Traveling waves in the Babenko equation for water waves

## Spencer Locke and Dmitry E. Pelinovsky

#### McMaster University, Canada

Workshop "Mathematical theory of water waves", Lund University, Sweden

August 2024

## Section 1

## Background and motivations

We study traveling Stokes waves in the irrotational motion of an incompressible fluid:



These traveling waves are approximated in the shallow limit  $a \ll h \ll \lambda$  by the following local evolution equations.

We study traveling Stokes waves in the irrotational motion of an incompressible fluid:



These traveling waves are approximated in the shallow limit  $a \ll h \ll \lambda$  by the following local evolution equations.

The Korteweg-de Vries (KdV) equation:

```
u_t + u_x + u_{xxx} + u \, u_x = 0
```

[Boussinesq, 1872] [Korteweg & de Vries, 1895]

We study traveling Stokes waves in the irrotational motion of an incompressible fluid:



These traveling waves are approximated in the shallow limit  $a \ll h \ll \lambda$  by the following local evolution equations.

The Benjamin-Bona-Mahony (BBM) equation

 $u_t + u_x - u_{txx} + u \, u_x = 0$ 

[Peregrine, 1966] [Benjamin–Bona–Mahony, 1972]

We study traveling Stokes waves in the irrotational motion of an incompressible fluid:



These traveling waves are approximated in the shallow limit  $a \ll h \ll \lambda$  by the following local evolution equations.

The Camassa-Holm (CH) equation

$$u_t + u_x - u_{txx} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}$$

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]

## Traveling waves (decaying or periodic profiles)

Common features of the KdV and BBM equations:

- $\triangleright$  Solutions of the initial-value problem exist in Sobolev space  $H^1$
- $\triangleright$  Energy, momentum, and mass are defined in  $H^1$  and conserved
- ▷ Traveling waves u(t,x) = U(x ct) have smooth profiles U in the admissible range of the wave speed c
- Traveling waves are orbitally stable in H<sup>1</sup> as constrained minimizers of energy subject to fixed momentum and/or mass. Consequently, they are linearly and spectrally stable.

## Traveling waves (decaying or periodic profiles)

The CH equation (and CH-related models) have different properties:

- ▷ Solutions of the initial-value problem exist in  $H^1 \cap W^{1,\infty}$ [De Lellis–Kappeler-Topalov (2007)] [Linares–Ponce–Sideris (2019)]
- ▷ Traveling waves u(t, x) = U(x ct) are smooth only in a subset of parameters and either peaked or cusped outside the subset [Lennels (2005)] [Geyer–Martins–Natali–P (2022)]
- Smooth and peaked waves are constrained minimizers of energy [Constantin & Strauss, 2000] [Constantin & Molinet, 2001] [Lennels, 2005]
- Waves with smooth profiles are stable in the time evolution [Constantin & Strauss, 2002] [Lennels, 2006]
- Waves with peaked profiles are unstable in the time evolution [Natali & P., 2020] [Madiyeva & P., 2021] [Lafortune & P., 2022]

#### Traveling waves (decaying or periodic profiles)

#### Summary on the smooth versus peaked waves





Stokes (1880) suggested existence of the peaked wave in the family of traveling waves:



Existence of such solutions was proven by Toland (1978) and the  $2\pi/3$ -peaked singularity was proven by Plotnikov (1982).

# More recently, numerical results were developed for approximation of nearly-peaked periodic waves.

[Dyachenko-Lushnikov-Korotkevich, 2016] [Lushnikov, 2016]



#### Instability of smooth Stokes waves was explored numerically:

[Dyachenko-Semenova, 23] [Korotkevich-Lushnikov-Semenova-Dyachenko, 23]

Modulation instability of small-amplitude Stokes waves was studied in a recent invasion:

- Berti-Masrepo-Ventura, 2022: by using expansions of Dirichlet-to-Neumann operator
- Creedon–Deconinck, 2023: by using expansions of the Ablowitz-Fokas-Musslimani integral formulation
- ▷ Hur-Yang, 2023: by using rescaling of the finite-depth fluid and expansions
- Nguyen–Strauss, 2023: by using complex variables and transformations

#### The objectives of our work:

- To explore a closed system of nonlinear evolution equations (similar to CH) obtained by using conformal transformations
- ▷ To investigate transition from smooth to peaked traveling waves
- ▷ To prove analytically the stability of smooth waves and the instability of peaked traveling periodic waves with respect to co-periodic perturbations.

#### Section 2

# A closed system of nonlinear evolution equations based on Babenko equaton

#### Euler equations in physical coordinates

- $\triangleright \eta(x, t)$  the free surface profile.
- $\triangleright \phi(x, y, t)$  velocity potential satisfying the Laplace equation in

$$D_\eta(t) := \{(x, y): -\pi \le x \le \pi, -h_0 \le y \le \eta(x, t)\}$$

- ▷ Periodic boundary conditions at  $x = \pm \pi$ .
- ▷ Neumann boundary condition  $\varphi_y|_{y=-h_0} = 0$ .
- ▷ Nonlinear evolution equatons at the free surface:

$$\left.\begin{array}{l}\eta_t + \varphi_x \eta_x - \varphi_y = 0,\\\varphi_t + \frac{1}{2}(\varphi_x)^2 + \frac{1}{2}(\varphi_y)^2 + \eta = 0,\end{array}\right\} \qquad \text{at } y = \eta(x,t),$$

 $\triangleright$  For unique definition of  $h_0$ , we use the zero-mean constraint

$$\oint \eta dx = 0.$$





Cauchy–Riemann equations for z = x + iy:

$$\frac{\partial x}{\partial u} = \frac{\partial y}{\partial v}, \qquad \frac{\partial x}{\partial v} = -\frac{\partial y}{\partial u}$$

in  $\mathcal{D} := \{(u, v): -\pi \le u \le \pi, -h \le v \le 0\}$ 

subject to Neumann condition  $\partial_{v} x|_{v=-h} = 0$  due to  $y(u, -h, t) = -h_0$ .



Fourier series solution:

$$\begin{aligned} x(u,v,t) &= u + \sum_{n \in \mathbb{Z}} \hat{x}_n(t) e^{inu} \ \frac{\cosh(n(v+h))}{\cosh(nh)}, \\ y(u,v,t) &= v + h - h_0 + \sum_{n \in \mathbb{Z}} \hat{x}_n(t) e^{inu} \ i \ \frac{\sinh(n(v+h))}{\cosh(nh)}. \end{aligned}$$



The velocity potential is then uniquely represented by

$$\varphi(u,v,t) = \sum_{n \in \mathbb{Z}} \hat{\xi}_n(t) e^{inu} \frac{\cosh(n(v+h))}{\cosh(nh)},$$

where  $\hat{\xi}_n(t)$  is the Fourier coefficient for  $\xi(u, t) = \varphi(u, v = 0, t)$ . The other canonical variable is  $\eta(u, t) = y(u, v = 0, t)$ .

## Evolution equations for $\xi(u, t)$ and $\eta(u, t)$

The closed system of two evolution equations is

$$\begin{cases} (1+K_h\eta)\eta_t - \eta_u T_h^{-1}\eta_t + T_h\xi_u = 0, \\ \xi_t\eta_u - \xi_u\eta_t + \eta\eta_u + T_h\left[(1+K_h\eta)\xi_t - \xi_u T_h^{-1}\eta_t + (1+K_h\eta)\eta\right] = 0, \end{cases}$$

where skew-adjoint operators  $T_h$  and  $T_h^{-1}$  are defined by

$$\widehat{(T_h)}_n = i \tanh(hn), \quad n \in \mathbb{Z}, \quad \widehat{(T_h^{-1})}_n = \begin{cases} -i \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0, \end{cases}$$

whereas the self-adjoint operator  $K_h = T_h^{-1} \partial_u$  is defined by

$$\widehat{(K_h)}_n = \begin{cases} n \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0. \end{cases}$$

[Dyachenko-elder-Kuznetsov-Spector-Zakharov, 1996] [Dyachenko-junior-Lushnikov-Korotkevich, 2016]

Dmitry Pelinovsky, McMaster University

4

## Evolution equations for $\xi(u, t)$ and $\eta(u, t)$

The closed system of two evolution equations is

$$\begin{cases} (1+K_h\eta)\eta_t - \eta_u T_h^{-1}\eta_t + T_h\xi_u = 0,\\ \xi_t\eta_u - \xi_u\eta_t + \eta\eta_u + T_h\left[(1+K_h\eta)\xi_t - \xi_u T_h^{-1}\eta_t + (1+K_h\eta)\eta\right] = 0, \end{cases}$$

Since  $\partial_u x(u, 0, t) = 1 + K_h \eta$ , the original constraint  $\oint \eta dx = 0$  becomes

$$\oint \eta (1+K_h\eta) du=0.$$

Additional constants of motion are

$$\oint \xi \eta_u du, \quad \oint \xi (1+K_h\eta) du, \quad \oint \left[ \eta^2 (1+K_h\eta) - \xi T_h \xi_u \right] du.$$

These are the horizontal and vertical momenta and the energy. [Benjamin–Olver, 1982]

4

## Evolution equations for $\xi(u, t)$ and $\eta(u, t)$

The closed system of two evolution equations is

$$\begin{cases} (1+K_h\eta)\eta_t - \eta_u T_h^{-1}\eta_t + T_h\xi_u = 0,\\ \xi_t\eta_u - \xi_u\eta_t + \eta\eta_u + T_h\left[(1+K_h\eta)\xi_t - \xi_u T_h^{-1}\eta_t + (1+K_h\eta)\eta\right] = 0, \end{cases}$$

Traveling waves  $\eta(u, t) = \eta(u - ct)$  satisfy  $\xi = cT_h^{-1}\eta$ , where the profile  $\eta$  is a solution of Babenko's equation [Babenko, 1987]

$$(c^2 K_h - 1)\eta = \frac{1}{2}K_h\eta^2 + \eta K_h\eta.$$

Both smooth and peaked traveling waves are solutions of this scalar equation. Their linear stability is related to the linearized operator

$$\mathcal{L}_h v := (c^2 K_h - 1) v - K_h \eta v - v K_h \eta - \eta K_h v$$

which is self-adjoint in  $L^2_{per}(\mathbb{T})$ .

#### Section 3

#### Existence results for the deep water: $h \rightarrow \infty$

#### Babenko's equation

Traveling waves  $\eta(u, t) = \eta(u - ct)$  satisfy Babenko's equation:

$$(c^2 K_h - 1)\eta = \frac{1}{2}K_h\eta^2 + \eta K_h\eta,$$

where

$$\widehat{(K_h)}_n = \begin{cases} n \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0. \end{cases}$$

#### Babenko's equation

Traveling waves  $\eta(u, t) = \eta(u - ct)$  satisfy Babenko's equation:

$$(c^2 K_h - 1)\eta = \frac{1}{2}K_h\eta^2 + \eta K_h\eta,$$

where

$$\widehat{(K_h)}_n = \begin{cases} n \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0. \end{cases}$$

In the deep water limit  $h \to \infty$ ,  $K_h \to \partial_u H$ , where *H* is the Hilbert transform on  $2\pi$ -periodic functions:

$$f = \sum_{n \in \mathbb{Z}} f_n e^{inu} \quad \Rightarrow \quad Hf = \sum_{n \in \mathbb{Z}} (-i) \operatorname{sgn}(n) f_n e^{inu}.$$

We have the main model:

$$c^2 H \partial_u \eta - \eta = H(\eta \partial_u \eta) + \eta H \partial_u \eta,$$

We have the main model:

$$c^2 H \partial_u \eta - \eta = H(\eta \partial_u \eta) + \eta H \partial_u \eta,$$

Small-amplitude (Stokes) expansions are algorithmically computed:

$$\eta(u) = a\cos(u) + a^2 \left[\cos(2u) - \frac{1}{2}\right] + \frac{3}{2}a^3\cos(3u) + \mathcal{O}(a^4)$$

and

$$c^2 = 1 + a^2 + \mathcal{O}(a^4),$$

where a > 0 is a small parameter for the wave amplitude.

We have the main model:

$$c^2 H \partial_u \eta - \eta = H(\eta \partial_u \eta) + \eta H \partial_u \eta,$$



Dmitry Pelinovsky, McMaster University

#### Traveling waves in Babenko equation

Near the singular waves, it makes sense to use  $\eta(u) = \frac{c^2}{2} - \zeta(u)$  with  $\zeta$  satisfying the fixed-point equation

$$\zeta = T(\zeta) := H(\zeta \partial_u \zeta) + \zeta H \partial_u \zeta + \frac{c^2}{2},$$

with the "boundary" conditions  $\zeta(0) = 0$  and  $\partial_u \zeta(\pm \pi) = 0$ .

$$\zeta = H(\zeta \partial_u \zeta) + \zeta H \partial_u \zeta + \frac{c^2}{2}$$

#### Theorem (Locke–P, 2024)

If the solution of  $\zeta = T(\zeta)$  is singular at u = 0 with the singularity of the type

$$\zeta(u) = A|u|^{\alpha} + \mathcal{O}(|u|^{2\alpha}), \quad \alpha \in (0, 1],$$

with some A > 0, then necessarily,  $\alpha = \frac{2}{3}$ .

In agreement with Stokes (1880), Toland (1978), Plotnikov (1982).

Theorem (Locke–P, 2024)

If the solution of  $\zeta = T(\zeta)$  is singular at u = 0 with the singularity of the type

$$\zeta(u) = A|u|^{2/3} + B|u|^{\beta} + \mathcal{O}(|u|^{2/3+\beta}), \quad \beta \in \left(\frac{2}{3}, 2\right),$$

with some A > 0 and  $B \neq 0$ , then necessarily,  $\beta \approx 1.46$  is a root of the transcendental equation

$$\left(\beta + \frac{2}{3}\right)\cot\left(\frac{\pi}{2}(\beta - \frac{1}{3})\right) - \beta\tan\left(\frac{\pi\beta}{2}\right) = \frac{2}{\sqrt{3}}$$

In agreement with Grant (1973).

Parameters c, A, B are not defined by the local expansion.

Dmitry Pelinovsky, McMaster University

Traveling waves in Babenko equation

#### The linearized Babenko's operator is

$$\mathcal{L}_{\infty}\varphi := (c^{2}H\partial_{u} - 1)\varphi - H\partial_{u}(\eta\varphi) - (H\partial_{u}\eta)\varphi - \eta H\partial_{u}\varphi.$$

The linearized Babenko's operator is

$$\mathcal{L}_{\infty}\varphi := (c^2H\partial_u - 1)\varphi - H\partial_u(\eta\varphi) - (H\partial_u\eta)\varphi - \eta H\partial_u\varphi.$$

Recall the small-amplitude expansion:

$$\eta(u) = a\cos(u) + a^2 \left[\cos(2u) - \frac{1}{2}\right] + \frac{3}{2}a^3\cos(3u) + \mathcal{O}(a^4),$$
  
$$c^2 = 1 + a^2 + \mathcal{O}(a^4),$$

where a > 0 is the small-amplitude parameter. Then, we know the spectrum of  $\mathcal{L}_{\infty}$  for a = 0 and for small a > 0:

$$a = 0: \quad \sigma(\mathcal{L}_{\infty}) = \{ |n| - 1, \quad n \in \mathbb{Z} \} = \{ -1, 0, 1, 2, \dots \}.$$

The zero EV splits into a zero eigenvalue and a small negative EV  $-2a^2 + O(a^4)$  in agreement with Dyachenko–Semenova (2023)

Numerical results from Dyachenko-Semenova (2023)



Work in progress: the stability criterion from the energy

The splitting of zero eigenvalue of  $\mathcal{L}$  induces the figure-eight modulational instability:



in agreement with Berti (2022), Creedon–Deconinck (2023), others.

Dmitry Pelinovsky, McMaster University

Traveling waves in Babenko equation

#### Section 4

#### Toy model for shallow water waves

Full system of evolution equations:

$$\begin{cases} (1+K_h\eta)\eta_t - \eta_u T_h^{-1}\eta_t + T_h\xi_u = 0, \\ \xi_t\eta_u - \xi_u\eta_t + \eta\eta_u + T_h\left[(1+K_h\eta)\xi_t - \xi_u T_h^{-1}\eta_t + (1+K_h\eta)\eta\right] = 0, \end{cases}$$

If  $\eta(u, t) = \eta(u - ct, t)$  and  $\xi = cT_h^{-1}\eta + \zeta$ , the system can be simplified into the form:

$$(1+K_h\eta)\eta_t - \eta_u T_h^{-1}\eta_t + T_h\zeta_u = 0$$

and

$$(1 + K_h\eta)\zeta_t - \zeta_u T_h^{-1}\eta_t + T_h^{-1}(\zeta_t\eta_u - \zeta_u\eta_t) + 2cT_h^{-1}\eta_t - c^2K_h\eta + (1 + K_h\eta)\eta + \frac{1}{2}K_h\eta^2 = 0.$$

We consider the scalar evolution equation:

$$2cT_{h}^{-1}\eta_{t} - c^{2}K_{h}\eta + (1 + K_{h}\eta)\eta + \frac{1}{2}K_{h}\eta^{2} = 0.$$

where

$$\widehat{\left(T_{h}^{-1}\right)}_{n} = \begin{cases} -i \coth(hn), & \widehat{\left(K_{h}\right)}_{n} = \begin{cases} n \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0. \end{cases}$$

We consider the scalar evolution equation:

$$2cT_{h}^{-1}\eta_{t} - c^{2}K_{h}\eta + (1 + K_{h}\eta)\eta + \frac{1}{2}K_{h}\eta^{2} = 0.$$

Recall the intermediate long-wave (ILW) equation (integrable PDE)

$$\partial_t \eta + h^{-1} \partial_u \eta + \eta \partial_u \eta = \mathcal{K}_h(\partial_u \eta)$$

where

$$\mathcal{K}_h = K_h + \frac{1}{2\pi h} \oint \cdot du, \quad (\widehat{\mathcal{K}_h})_n = \begin{cases} n \coth(hn), & n \in \mathbb{Z} \setminus \{0\}, \\ h^{-1}, & n = 0. \end{cases}$$

As  $h \to 0$ ,  $\mathcal{K}_h = h^{-1} - \frac{1}{3}h\partial_u^2 + \mathcal{O}(h^3)$  and the ILW equation converges to the KdV equation after rescaling.

We consider the scalar evolution equation:

$$2cT_{h}^{-1}\eta_{t} - c^{2}K_{h}\eta + (1 + K_{h}\eta)\eta + \frac{1}{2}K_{h}\eta^{2} = 0.$$

This promts us to consider  $K_h$  replaced by

$$\widehat{\left(\tilde{K}_{h}\right)}_{n} = \begin{cases} n \coth(hn) - h^{-1}, & n \in \mathbb{Z} \setminus \{0\}, \\ 0, & n = 0. \end{cases}$$

As  $h \to 0$ ,  $\tilde{K}_h = -\frac{1}{3}h\partial_u^2 + \mathcal{O}(h^3)$  and the evolution equation for  $\eta(u, t)$  converges to the new local model after rescaling:

$$2c\partial_u\partial_t\eta = (c^2 - 2\eta)\partial_u^2\eta - (\partial_u\eta)^2 + \eta.$$

This is the Hunter-Saxton equation derived in a different context.

#### Conserved quantities of the toy model

Thus, we can consider the toy model in the form:

$$2c\partial_u\partial_t\eta = (c^2 - 2\eta)\partial_u^2\eta - (\partial_u\eta)^2 + \eta$$

The toy model has the same constraint

$$\oint \left[\eta + (\partial_u \eta)^2\right] du = 0$$

and the same conserved quantities

$$\oint \eta du, \quad \oint (\partial_u \eta)^2 du, \quad \oint \left[\eta^2 + 2\eta (\partial_u \eta)^2\right] du$$

as the original system of evolution equations (but local).

#### Section 5

#### Main results on the toy model

#### Local well-posedness of the initial-value problem

#### The toy model

$$2c\partial_u\partial_t\eta = (c^2 - 2\eta)\partial_u^2\eta - (\partial_u\eta)^2 + \eta$$

can be rewritten as the evolution equation

$$2c\partial_t\eta = (c^2 - 2\eta)\partial_u\eta + \Pi_0\partial_u^{-1}\Pi_0\left[(\partial_u\eta)^2 + \eta\right]$$

subject to the constraint  $\oint \left[\eta + (\partial_u \eta)^2\right] du = 0$ . The inviscid Burgers equation

$$2c\partial_t\eta = (c^2 - 2\eta)\partial_u\eta$$

is locally well-posed in  $H^1_{
m per}(\mathbb{T})\cap W^{1,\infty}(\mathbb{T})$  and the mapping

$$\Pi_0 \partial_u^{-1} \Pi_0 \left[ (\partial_u \eta)^2 + \eta \right] : H^1_{\text{per}}(\mathbb{T}) \cap W^{1,\infty}(\mathbb{T}) \to H^1_{\text{per}}(\mathbb{T}) \cap W^{1,\infty}(\mathbb{T})$$

is bounded on every bounded subset.

#### Local well-posedness of the initial-value problem

#### The toy model

$$2c\partial_u\partial_t\eta = (c^2 - 2\eta)\partial_u^2\eta - (\partial_u\eta)^2 + \eta$$

can be rewritten as the evolution equation

$$2c\partial_t\eta = (c^2 - 2\eta)\partial_u\eta + \Pi_0\partial_u^{-1}\Pi_0\left[(\partial_u\eta)^2 + \eta\right]$$

subject to the constraint  $\oint \left[\eta + (\partial_u \eta)^2\right] du = 0.$ 

By standard technique (e.g. via characteristics), we obtain

#### Theorem

*The initial-value problem is locally well-posed in*  $H^1_{per}(\mathbb{T}) \cap W^{1,\infty}(\mathbb{T})$ *.* 

If  $\eta(u, t) = \eta(u)$  in the traveling wave frame, then  $\eta$  is a solution of the differential equation

$$(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0, \qquad u \in \mathbb{T}.$$

If  $\eta(u, t) = \eta(u)$  in the traveling wave frame, then  $\eta$  is a solution of the differential equation

$$(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0, \qquad u \in \mathbb{T}.$$

#### Theorem

There exist  $c_* := \frac{\pi}{2\sqrt{2}}$  and  $c_{\infty} \in (c_*, \infty)$  such that the ODE admits a unique solution with the profile  $\eta \in C^{\infty}_{per}(\mathbb{T})$  for every  $c \in (1, c_*)$  s.t.

 $\|\eta\|_{L^{\infty}} o 0$  as c o 1

and a solution with the profile  $\eta \in C^0_{\text{per}}(\mathbb{T})$  for every  $c \in (c_*, c_\infty)$ satisfying for some A(c) > 0,

$$\eta(u) = \frac{c^2}{2} - A(c)|u|^{2/3} + \mathcal{O}(|u|) \text{ as } u \to 0.$$

If  $\eta(u, t) = \eta(u)$  in the traveling wave frame, then  $\eta$  is a solution of the differential equation



If  $\eta(u, t) = \eta(u)$  in the traveling wave frame, then  $\eta$  is a solution of the differential equation

$$(c^2-2\eta)\eta''-(\eta')^2+\eta=0, \qquad u\in\mathbb{T}.$$

The two continuous families meet at  $c = c_*$ , where the profile  $\eta \in C^0_{\text{per}}(\mathbb{T}) \cap W^{1,\infty}(\mathbb{T})$  is explicit:

$$\eta(u) = \frac{1}{16}(\pi^2 - 4\pi |u| + 2u^2), \qquad u \in \mathbb{T}.$$



If  $\eta(u, t) = \eta(u)$  in the traveling wave frame, then  $\eta$  is a solution of the differential equation

$$(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0, \qquad u \in \mathbb{T}.$$

Interesting that the highest amplitude

$$\max_{u\in\mathbb{T}}\eta(u)=\eta(0)=\frac{c^2}{2}$$

follows from laws of hydrodynamics and that the  $|u|^{2/3}$  singularity corresponds after the conformal transformation to Stokes' law of the  $120^0$  angle in the physical coordinate.

The peaked profile at  $c = c_*$  might be an artefact of the local model.

Smooth solutions of  $\left[ \frac{(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0}{1 + \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2} \right]$  are level curves of  $E(\eta, \eta') := \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2$  on the phase plane  $(\eta, \eta')$ .

Smooth solutions of  $\left[ \frac{(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0}{1 + \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2} \right]$  are level curves of  $E(\eta, \eta') := \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2$  on the phase plane  $(\eta, \eta')$ .



Dmitry Pelinovsky, McMaster University

#### Traveling waves in Babenko equation

Smooth solutions of 
$$(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0$$
 are level curves  
of  $E(\eta, \eta') := \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2$  on the phase plane  $(\eta, \eta')$ .

For smooth periodic solutions, we can introduce the period function

$$T(\mathcal{E},c) := 2 \int_{-\sqrt{2\mathcal{E}}}^{\sqrt{2\mathcal{E}}} rac{\sqrt{c^2 - 2\eta}}{\sqrt{2\mathcal{E} - \eta^2}} d\eta, \qquad \mathcal{E} \in (0,\mathcal{E}_c),$$

such that  $\eta(u + T(\mathcal{E}, c)) = \eta(u)$ .

#### Theorem

For every c > 0 and  $\mathcal{E} \in (0, \mathcal{E}_c)$  with  $\mathcal{E}_c := \frac{c^4}{8}$ ,

$$\partial_c T(\mathcal{E}, c) > 0$$
 and  $\partial_{\mathcal{E}} T(\mathcal{E}, c) < 0$ .

There exists a unique root of  $T(\mathcal{E}, c) = 2\pi$  for  $\mathcal{E}$  in  $(0, \mathcal{E}_c)$ .

Smooth solutions of  $c^2 - 2\eta \eta'' - (\eta')^2 + \eta = 0$  are level curves of  $E(\eta, \eta') := \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2$  on the phase plane  $(\eta, \eta')$ .



Smooth solutions of  $\left[ \frac{(c^2 - 2\eta)\eta'' - (\eta')^2 + \eta = 0}{1 + \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2} \right]$  are level curves of  $E(\eta, \eta') := \frac{1}{2}(c^2 - 2\eta)(\eta')^2 + \frac{1}{2}\eta^2$  on the phase plane  $(\eta, \eta')$ .



#### Linear stability of periodic waves with smooth profile

#### Starting with

$$2c\partial_t\eta = (c^2 - 2\eta)\partial_u\eta + \partial_u^{-1}\left[(\partial_u\eta)^2 + \eta\right]$$

we set  $\eta(u) + \upsilon(u, t)$  and linearize at  $\upsilon$ :

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L} \upsilon, \qquad \mathcal{L} = -\partial_u (c^2 - 2\eta)\partial_u - 1 + 2\eta''.$$

The constraint  $\oint [\eta + (\partial_u \eta)^2] du = 0$  yields  $\langle 1 - 2\eta'', \upsilon \rangle = 0$  on the perturbation  $\upsilon$ . Moreover, the constraints  $\langle 1, \upsilon \rangle = 0$  and  $\langle \eta'', \upsilon \rangle = 0$  persist in time *t*. They correspond to the requirement that the conserved quantities

$$\oint \eta du$$
 and  $\oint (\partial_u \eta)^2 du$ 

do not change under the perturbation v at the linear order.

## Linear stability of periodic waves with smooth profile

#### Theorem

Consider the unique solution with the profile  $\eta \in C^{\infty}_{per}(\mathbb{T})$  for  $c \in (1, c_*)$ . For every initial data  $v_0 \in H^1_{per}(\mathbb{T})$  satisfying  $\langle 1, v_0 \rangle = 0$  and  $\langle \eta'', v_0 \rangle = 0$ , there exists a unique solution  $v \in C^0(\mathbb{R}, H^1_{per}(\mathbb{T}))$  of the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u (c^2 - 2\eta)\partial_u - 1 + 2\eta''.$$

with  $v|_{t=0} = v_0$  and a unique  $a \in C^0(\mathbb{R}, \mathbb{R})$  such that

 $\|\upsilon(\cdot,t)-a(t)\eta'\|_{H^{1}_{per}} \leq C \|\upsilon_{0}\|_{H^{1}_{per}}, \quad |a'(t)| \leq C \|\upsilon_{0}\|_{H^{1}_{per}}, \quad t \in \mathbb{R},$ where C > 0 is independent of  $\upsilon_{0}$ .

## Linear stability of periodic waves with smooth profile

Linear stability implies spectral stability in the sense that there exist no solutions of the spectral problem

$$\partial_u^{-1} \mathcal{L} \upsilon_0 = \lambda_0 \upsilon_0, \qquad \eta_0 \in H^1_{\text{per}}(\mathbb{T})$$

for  $\lambda \notin i\mathbb{R}$ , that is,  $\sigma(\partial_u^{-1}\mathcal{L}) \subset i\mathbb{R}$ . Interesting that the spectral problem  $\mathcal{L}v = \lambda \partial_u v$  has been considered before in [Stanislovova–Stefanov, 2016].

- ▷ Linear stability does not imply nonlinear stability because we have no local well-posedness in  $H^1_{per}(\mathbb{T})$  but the  $W^{1,\infty}$ -norm of the perturbation v is not controlled in the time evolution.
- ▷ The peaked wave at  $c = c_*$  is likely unstable since it is similar to the other fluid models: [Geyer-P, 2020] [Lafortune-P, 2022].
- ▷ Nothing is known on cusped waves.

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u (c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u(c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .

We want to use the energy quadratic form in  $H^1_{per}(\mathbb{T})$ :

$$\langle \mathcal{L}v, v \rangle = \oint \left[ (c^2 - 2\eta)(\partial_u v)^2 + (2\eta'' - 1)v^2 \right] du,$$

which is constant in time t under the linear evolution.

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u(c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .

For the self-adjoint operator  $\mathcal{L}: H^2_{\text{per}}(\mathbb{T}) \to L^2(\mathbb{T}).$ 

- $\triangleright$  The spectrum  $\sigma(\mathcal{L})$  consists of isolated eigenvalues.
- ▷ We have  $0 \in \sigma(\mathcal{L})$  because  $\mathcal{L}\eta' = 0$  and 0 is a simple eigenvalue because  $\partial_{\mathcal{E}}\eta$  is not  $2\pi$ -periodic.
- ▷ There exist two negative eigenvalues in  $\sigma(\mathcal{L})$  because  $\partial_{\mathcal{E}} T(\mathcal{E}, c) < 0.$

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1}\mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u(c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .

For the constrained self-adjoint operator  $\mathcal{L}|_{\mathcal{X}_c}$  due to two constraints  $\langle 1, \upsilon \rangle = \langle \eta'', \upsilon \rangle = 0$ , we use  $\mathcal{L}\partial_c \eta = 2c\eta''$  and  $\mathcal{L}1 = 2\eta'' - 1$  to compute

$$A = \begin{bmatrix} \langle \mathcal{L}^{-1}1, 1 \rangle & \langle \mathcal{L}^{-1}1, \eta'' \rangle \\ \langle \mathcal{L}^{-1}\eta'', 1 \rangle & \langle \mathcal{L}^{-1}\eta'', \eta'' \rangle \end{bmatrix} = \begin{bmatrix} c^{-1} \langle \partial_c \eta, 1 \rangle - 2\pi & (2c)^{-1} \langle \partial_c \eta, 1 \rangle \\ (2c)^{-1} \langle \partial_c \eta, 1 \rangle & (4c)^{-1} \langle \partial_c \eta, 1 \rangle \end{bmatrix}$$

A has two negative eigenvalues and  $\mathcal{L}|_{\mathcal{X}_c}$  has no negative eigenvalues and a simple zero eigenvalue if and only if the mapping  $c \mapsto \mathcal{M}(c) := \oint \eta du$  is monotonically decreasing at  $c \in (1, c_*)$ .

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L} \upsilon, \qquad \mathcal{L} = -\partial_u (c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .



Dmitry Pelinovsky, McMaster University

Traveling waves in Babenko equation

We analyze the linearized equation

$$2c\partial_t \upsilon = -\partial_u^{-1} \mathcal{L}\upsilon, \qquad \mathcal{L} = -\partial_u (c^2 - 2\eta)\partial_u - 1 + 2\eta''$$

associated with skew-adjoint  $\partial_u^{-1}$  and self-adjoint  $\mathcal{L}$  in  $L^2(\mathbb{T})$ .

Since  $\langle \mathcal{L}v, v \rangle$  is a conserved quantity for the linearized evolution, we have for  $v(\cdot, t) = a(t)\eta' + w(\cdot, t)$  with  $\langle \eta', w(\cdot, t) \rangle = 0$  that

$$\begin{split} \alpha \| w(\cdot, t) \|_{H^{1}_{\text{per}}}^{2} &\leq \langle \mathcal{L}w(\cdot, t), w(\cdot, t) \rangle \\ &= \langle \mathcal{L}\upsilon(\cdot, t), \upsilon(\cdot, t) \rangle \\ &= \langle \mathcal{L}\upsilon_{0}, \upsilon_{0} \rangle \\ &\leq \beta \| \upsilon_{0} \|_{H^{1}_{\text{per}}}^{2}, \end{split}$$

which yields  $\|\upsilon(\cdot,t)-a(t)\eta'\|_{H^1_{per}} \leq C \|\upsilon_0\|_{H^1_{per}}$ .

#### Summary

We have introduced here a new toy model for gravity water waves:

$$2cT_{h}^{-1}\eta_{t} - c^{2}K_{h}\eta + (1 + K_{h}\eta)\eta + \frac{1}{2}K_{h}\eta^{2} = 0,$$

in the context of Euler equations in holomorphic coordinates.

- ▷ It is the exact system of equations for traveling waves.
- ▷ It is a first-order reduction of Euler's equations for the linearized stability and the nonlinear evolution problems.

#### Summary

We have introduced here a new toy model for gravity water waves:

$$2cT_{h}^{-1}\eta_{t} - c^{2}K_{h}\eta + (1 + K_{h}\eta)\eta + \frac{1}{2}K_{h}\eta^{2} = 0,$$

in the context of Euler equations in holomorphic coordinates.

In the shallow water limit, our principal results are:

- The continuous families of smooth and cusped waves are connected at a single peaked wave.
- ▷ The smooth waves are linearly stable in the time evolution.
- ▷ The peaked wave is linearly unstable in the time evolution.
- ▷ The initial-value problem is locally well-posed in  $H^1 \cap W^{1,\infty}$ , which excludes the cusped waves.