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Motivations
Examples:
Complex-valued Maxwell equation

∇2E −
(

1 + V (x) + σ|E|2
)

Ett = 0

and the Gross–Pitaevskii equation

iEt = −∇2E + V (x)E + σ|E|2E,

whereE(x, t) : R
N × R 7→ C,

V (x) = V (x+ 2πej) : R
N 7→ R,

andσ = ±1.

Gap solitonsare localized stationary solutions of nonlinear PDEs
with space-periodic coefficients which reside in a spectralgap of the
associated linear Schrödinger operator.
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Existence of stationary solutions

Stationary solutionsE(x, t) = U(x)e−iωt with ω ∈ R satisfy a
nonlinear elliptic problem with a periodic potential

ωU = −∇2U + V (x)U + σ|U |2U

The associated Schrödinger equation in 1D is

{

−u′′(x) + V (x)u(x) = ωu(x),

u(2π) = ei2πku(0),
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Existence results
Previous results:

• Construction of multi-humped gap solitons in Alama-Li (1992)
• Bifurcations of gap solitons from band edges in Kupper-Stuart

(1990) and Heinz-Stuart (1992)
• Multiplicity of branches of gap solitons in Heinz (1995)

• Existence of critical points of energy withL2-normalization in
Buffoni-Esteban-Sere (2006)

Theorem: [Pankov, 2005] LetV (x) be a real-valued bounded
periodic potential. Letω be in a finite gap of the spectrum of
L = −∇2 + V (x). There exists a non-trivial weak solution
U(x) ∈ H1(RN ), which is continuous onx ∈ R

N and decays
exponentially as|x| → ∞.
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Illustration of solution branches
D.P., A. Sukhorukov, Yu. Kivshar, PRE70, 036618 (2004)
V (x) = V0 sin2(x) with V0 = 1 andσ = −1:
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Asymptotic reductions

The nonlinear elliptic problem with a periodic potential can be
reduced asymptotically to the following problems:

• Coupled-mode (Dirac) equations forsmallpotentials
{

ia′(x) + Ωa+ αb = σ(|a|2 + 2|b|2)a
−ib′(x) + Ωb+ αa = σ(2|a|2 + |b|2)b

• Envelope (NLS) equations forfinite potentials near band edges

a′′(x) + Ωa+ σ|a|2a = 0

• Lattice (dNLS) equations forlargeor long-periodpotentials

α (an+1 + an−1) + Ωan + σ|an|2an = 0.

Localized solutions of reduced equations exist in the analytic form.
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Formal coupled-mode theory in 1D

If V (x) ≡ 0, then2π-periodic or2π-antiperiodic Bloch functions

exist forω = ωn = n2

4
, wheren ∈ Z. Letω = ω1 and consider the

asymptotic multi-scale expansion

E(x, t) =
√
ǫ
[

a(ǫx, ǫt)e
ix
2 + b(ǫx, ǫt)e−

ix
2 + O(ǫ)

]

e−
it
4 .
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Coupled-mode equations

The vector(a, b) : R × R 7→ C
2 satisfies asymptotically the

coupled-mode system:
{

i(aT + aX) + V1b = σ(|a|2 + 2|b|2)a,
i(bT − bX) + V−1a = σ(2|a|2 + |b|2)b,

whereX = ǫx, T = ǫt, andV1 = V̄−1 are Fourier coefficients of
V (x) at e±ix.

The dispersion relation of the linearized coupled-mode equation is

(ω − ω1)
2 = ǫ2|V1|2 + k2.
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Stationary gap solitons

Stationary gap solitons are obtained in the analytic form

a(X,T ) = a(X)e−iΩT , b(X,T ) = b(X)e−iΩT ,

whereκ =
√

|V1|2 − Ω2 and|Ω| < |V1|, and

a(X) = b̄(X) =

√
2√
3

√

|V1|2 − Ω2

√

|V1| − Ω cosh(κX) + i
√

|V1| + Ω sinh(κX)
.
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Moving gap solitons

Moving gap solitons are obtained in the analytic form

a =

(

1 + c

1 − c

)1/4

A(ξ)e−iµτ , b =

(

1 − c

1 + c

)1/4

B(ξ)e−iµτ , |c| < 1,

where

ξ =
X − cT√

1 − c2
, τ =

T − cX√
1 − c2

and, since|A|2 − |B|2 is constant inξ ∈ R, then

A = φ(ξ)eiϕ(ξ), B = φ̄(ξ)eiϕ(ξ),

with φ andϕ being solutions of the system

ϕ′ =
−2cσ|φ|2
(1 − c2)

, iφ′ = V1φ̄− µφ+ σ
(3 − c2)

(1 − c2)
|φ|2φ.
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Questions and Answers

Question 1: Can we justify the use of the coupled-mode theory to
approximate stationary gap solitons?

Answer 1: YES: we can measure a small approximation error of
stationary solutions inH1(R).

Question 2: Can we justify the use of the coupled-mode theory to
approximate moving gap solitons?

Answer 2: NO: the small approximation error of traveling solutions
is controlled on a large but finite interval and the gap soliton is
surrounded by a train of small-amplitude almost-periodic waves.
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Time-dependent coupled-mode system

Theorem: [Goodman-Weinstein-Holmes, 2001; Schneider-Uecker,
2001:] Let(a, b) ∈ C([0, T0], H

3(R,C2)) be solutions of the
time-dependent coupled-mode system for a fixedT0 > 0. There
existsǫ0, C > 0 such that for allǫ ∈ (0, ǫ0) the Gross–Pitaevskii
equation has a local solutionE(x, t) and

‖E(x, t) −
√
ǫ
[

a(ǫx, ǫt)ei(kx−ωt) + b(ǫx, ǫt)ei(−kx−ωt)
]

‖H1(R) ≤ Cǫ

for some(k, ω) and anyt ∈ [0, T0/ǫ].

Remark: We would like to consider stationary and moving gap
solitons inH1(R) for all t ∈ R.
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Main theorem for stationary solutions

Assumption: Let V (x) be a smooth2π-periodic real-valued function
with zero mean and symmetryV (x) = V (−x) onx ∈ R, such that

V (x) =
∑

m∈Z

Vme
imx :

∑

m∈Z

(1 +m2)s|Vm|2 <∞,

for somes ≥ 0, whereV0 = 0 andVm = V−m = V̄−m.

Definition: The gap soliton of the coupled-mode system is said to be
a reversible homoclinic orbit if(a, b) decays to zero as|X| → ∞
anda(X) = ā(−X), b(X) = b̄(−X).

Remark: If V (x) = V (−x) andU(x) is a solution of
∇2U + ωU = V (x)U + σ|U |2U , thenŪ(−x) is also a solution.
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Spaces for the main theorem

LetU(x) be represented by the Fourier transform

U(x) =
1√
2π

∫

R

Û(k)eikxdk, Û(k) =
1√
2π

∫

R

U(x)e−ikxdx,

in the vector space

Û ∈ L1
q(R) : ‖Û‖L1

q(R) =

∫

R

(1 + k2)q/2|Û(k)|dk <∞.

Properties:

1) If Û ∈ L1
q(R), thenU(x) is n-times continuously differentiable

onx ∈ R for 0 ≤ n ≤ [q].

2) If Û ∈ L1
q(R), thenU ∈ Hq(R).

3)L1
q(R) is a Wiener algebra

∥

∥

∥
Û ⋆ Ŵ

∥

∥

∥

L1
q

≤ ‖Û‖L1
q
‖Ŵ‖L1

q
.
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Main Theorem

Theorem: Let V (x) satisfy the assumption andVn 6= 0 for a fixed

n ∈ N. Letω = n2

4
+ ǫΩ with |Ω| < |Vn|. Let (a, b) be a reversible

homoclinic orbit of the coupled-mode system. Then, there exists
ǫ0, C > 0 such that for allǫ ∈ (0, ǫ0) the nonlinear elliptic problem
has a non-trivial solutionU(x) and

‖U(x) −
√
ǫ
[

a(ǫx)e
inx

2 + b(ǫx)e−
inx

2

]

‖Hq(R) ≤ Cǫ5/6,

for anyq ≥ 0. Moreover, the solutionU(x) is real-valued,
continuous onx ∈ R, and lim

|x|→∞
U(x) = 0.

Remarks:1) We do not prove thatU(x) decays exponentially at
infinity. 2) The power ofǫ5/6 can be extended to anyǫp for
1
2
< p < 1.
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Steps of the proof

1. Convert the problem

U ′′(x) + ωU(x) = ǫV (x)U(x) + ǫσ|U(x)|2U(x),

to the integral equation

(

ω − k2
)

Û(k) = ǫ
∑

m∈Z

VmÛ(k −m)

+ǫσ

∫ ∫

Û(k1)
ˆ̄U(k2)Û(k − k1 + k2)dk1dk2

2. If V ∈ l2s+q(Z) for anys > 1
2

andq ≥ 0, then the vector field of
the right-hand-side of the integral equation maps an element of
L1

q(R) to an element ofL1
q(R).
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Steps of the proof

3. Decompose the solution̂U(k) into three parts

Û(k) = Û+(k)χR
′

+
(k) + Û−(k)χR

′

−

(k) + Û0(k)χR
′

0
(k)

with a compact support on

R
′
± =

[

±n/2 − ǫ2/3,±n/2 + ǫ2/3
]

, R
′
0 = R\(R′

+ ∪ R
′
−),

whereinfk∈R′

0
|n2/4 − k2| ≥ Cǫ2/3.

4. There exists a unique map̂Uǫ : L1
q(R

′
+) × L1

q(R
′
−) 7→ L1

q(R
′
0)

such thatÛ0(k) = Ûǫ(Û+, Û−) and

∀|ǫ| < ǫ0 : ‖Û0(k)‖L1
q(R′

0
) ≤ ǫ1/3C

(

‖Û+‖L1
q(R′

+
) + ‖Û−‖L1

q(R′

−
)

)

.
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Steps of the proof

5. Write projections to the new amplitudes for the singular part

Û+(k) =
1

ǫ
Â

(

k − n/2

ǫ

)

, Û−(k) =
1

ǫ
B̂

(

k + n/2

ǫ

)

,

whereÂ(p), B̂(p) are defined onp ∈ R0 = [−ǫ−1/3, ǫ−1/3] and

‖Û+‖L1
q(R′

+
) ≤ C‖Â‖L1

q(R0), ‖Û−‖L1
q(R′

−
) ≤ C‖B̂‖L1

q(R0).

6. Prove persistence of gap soliton solutions in the coupled-mode
system onp ∈ R0, e.g.

(Ω − np) Â(p) + VnB̂(p) − σConv.Int.

= ǫp2Â(p) + ǫ1/3R̂a(Â, B̂, Ûǫ(Â, B̂)).
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Steps of the proof

7. Analyze the reminder terms, e.g.

‖R̂a‖L1
q(R0) ≤ Ca‖Â‖L1

q(R0), ǫ‖p2Â(p)‖L1
q(R0) ≤ ǫ1/3‖Â(p)‖L1

q(R0),

8. Solve the system̂N(Â) = R̂(Â) for Â = â+ ˆ̃A by fixed-point
iterations

L̂ ˆ̃
A = R̂(â + ˆ̃

A) −
[

N̂(â + ˆ̃
A) − L̂

ˆ̃
A

]

, L̂ = DâN̂(â),

whereL̂ is a linearized operator for the coupled-mode system.

9. Analyze the truncation terms, e.g.

‖Â− â‖L1
q+1

(R\R0) ≤ ‖Â− â‖L1
q+1

(R) ≤ ǫ1/3C‖R̂a‖L1
q(R).

Stationary and moving gap solitons in periodic potentials – p. 20/26



Intermission
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Intermission
T. Dohnal, D.P., G. Schneider, submitted to J. Nonlinear Science
(2007) -V (x1, x2) = V (x1) + V (x2).
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Spatial dynamics formulation

SetE(x, t) = e−iωtψ(x, y) with y = x− ct and a parameterω. For
traveling solutions,c 6= 0 and we setc > 0. Then,

(

ω − ic∂y + ∂2
x + 2∂x∂y + ∂2

y

)

ψ = ǫV (x)ψ + ǫσ|ψ|2ψ.

We consider functionsψ(x, y) being2π-periodic or2π-antiperiodic
in x and bounded iny. Therefore,

ψ(x, y) =
∑

m∈Z′

ψm(y)e
i
2
mx,

such thatψm(y) satisfy the nonlinear system of coupled ODEs:

ψ′′
m + i(m− c)ψ′

m +

(

ω − m2

4

)

ψm = ǫ
∑

m1∈Z′

Vm−m1
ψm1

+ ǫN.T.
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Eigenvalues of the spatial dynamics

Linearization of the system withψm(y) = eκyδm,m0
gives roots

κ = κm in the quadratic equation

κ2 + i(m− c)κ+ ω − m2

4
= 0, ∀m ∈ Z

′.

• If ω = n2

4
, there is a double zero rootκ = 0.

• Form > m0 =
[

n2+c2

2c

]

, all rootsκ are complex-valued.

• Form ≤ m0, all rootsκ are purely imaginary and semi-simple
of maximal multiplicity three.

M. Groves, G. Schneider, Comm. Math. Phys.219, 489 (2001)
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Main theorem for traveling solutions

Theorem: There existsǫ0, L, C > 0 such that for allǫ ∈ (0, ǫ0) the
Gross–Pitaevskii equation has a solution in the form
E(x, t) = e−iωtψ(x, y), wherey = x− ct and the functionψ(x, y)
is a periodic (anti-periodic) function ofx for even (odd)n,
satisfying the reversibility constraintψ(x, y) = ψ̄(x,−y), and

∣

∣

∣
ψ(x, y) − ǫ1/2

(

aǫ(ǫy)e
inx
2 + bǫ(ǫy)e

− inx
2

)∣

∣

∣
≤ C0ǫ

N+1/2,

for all x ∈ R andy ∈ [−L/ǫN+1, L/ǫN+1]. Here
aǫ(Y ) = a(Y ) + O(ǫ) onY = ǫy ∈ R is an exponentially decaying
reversible solution, whilea(Y ) is a solution of the coupled-mode
system withY = X − cT .
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Summary
• We have justified approximations of gap solitons by the

coupled-mode equations forsmallone-dimensional potentials.

• Similar methods (with the use of the Fourier–Bloch transform)
are developed to justify the continuous and discrete NLS
equations forfinite andlargemulti-dimensional separable
periodic potentials.

• Moving gap solitons do not generally exist because of an
infinite set of purely imaginary eigenvalues in the spatial
dynamics formulations of the problem.
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