonlinear PDEs with space-periodic coefficients which reside in a spectral gap of the associated linear Schrödinger operator.

Existence of stationary solutions

Stationary solutions $E(x,t) = U(x)e^{-i\omega t}$ with $\omega \in \mathbb{R}$ satisfy a nonlinear elliptic problem with a periodic potential

$$\omega U = -\nabla^2 U + V(x)U + \sigma |U|^2 U$$

The associated Schrödinger equation in 1D is

$$\begin{cases} -u''(x) + V(x)u(x) = \omega u(x), \\ u(2\pi) = e^{i2\pi k}u(0), \end{cases}$$

Existence results

Previous results:

- Construction of multi-humped gap solitons in Alama-Li (1992)
- Bifurcations of gap solitons from band edges in Kupper-Stuart (1990) and Heinz-Stuart (1992)
- Multiplicity of branches of gap solitons in Heinz (1995)
- Existence of critical points of energy with L²-normalization in Buffoni-Esteban-Sere (2006)

Theorem: [Pankov, 2005] Let V(x) be a real-valued bounded periodic potential. Let ω be in a finite gap of the spectrum of $L = -\nabla^2 + V(x)$. There exists a non-trivial weak solution $U(x) \in H^1(\mathbb{R}^N)$, which is continuous on $x \in \mathbb{R}^N$ and decays exponentially as $|x| \to \infty$.

Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE **70**, 036618 (2004) $V(x) = V_0 \sin^2(x)$ with $V_0 = 1$ and $\sigma = -1$:

Illustration of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PRE **70**, 036618 (2004) $V(x) = V_0 \sin^2(x)$ with $V_0 = 1$ and $\sigma = +1$:

Asymptotic reductions

The nonlinear elliptic problem with a periodic potential can be reduced asymptotically to the following problems:

Coupled-mode (Dirac) equations for small potentials

$$\begin{bmatrix} ia'(x) + \Omega a + \alpha b = \sigma(|a|^2 + 2|b|^2)a \\ -ib'(x) + \Omega b + \alpha a = \sigma(2|a|^2 + |b|^2)b \end{bmatrix}$$

• Envelope (NLS) equations for finite potentials near band edges

$$a''(x) + \Omega a + \sigma |a|^2 a = 0$$

• Lattice (dNLS) equations for large or long-period potentials

$$\alpha (a_{n+1} + a_{n-1}) + \Omega a_n + \sigma |a_n|^2 a_n = 0.$$

Localized solutions of reduced equations exist in the analytic form.

Formal coupled-mode theory in 1D

If $V(x) \equiv 0$, then 2π -periodic or 2π -antiperiodic Bloch functions exist for $\omega = \omega_n = \frac{n^2}{4}$, where $n \in \mathbb{Z}$. Let $\omega = \omega_1$ and consider the asymptotic multi-scale expansion

$$E(x,t) = \sqrt{\epsilon} \left[a(\epsilon x, \epsilon t) e^{\frac{ix}{2}} + b(\epsilon x, \epsilon t) e^{-\frac{ix}{2}} + O(\epsilon) \right] e^{-\frac{it}{4}}.$$

Coupled-mode equations

The vector $(a, b) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}^2$ satisfies asymptotically the coupled-mode system:

$$\begin{cases} i(a_T + a_X) + V_1 b = \sigma(|a|^2 + 2|b|^2)a, \\ i(b_T - b_X) + V_{-1}a = \sigma(2|a|^2 + |b|^2)b, \end{cases}$$

where $X = \epsilon x$, $T = \epsilon t$, and $V_1 = \overline{V}_{-1}$ are Fourier coefficients of V(x) at $e^{\pm ix}$.

The dispersion relation of the linearized coupled-mode equation is

$$(\omega - \omega_1)^2 = \epsilon^2 |V_1|^2 + k^2.$$

Stationary gap solitons

Stationary gap solitons are obtained in the analytic form

$$a(X,T) = a(X)e^{-i\Omega T}, \quad b(X,T) = b(X)e^{-i\Omega T},$$

where $\kappa = \sqrt{|V_1|^2 - \Omega^2}$ and $|\Omega| < |V_1|$, and

$$a(X) = \overline{b}(X) = \frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{|V_1|^2 - \Omega^2}}{\sqrt{|V_1| - \Omega} \cosh(\kappa X) + i\sqrt{|V_1| + \Omega} \sinh(\kappa X)}$$

Chatian any and maying gap a literal in nariadia potentials in 1

Moving gap solitons

Moving gap solitons are obtained in the analytic form

$$a = \left(\frac{1+c}{1-c}\right)^{1/4} A(\xi)e^{-i\mu\tau}, \ b = \left(\frac{1-c}{1+c}\right)^{1/4} B(\xi)e^{-i\mu\tau}, \ |c| < 1,$$

where

$$\xi = \frac{X - cT}{\sqrt{1 - c^2}}, \quad \tau = \frac{T - cX}{\sqrt{1 - c^2}}$$

and, since $|A|^2 - |B|^2$ is constant in $\xi \in \mathbb{R}$, then

$$A = \phi(\xi)e^{i\varphi(\xi)}, \qquad B = \bar{\phi}(\xi)e^{i\varphi(\xi)},$$

with ϕ and φ being solutions of the system

$$\varphi' = \frac{-2c\sigma|\phi|^2}{(1-c^2)}, \quad i\phi' = V_1\bar{\phi} - \mu\phi + \sigma\frac{(3-c^2)}{(1-c^2)}|\phi|^2\phi.$$

Questions and Answers

Question 1: Can we justify the use of the coupled-mode theory to approximate stationary gap solitons?

Answer 1: YES: we can measure a small approximation error of stationary solutions in $H^1(\mathbb{R})$.

Question 2: Can we justify the use of the coupled-mode theory to approximate moving gap solitons?

Answer 2: NO: the small approximation error of traveling solutions is controlled on a large but finite interval and the gap soliton is surrounded by a train of small-amplitude almost-periodic waves.

Time-dependent coupled-mode system

Theorem: [Goodman-Weinstein-Holmes, 2001; Schneider-Uecker, 2001:] Let $(a, b) \in C([0, T_0], H^3(\mathbb{R}, \mathbb{C}^2))$ be solutions of the time-dependent coupled-mode system for a fixed $T_0 > 0$. There exists $\epsilon_0, C > 0$ such that for all $\epsilon \in (0, \epsilon_0)$ the Gross–Pitaevskii equation has a local solution E(x, t) and

 $\|E(x,t) - \sqrt{\epsilon} \left[a(\epsilon x, \epsilon t)e^{i(kx-\omega t)} + b(\epsilon x, \epsilon t)e^{i(-kx-\omega t)}\right]\|_{H^1(\mathbb{R})} \le C\epsilon$ for some (k, ω) and any $t \in [0, T_0/\epsilon]$.

Remark: We would like to consider stationary and moving gap solitons in $H^1(\mathbb{R})$ for all $t \in \mathbb{R}$.

Main theorem for stationary solutions

Assumption: Let V(x) be a smooth 2π -periodic real-valued function with zero mean and symmetry V(x) = V(-x) on $x \in \mathbb{R}$, such that

$$V(x) = \sum_{m \in \mathbb{Z}} V_m e^{imx} : \sum_{m \in \mathbb{Z}} (1 + m^2)^s |V_m|^2 < \infty,$$

for some $s \ge 0$, where $V_0 = 0$ and $V_m = V_{-m} = \overline{V}_{-m}$.

Definition: The gap soliton of the coupled-mode system is said to be a reversible homoclinic orbit if (a, b) decays to zero as $|X| \to \infty$ and $a(X) = \bar{a}(-X), b(X) = \bar{b}(-X)$.

Remark: If V(x) = V(-x) and U(x) is a solution of $\nabla^2 U + \omega U = V(x)U + \sigma |U|^2 U$, then $\overline{U}(-x)$ is also a solution.

Spaces for the main theorem

Let U(x) be represented by the Fourier transform

$$U(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{U}(k) e^{ikx} dk, \qquad \hat{U}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} U(x) e^{-ikx} dx,$$

in the vector space

$$\hat{U} \in L^1_q(\mathbb{R}): \|\hat{U}\|_{L^1_q(\mathbb{R})} = \int_{\mathbb{R}} (1+k^2)^{q/2} |\hat{U}(k)| dk < \infty.$$

Properties:

 If Û ∈ L¹_q(ℝ), then U(x) is n-times continuously differentiable on x ∈ ℝ for 0 ≤ n ≤ [q].
 If Û ∈ L¹_q(ℝ), then U ∈ H^q(ℝ).
 L¹_q(ℝ) is a Wiener algebra ||Û ★ Ŵ||_{L¹_q} ≤ ||Û||_{L¹_q} ||Ŵ||_{L¹_q}.

Main Theorem

Theorem: Let V(x) satisfy the assumption and $V_n \neq 0$ for a fixed $n \in \mathbb{N}$. Let $\omega = \frac{n^2}{4} + \epsilon \Omega$ with $|\Omega| < |V_n|$. Let (a, b) be a reversible homoclinic orbit of the coupled-mode system. Then, there exists $\epsilon_0, C > 0$ such that for all $\epsilon \in (0, \epsilon_0)$ the nonlinear elliptic problem has a non-trivial solution U(x) and

$$\|U(x) - \sqrt{\epsilon} \left[a(\epsilon x)e^{\frac{inx}{2}} + b(\epsilon x)e^{-\frac{inx}{2}}\right]\|_{H^q(\mathbb{R})} \le C\epsilon^{5/6},$$

for any $q \ge 0$. Moreover, the solution U(x) is real-valued, continuous on $x \in \mathbb{R}$, and $\lim_{|x| \to \infty} U(x) = 0$.

Remarks: 1) We do not prove that U(x) decays exponentially at infinity. 2) The power of $\epsilon^{5/6}$ can be extended to any ϵ^p for $\frac{1}{2} .$

1. Convert the problem

 $U''(x) + \omega U(x) = \epsilon V(x)U(x) + \epsilon \sigma |U(x)|^2 U(x),$

to the integral equation

$$\left(\omega - k^2\right)\hat{U}(k) = \epsilon \sum_{m \in \mathbb{Z}} V_m \hat{U}(k - m)$$
$$+\epsilon \sigma \int \int \hat{U}(k_1)\hat{U}(k_2)\hat{U}(k - k_1 + k_2)dk_1dk_2$$

2. If $\mathbf{V} \in l_{s+q}^2(\mathbb{Z})$ for any $s > \frac{1}{2}$ and $q \ge 0$, then the vector field of the right-hand-side of the integral equation maps an element of $L_q^1(\mathbb{R})$ to an element of $L_q^1(\mathbb{R})$.

3. Decompose the solution $\hat{U}(k)$ into three parts

$$\hat{U}(k) = \hat{U}_{+}(k)\chi_{\mathbb{R}'_{+}}(k) + \hat{U}_{-}(k)\chi_{\mathbb{R}'_{-}}(k) + \hat{U}_{0}(k)\chi_{\mathbb{R}'_{0}}(k)$$

with a compact support on

 $\mathbb{R}'_{\pm} = \left[\pm n/2 - \epsilon^{2/3}, \pm n/2 + \epsilon^{2/3}\right], \quad \mathbb{R}'_0 = \mathbb{R} \setminus (\mathbb{R}'_+ \cup \mathbb{R}'_-),$

where $\inf_{k \in \mathbb{R}'_0} |n^2/4 - k^2| \ge C\epsilon^{2/3}$.

4. There exists a unique map $\hat{U}_{\epsilon} : L^1_q(\mathbb{R}'_+) \times L^1_q(\mathbb{R}'_-) \mapsto L^1_q(\mathbb{R}'_0)$ such that $\hat{U}_0(k) = \hat{U}_{\epsilon}(\hat{U}_+, \hat{U}_-)$ and

 $\forall |\epsilon| < \epsilon_0 : \quad \|\hat{U}_0(k)\|_{L^1_q(\mathbb{R}'_0)} \le \epsilon^{1/3} C\left(\|\hat{U}_+\|_{L^1_q(\mathbb{R}'_+)} + \|\hat{U}_-\|_{L^1_q(\mathbb{R}'_-)}\right).$

5. Write projections to the new amplitudes for the singular part

$$\hat{U}_{+}(k) = \frac{1}{\epsilon} \hat{A}\left(\frac{k-n/2}{\epsilon}\right), \quad \hat{U}_{-}(k) = \frac{1}{\epsilon} \hat{B}\left(\frac{k+n/2}{\epsilon}\right),$$

where $\hat{A}(p)$, $\hat{B}(p)$ are defined on $p \in \mathbb{R}_0 = [-\epsilon^{-1/3}, \epsilon^{-1/3}]$ and $\|\hat{U}_+\|_{L^1_q(\mathbb{R}'_+)} \leq C \|\hat{A}\|_{L^1_q(\mathbb{R}_0)}, \quad \|\hat{U}_-\|_{L^1_q(\mathbb{R}'_-)} \leq C \|\hat{B}\|_{L^1_q(\mathbb{R}_0)}.$

6. Prove persistence of gap soliton solutions in the coupled-mode system on $p \in \mathbb{R}_0$, e.g.

$$(\Omega - np) \hat{A}(p) + V_n \hat{B}(p) - \sigma \text{Conv.Int.}$$

= $\epsilon p^2 \hat{A}(p) + \epsilon^{1/3} \hat{R}_a(\hat{A}, \hat{B}, \hat{U}_\epsilon(\hat{A}, \hat{B})).$

7. Analyze the reminder terms, e.g.

 $\|\hat{R}_a\|_{L^1_q(\mathbb{R}_0)} \le C_a \|\hat{A}\|_{L^1_q(\mathbb{R}_0)}, \quad \epsilon \|p^2 \hat{A}(p)\|_{L^1_q(\mathbb{R}_0)} \le \epsilon^{1/3} \|\hat{A}(p)\|_{L^1_q(\mathbb{R}_0)},$

8. Solve the system $\hat{\mathbf{N}}(\hat{\mathbf{A}}) = \hat{\mathbf{R}}(\hat{\mathbf{A}})$ for $\hat{A} = \hat{a} + \hat{A}$ by fixed-point iterations

$$\hat{L}\hat{\tilde{A}} = \hat{R}(\hat{a} + \hat{\tilde{A}}) - \left[\hat{N}(\hat{a} + \hat{\tilde{A}}) - \hat{L}\hat{\tilde{A}}\right], \quad \hat{L} = D_{\hat{a}}\hat{N}(\hat{a}),$$

where \hat{L} is a linearized operator for the coupled-mode system. 9. Analyze the truncation terms, e.g.

$$\|\hat{A} - \hat{a}\|_{L^{1}_{q+1}(\mathbb{R}\setminus\mathbb{R}_{0})} \le \|\hat{A} - \hat{a}\|_{L^{1}_{q+1}(\mathbb{R})} \le \epsilon^{1/3} C \|\hat{R}_{a}\|_{L^{1}_{q}(\mathbb{R})}.$$

Intermission

Intermission

T. Dohnal, D.P., G. Schneider, submitted to J. Nonlinear Science (2007) - $V(x_1, x_2) = V(x_1) + V(x_2)$.

Spatial dynamics formulation

Set $E(x,t) = e^{-i\omega t}\psi(x,y)$ with y = x - ct and a parameter ω . For traveling solutions, $c \neq 0$ and we set c > 0. Then,

$$\left(\omega - ic\partial_y + \partial_x^2 + 2\partial_x\partial_y + \partial_y^2\right)\psi = \epsilon V(x)\psi + \epsilon\sigma|\psi|^2\psi.$$

We consider functions $\psi(x, y)$ being 2π -periodic or 2π -antiperiodic in x and bounded in y. Therefore,

$$\psi(x,y) = \sum_{m \in \mathbb{Z}'} \psi_m(y) e^{\frac{i}{2}mx},$$

such that $\psi_m(y)$ satisfy the nonlinear system of coupled ODEs:

$$\psi_m'' + i(m-c)\psi_m' + \left(\omega - \frac{m^2}{4}\right)\psi_m = \epsilon \sum_{m_1 \in \mathbb{Z}'} V_{m-m_1}\psi_{m_1} + \epsilon \mathrm{N.T.}$$

Eigenvalues of the spatial dynamics

Linearization of the system with $\psi_m(y) = e^{\kappa y} \delta_{m,m_0}$ gives roots $\kappa = \kappa_m$ in the quadratic equation

$$\kappa^2 + i(m-c)\kappa + \omega - \frac{m^2}{4} = 0, \qquad \forall m \in \mathbb{Z}'.$$

• If $\omega = \frac{n^2}{4}$, there is a double zero root $\kappa = 0$.

- For $m > m_0 = \left[\frac{n^2 + c^2}{2c}\right]$, all roots κ are complex-valued.
- For $m \leq m_0$, all roots κ are purely imaginary and semi-simple of maximal multiplicity three.

M. Groves, G. Schneider, Comm. Math. Phys. 219, 489 (2001)

Main theorem for traveling solutions

Theorem: There exists $\epsilon_0, L, C > 0$ such that for all $\epsilon \in (0, \epsilon_0)$ the Gross–Pitaevskii equation has a solution in the form $E(x,t) = e^{-i\omega t}\psi(x,y)$, where y = x - ct and the function $\psi(x,y)$ is a periodic (anti-periodic) function of x for even (odd) n, satisfying the reversibility constraint $\psi(x,y) = \overline{\psi}(x,-y)$, and

$$\left|\psi(x,y) - \epsilon^{1/2} \left(a_{\epsilon}(\epsilon y)e^{\frac{inx}{2}} + b_{\epsilon}(\epsilon y)e^{-\frac{inx}{2}}\right)\right| \le C_0 \epsilon^{N+1/2},$$

for all $x \in \mathbb{R}$ and $y \in [-L/\epsilon^{N+1}, L/\epsilon^{N+1}]$. Here $a_{\epsilon}(Y) = a(Y) + O(\epsilon)$ on $Y = \epsilon y \in \mathbb{R}$ is an exponentially decaying reversible solution, while a(Y) is a solution of the coupled-mode system with Y = X - cT.

Summary

- We have justified approximations of gap solitons by the coupled-mode equations for small one-dimensional potentials.
- Similar methods (with the use of the Fourier–Bloch transform) are developed to justify the continuous and discrete NLS equations for finite and large multi-dimensional separable periodic potentials.
- Moving gap solitons do not generally exist because of an infinite set of purely imaginary eigenvalues in the spatial dynamics formulations of the problem.