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M otivations

Complex-valued Maxwell equation

V’E — (1+V(z)+0|E|?) Eyx =0
and the Gross—Pitaevskii equation

iEy = —V?E +V(z)E + ¢|E|°E,

whereE(z,t) : RY x R — C,
Vi) =V(x+2me;) : RY — R,
ando = +1.

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in a spegasl of the
associated linear Schrodinger operator.



EXxistence of stationary solutions

Stationary solution®(x,t) = U(z)e ™" with w € R satisfy a
nonlinear elliptic problem with a periodic potential

wU = —V2U + V(2)U + o|U|*U

The associated Schrodinger equation in 1D Is

{ —u"(x) + V(r)u(xr) = wu(z),

w(2m) = e“™u(0),




Existence results

* Construction of multi-humped gap solitons in Alama-Li (299

* Bifurcations of gap solitons from band edges in Kupper-&tua
(1990) and Heinz-Stuart (1992)

* Multiplicity of branches of gap solitons in Heinz (1995)

 Existence of critical points of energy with’-normalization in
Buffoni-Esteban-Sere (2006)

[Pankov, 2005] Let¥/(x) be a real-valued bounded
periodic potential. Let be in a finite gap of the spectrum of
L = —V? + V(x). There exists a non-trivial weak solution
U(z) € H'(RY), which is continuous om € R" and decays
exponentially asr| — oo.



| llustr ation of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PR, 036618 (2004)
V(z) = Vysin®(z) with V5 = 1 ando = —1:




| llustr ation of solution branches

D.P., A. Sukhorukov, Yu. Kivshar, PR, 036618 (2004)
V(z) = Vysin®(z) with 1, = 1 ando = +1:
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Asymptotic reductions

The nonlinear elliptic problem with a periodic potentiahdae
reduced asymptotically to the following problems:

* Coupled-mode (Dirac) equations famall potentials

ia'(x) + Qa + ab = o(|al* + 2|b]*)a
—ib'(z) + Qb + aa = o(2]al* + |b]*)b

* Envelope (NLS) equations fomite potentials near band edges
a"(z) + Qa + olal?a = 0
* Lattice (dNLS) equations fdargeor long-periodpotentials
o (api1 + An_1) + Qa, + olas|®a, = 0.

Localized solutions of reduced equations exist in the ditafigrm.



Formal coupled-modetheory in 1D

If V(x) = 0, then2r-periodic or27-antiperiodic Bloch functions

exist forw = w,, = ”{ wheren € Z. Letw = w; and consider the
asymptotic multi-scale expansion

) T

E(z,t) = /e [a(ex, et)e’s + blex, et)eF + O(e)| e %.
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Coupled-mode equations

The vector(a,b) : R x R — C? satisfies asymptotically the
coupled-mode system:

i(ar + ax) + Vib = o(|a|* + 2|b]*)a,
i(by — by) + V1a = o(2lal? + [b2)b,

whereX = ex, T = et, andV; = V_; are Fourier coefficients of
V(z) ate=®,

The dispersion relation of the linearized coupled-modeaéqu is

(w—w)? = V3|2 + k2.



Stationary gap solitons

Stationary gap solitons are obtained in the analytic form

a(X,T) =a(X)e ™ b(X,T)=bX)e ",

wherex = /|Vi]2 — Q2 and|Q| < |V}

V2 JF—0F

. and

a(X) =42 = 7 VIVi = Qcosh(kX) + iy/[VA] + Qsinh(kX)




Moving gap solitons

Moving gap solitons are obtained in the analytic form

1/4 1/4
0 = (1 “) A(E)e, b — (1 - ) B(&)e, |e] < 1,

1 —c 1+c
where
. X —cl T —cX
p— . ’7':
V1 — ¢? V1 — ¢?

and, sinceA|* — |BJ? is constant irf € R, then
A= 6O, B=g()e,
with ¢ andy being solutions of the system

/! _260’¢|2 P n (
¥ = (1_02)7 Z¢_%¢_M¢+J(1_CQ>’¢|2¢




Questions and Answers

Can we justify the use of the coupled-mode theory to
approximate stationary gap solitons?

YES: we can measure a small approximation error of
stationary solutions id/* (R).

Can we justify the use of the coupled-mode theory to
approximate moving gap solitons?

NO: the small approximation error of traveling solutions
IS controlled on a large but finite interval and the gap soli®
surrounded by a train of small-amplitude almost-periodaves.



Time-dependent coupled-mode system

|[Goodman-Weinstein-Holmes, 2001; Schneider-Uecker,
2001:] Let(a,b) € C([0,Ty], H*(R,C?)) be solutions of the
time-dependent coupled-mode system for a fiXgd- 0. There
existsey, C' > 0 such that for alk € (0, ¢) the Gross—Pitaevskii
equation has a local solutidfi(x, ¢) and

for some(k,w) and anyt € [0, Ty /€.

We would like to consider stationary and moving gap
solitons inH*(R) for all ¢t € R.



Main theorem for stationary solutions

LetV (x) be a smootl27-periodic real-valued function
with zero mean and symmetiy(z) = V(—x) onx € R, such that

V(z) =) Vae™: Y (14+m”)° |Vl < o0,

meZ meZ

for somes > 0, whereV, =0andV,=V_,, =V_, .

The gap soliton of the coupled-mode system is said to
a reversible homoclinic orbit ifa, b) decays to zero s | — oo

anda(X) = a(—X), b(X) =b(—X).

If V(x) =V(—z)andU(x) is a solution of
VU 4 wU = V(2)U + o|U|?U, thenU(—2x) is also a solution.



Spacesfor the main theorem

Let U(xz) be represented by the Fourier transform

A

U(z) = \/%7 /R O(k)e*dk,  O(k) = ¢L27 /R U(z)e-*edg,

In the vector space

Ue LiR): HUHLW — 4(1 + E2)12\U(k)|dk < oo.

DIfU e L,(R), thenU (x) is n-times continuously differentiable
onx € Rfor0 <n <|q.
2) If U € LL(R), thenU € H(R).

3) LL(R) is a Wiener algebr#ff * W

<O 1.

Lyg



Main Theorem

Let V' (x) satisfy the assumption ang = 0 for a fixed
n € N. Letw = ”{ + eQ with || < |V,,|. Let(a,b) be areversible
homoclinic orbit of the coupled-mode system. Then, therstgex

€0, C' > 0 such that for alk € (0, ¢g) the nonlinear elliptic problem
has a non-trivial solutio®/ (x) and

|U(z) — /€ [a(ex)@”;‘” © blex)e —%} | ragy < CE/°,

for anyq > 0. Moreover, the solutio/(x) is real-valued,
continuous orx € R, and lim U(x) = 0.

|| =00

1) We do not prove thal’ (=) decays exponentially at

infinity. 2) The power o&°/¢ can be extended to amy for
% <p<l.



Steps of the proof

1. Convert the problem
U'(x) + wU(z) = eV(2)U(x) + ea|U(x)|?U(x),

to the integral equation

(w — ]fQ = ez Vo, U k —m)
meZ
+ea// (kU (ko) U (k — ky + ko) dley dles

2.1tV e 2, (z)foranys > 1 andg > 0, then the vector field of
the right-hand-side of the integral equation maps an el¢wfen

L,(R) to an element of.; (R).



Steps of the proof

3. Decompose the solutidri(k) into three parts

A AN AN AN

U(k) = U+(k)XR’+(k) + U_(k)xr (k) + Uo(k)XRg)(k)
with a compact support on
R, = [+n/2 — ¥/? £n/2 + 3], Ry =R\(R, UR"),
whereinf e, |n?/4 — k?| > Ce*/?.

4. There exists a unique map : LL(R,) x LL(R.) — LL(R})
such that’y (k) = U.(U,,U_) and

Vel <eo: (0o lzyey < €°C (104 logeyy + 10 lzyeee )



Steps of the proof

5. Write projections to the new amplitudes for the singulant p

0, (k) = —A( _”/2> U (k) = %B (’””/2) ,

€

whereA(p), B(p) are defined op € Ry = [—¢ /3, ¢1/3] and

Ui lliry) < CllAllLymeys  NU-llni@ ) < ClBllzio)-

6. Prove persistence of gap soliton solutions in the coupiede
system o € Ry, e.g.

(Q — np) A(p) + V,,B(p) — oConv.Int.
— A )

) +
(p) + €*R,(A, B,U.(A, B)).



Steps of the proof

/. Analyze the reminder terms, e.g.

| Ballzamo) < Call Allzamoys €llp®Al) |l < €7 I1AD) | 22wo)s

AN AN

8. Solve the syste¥(A) = R(A) for
iterations

— 4+ A by fixed-point

>

LA=R@GE+A) - |[N@GE+A) -TA], T=D:N@)

whereL is a linearized operator for the coupled-mode system.
9. Analyze the truncation terms, e.g.

JA = allz:, @ro) < 1A = allzr,, @) < €/°CllRallL1m)-

q )



| nter mission

Bragg - 2 Bragg - | [nternal reflection




| nter mission

T. Dohnal, D.P., G. Schneider, submitted to J. Nonlineaeisi
(2007) -V (21, z2) = V(z1) + V(z2).




Spatial dynamics formulation

SetE(x,t) = e ™) (x,y) with y = 2 — ¢t and a parameter. For
traveling solutions¢ # 0 and we set > 0. Then,

(w —icdy + 02 + 20,0, + 02) Y = €V ()Y + eo|y|*¢.

We consider functions (x, y) being27-periodic or2r-antiperiodic
In z and bounded iy. Therefore,

V(T y) =Y Ymly)e™,

meZ’

such that),,(y) satisfy the nonlinear system of coupled ODEs:

m2

T) Wy = € Z Vin—miWm, + eN.T.

mi€EZ’

P +i(m — )+ (w —



Eigenvalues of the spatial dynamics

Linearization of the system with,,,(v) = €™, ., gives roots
kK = k., IN the quadratic equation

m2

/<;2+i(m—c)/<;+w—T:O, Vm € 7.

o If w= %2 there is a double zero roet= 0.

2 2
* Form > mgy = [” e } all rootsk are complex-valued.

* Form < my, all rootsk are purely imaginary and semi-simple
of maximal multiplicity three.

»Comm. Math. Phys219, 489 (2001)



Main theorem for traveling solutions

There exists, L, C > 0 such that for alk € (0, ¢y) the
Gross—Pitaevskil equation has a solution in the form
E(x,t) = e ") (z,y), wherey = x — ¢t and the function)(x, y)
IS a periodic (anti-periodic) function af for even (odd).,

satisfying the reversibility constraint(x, y) = ¥ (x, —y), and

U(r) — 7 (aley)e™® + beley)e™F)

forallz € Randy € [—L/eV !, L/eN T, Here

a.(Y)=a(Y)+ O(e) onY = ey € R is an exponentially decaying
reversible solution, while(Y") is a solution of the coupled-mode
system withY = X — cT..



Summary

* We have justified approximations of gap solitons by the
coupled-mode equations femallone-dimensional potentials.

* Similar methods (with the use of the Fourier—Bloch transfpr
are developed to justify the continuous and discrete NLS
equations fofinite andlarge multi-dimensional separable
periodic potentials.

* Moving gap solitons do not generally exist because of an
Infinite set of purely imaginary eigenvalues in the spatial
dynamics formulations of the problem.
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