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Introduction

Introduction

The Gross-Pitaevskii equation with a harmonic confining potential can be

written in the semi-classical form

i ε ut = − ε2 uxx + x2u − u + |u|2u.

The limit ε→ 0 for large-density stationary states is referred to as the

Thomas–Fermi limit since L.H. Thomas (1927) and E. Fermi (1928).

Theorem (Ignat & Milot, 2006): For sufficiently small ε > 0, there exists a

real-valued, positive-definite global minimizer of the Gross–Pitaevskii energy

Eε(u) =

∫

R

(

ε2 |ux |
2 + x2|u|2 − |u|2 +

1

2
|u|4

)

dx

in the energy space

X =
{

u ∈ H1(R) : xu ∈ L2(R)
}

.
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Introduction

Ground state in the variational theory

Let ηε be a global minimizer of Eε. From Euler–Lagrange equations, it solves

− ε2 η′′ε (x) +
(

η2
ε + x2 − 1

)

ηε(x) = 0, x ∈ R.

The formal limit for the ground state is

η0(x) =

{

(1 − x2)1/2, for |x | < 1,

0, for |x | > 1,

By variational analysis via sub- and super-solutions, it was found that

{

0 ≤ ηε(x) ≤ C ε1/3 exp
(

1−x2

4 ε2/3

)

for |x | ≥ 1,

(1 − C ε1/3)(1 − x2)1/2 ≤ ηε(x) ≤ (1 − x2)1/2
for |x | ≤ 1 − ε1/3,

where C is ε-independent.
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Introduction

Ground state in the asymptotic theory

Let

ηε(x) = ε1/3 νε(y), y =
1 − x2

ε2/3

and rewrite the stationary equation for νε(y):

4(1 − ε2/3 y)ν′′ε (y)− 2 ε2/3 ν′ε(y) + yνε(y)− ν3
ε (y) = 0, y ∈ (−∞, ε−2/3).

The formal limit ε→ 0 gives the Painleve–II equation

4ν′′(y) + yν(y)− ν3(y) = 0, y ∈ R,

that admits a unique Hastings–McLeod (1986) solution ν0(y) satisfying

ν0(y) ∼ y1/2 as y → +∞, ν0(y) ∼ |y |−1/4e−|y|3/2/3 as y → −∞.

Boscolo et al. (2002); Konotop & Kevrekidis (2003); Aftalion et al. (2003)
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Introduction

Rigorous result

Theorem (C. Gallo & D.P., 2011): Let ν0 be the unique Hastings–McLeod

solution of the Painlevé II equation. Then, there exists ε0 > 0 and C0 > 0 s.t.

for every ε ∈ (0, ε0), there is

Rε ∈ L∞(−∞, ε−2/3), with ‖Rε‖L∞ ≤ C0, lim
y→−∞

Rε(y) = 0,

such that for every x ∈ R,

ηε(x) = ε1/3 ν0

(

1 − x2

ε2/3

)

+ εRε

(

1 − x2

ε2/3

)

.

The proof is based on the fixed-point arguments.

The method works for radially symmetric states in dimensions 2 and 3.

More complicated cases: non-radial potentials (Karali & Sourdis, 2013);

coupled Gross–Pitaevskii equations (Gallo, 2014).
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PT-symmetric potentials

PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and

PT-symmetric potentials takes the form

µU(X ) =
(

−∂2
X + X 2 + 2iαW (X ) + |U(X )|2

)

U(X ), X ∈ R,

where µ ∈ R is the chemical potential, W is real and odd, and α ∈ R:

iαW (−X ) = −iαW (X ).

In what follows, we take W (X ) = X . The spectrum of

L0 := −∂2
X + X 2 + 2iαX = −∂2

X + (X + iα)2 + α2

is purely discrete and real. The ground state bifurcates from the smallest

eigenvalue µ0 = 1 + α2 and exists for µ ≥ µ0 (Zezyulin & Konotop, 2012).

The Thomas–Fermi limit corresponds to µ→ ∞ and rescaling µ = ε−1,

U(X ) = ε−1/2 u(x), and x = ε1/2 X :

ε2 u′′(x) +
(

1 − x2 − 2iα ε1/2 x − |u(x)|2
)

u(x) = 0, x ∈ R.
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PT-symmetric potentials

Numerical approximations

Figure : Numerical approximations: D.Zezyulin–V. Konotop, PRA 85 (2012), 043840.
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PT-symmetric potentials

PT-symmetric ground state

We are looking for the ground state with |u(x)| > 0 for all x ∈ R. The ground

state is PT -symmetric if u(−x) = ū(x), when we can write

u(x) = ϕ(x)eǫ−1
∫

x
−∞

ξ(x′)dx′

and obtain

{
(

1 − x2 − ϕ2(x)− ξ2(x)
)

ϕ(x) = − ε2 ϕ′′(x),
(

ϕ2ξ
)′
(x) = 2ηxϕ2(x),

x ∈ R,

where α = ε1/2 η. Both ϕ and ξ are real and even.

Under the condition lim
x→±∞

ϕ2(x)ξ(x) = 0, one can uniquely write

ξ(x) =
2η

ϕ2(x)

∫ x

−∞

sϕ2(s)ds,
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Main results

Limiting Thomas–Fermi state

Formal limit ǫ = 0 corresponds to the compact approximation

{

1 − x2 − ϕ2(x)− ξ2(x) = 0,
(

ϕ2ξ
)′
(x) = 2ηxϕ2(x),

x ∈ [−1,1],

subject to the boundary conditions ϕ(±1) = ξ(±1) = 0. Again, we can write

ξ(x) =
2η

ϕ2(x)

∫ x

−1

sϕ2(s)ds, x ∈ (−1,1).

Theorem (C. Gallo & D.P., 2014): There exists η0 > 0 s.t. for any |η| < η0,

there exists a unique solution ϕTF ∈ C∞(−1,1) s.t. ϕTF(x) > 0 for all

x ∈ (−1,1) and

ϕ2
TF
(x) = 1 − x2 +O((1 − x2)2) as |x | → 1.

Dmitry Pelinovsky (McMaster University, Canada) Thomas–Fermi ground state 9 / 24



Main results

Limiting Thomas–Fermi state

Formal limit ǫ = 0 corresponds to the compact approximation

{

1 − x2 − ϕ2(x)− ξ2(x) = 0,
(

ϕ2ξ
)′
(x) = 2ηxϕ2(x),

x ∈ [−1,1],

subject to the boundary conditions ϕ(±1) = ξ(±1) = 0. Again, we can write

ξ(x) =
2η

ϕ2(x)

∫ x

−1

sϕ2(s)ds, x ∈ (−1,1).

Theorem (C. Gallo & D.P., 2014): There exists η0 > 0 s.t. for any |η| < η0,

there exists a unique solution ϕTF ∈ C∞(−1,1) s.t. ϕTF(x) > 0 for all

x ∈ (−1,1) and

ϕ2
TF
(x) = 1 − x2 +O((1 − x2)2) as |x | → 1.

Dmitry Pelinovsky (McMaster University, Canada) Thomas–Fermi ground state 9 / 24



Main results

Numerical approximations of the limiting state
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Figure : Components ϕ (left) and ξ (right) for the numerical solution to the limiting

problem for three different values of η.
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Main results

Justification of the limiting Thomas–Fermi state

Setting

ϕ(x) = ε1/3 ν(y), ξ(x) = ε2/3 χ(y), y =
1 − x2

ε2/3
.

we obtain for y ∈ (−∞, ε−2/3),

{

4ν′′(y) + yν(y)− ν3(y) = ε2/3
(

4yν′′(y) + 2ν′(y) + χ2(y)ν(y)
)

,
(

ν2χ
)′
(y) = −ην2(y),

subject to the decay condition ν(y) → 0 as y → −∞.

Recall the unique Hastings–McLeod solution ν0 of the Painleve–II equation

4ν′′(y) + yν(y)− ν3(y) = 0, y ∈ R,

satisfying

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) ∼ |y |−1/4e−|y|3/2/3 as y → −∞.
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Main results

Persistence of the Hastings–McLeod solution

Conjecture (C. Gallo & D.P., 2014): Let ν0 be the Hastings–McLeod solution

of the Painlevé-II equation. For any q > 5
6
, there exist εq > 0, ηq > 0, and

Cq > 0 s.t. for every ε ∈ (0, εq) and |η| < ηq ε
q , there exists a unique solution

νP, χp ∈ C∞(−∞, ε−2/3) s.t. νP(y) > 0 for all y ∈ (−∞, ε−2/3) and

sup
y∈(−∞,ε−2/3)

|νP(y)− ν0(y)| ≤ Cq

{

ε2q−4/3 |log(ε)|
1/2

, q ≤ 1,

ε2/3, q > 1.

An alternating fixed-point iteration scheme is proposed but the

convergence of the scheme is only confirmed numerically.

Since η is ε-dependent and small, for every x ∈ (−1,1), we have

ε2/3 ν2
P
(y) → 1 − x2

as ε→ 0.

The main challenge is to control the decay of νP(y) → 0 as y → −∞.
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Main results

Numerical approximations of the stationary state
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Figure : Components ν (left) and χ (right) for the numerical solution to the coupled

system with ε = 0.0067 and three different values of η.
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Proof of Theorem

Proof of Theorem on the limiting Thomas–Fermi state

We are solving

{

1 − x2 − ϕ2(x)− ξ2(x) = 0,
(

ϕ2ξ
)′
(x) = 2ηxϕ2(x),

x ∈ [−1,1],

subject to the boundary conditions ϕ(±1) = ξ(±1) = 0.

Let z := 1 − x2 and ω(z) := ϕ2(x) = z − ξ2(z). Then, we are solving the

first-order differential equation

d

dz

(

zξ − ξ3
)

= −η(z − ξ2), z ∈ [0,1].

subject to the boundary condition ξ(0) = 0. In fact, we have

ξ(z) = −
1

2
ηz

[

1 +
1

8
η2z +O(η4z2)

]

.
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Proof of Theorem

Unfolding the singularities

Writing ξ(z) = − 1
2
ηzψ(ζ) and ζ := η2z, we obtain

dψ

dζ
=

4(1 − ψ)− ζψ2(1 − 3
2
ψ)

2ζ(1 − 3
4
ζψ2)

, ζ ∈ [0, η2],

subject to ψ(0) = 1.

Let τ := log(ζ) for ζ > 0. Then, the first-order equation becomes a planar

autonomous dynamical system

ζ̇ = ζ, ψ̇ =
4(1 − ψ)− ζψ2(1 − 3

2
ψ)

2(1 − 3
4
ζψ2)

where (ζ, ψ) = (0,1) is an equilibrium point. It is a saddle point with an

unstable manifold of the linearized system along the line ψ − 1 = 1
8
ζ.
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Proof of Theorem

The Thomas–Fermi limiting state

By the Unstable Manifold Theorem, there exists a unique trajectory in the right

half-plane (ζ, ψ) such that ψ → 1 as ζ → 0. The solution exists locally for

τ ∈ (−∞, τ0) for some τ0 ∈ R or for ζ ∈ [0, ζ0) for some η-independent ζ0 > 0.

Unfolding back the previous transformations, the solution exists for

z ∈ [0, ζ0η
−2), which includes [0,1] if η is sufficiently small. Then,

ϕTF(x) =
√

1 − x2 − ξ2(1 − x2) is the Thomas–Fermi limiting state.

Theorem (C. Gallo & D.P., 2014): There exists η0 > 0 s.t. for any |η| < η0,

there exists a unique solution ϕTF ∈ C∞(−1,1) s.t.

ϕTF(x) > 0, x ∈ (−1,1)

and

ϕ2
TF
(x) = 1 − x2 +O((1 − x2)2) as |x | → 1.

Remark: The solution breaks at η = η0, when ξ′(x) becomes infinite at x = 0.
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Towards the proof of Conjecture

Towards the proof of Conjecture

We are solving for y ∈ (−∞, ε−2/3)

{

4ν′′(y) + yν(y)− ν3(y) = ε2/3
(

4yν′′(y) + 2ν′(y) + χ2(y)ν(y)
)

,
(

ν2χ
)′
(y) = −ην2(y),

subject to the decay condition ν(y) → 0 as y → −∞.

1 Assume that χ ∈ L∞(−∞, ε−2/3) is given with a suitable behavior in ε and

η. Prove that there exists a solution of the first equation for

ν ∈ L2(−∞, ε−2/3) ∩ C0(−∞, ε−2/3) near the Hastings–McLeod solution.

2 Assume that ν ∈ L2(−∞, ε−2/3) ∩ C0(−∞, ε−2/3) is given with a suitable

behavior in ε and η. Prove that there exists a solution of the second

equation for χ ∈ L∞(−∞, ε−2/3).

3 Develop an alternating iterative scheme and show that it converges to a

suitable solution of the coupled system.
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Towards the proof of Conjecture

Step 1: mapping χ → ν

Theorem

Let ν0 be the Hastings–McLeod solution of the Painlevé-II equation. Let

χ ∈ L∞(−∞, ε−2/3) satisfy for some (ε, η)-independent C+ > 1 and C− > 0:

C−1
+ |η|y ≤ |χ(y)| ≤ C+|η|(1 + y), y ∈ (0, ε−2/3)

|χ(y)| ≤ C−|η|, y ∈ (−∞,0).

For any q > 5
6
, there exist εq > 0, ηq > 0, and Cq > 0 s.t. for every ε ∈ (0, εq)

and |η| < ηq ε
q , there exists a unique solution R ∈ L2 ∩ C0(−∞, ε−2/3) s.t.

ν(y) = ν0(y) + R(y) > 0 for all y ∈ (−∞, ε−2/3) and

‖R‖L∞(−∞,ε−2/3) ≤ Cq

{

ε2q−4/3 |log(ε)|
1/2

, if q ≤ 1,

ε2/3, if q > 1.

Furthermore, if ν1,2 correspond to χ1,2, then there exists an ε-independent

positive constant C such that

‖ν1 − ν2‖L2∩L∞ ≤ C ε2/3 ‖χ2
1 − χ2

2‖L∞‖ν1‖L2 .
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Towards the proof of Conjecture

Decay of the solution ν(y) as y → −∞

Recall the growth and decay of the Hastings–McLeod solution ν0:

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) ∼ |y |−1/4e−|y|3/2/3 as y → −∞.

Because R is bounded, ν(y) = ν0(y) + R(y) has the same growth at

y = O(ε−2/3) as ε→ 0. On the other hand, the WKB theory for

ε2 ϕ′′(x) +
(

1 − x2 − ξ2
∞

)

ϕ(x) = 0,

with ξ∞ := lim|x|→∞ ξ(x), shows that there is γ > 0 such that

ν(y) ∼
y→−∞

γ|y |
1−ε−ξ2

∞
4 ε e

−
|y|

2 ε1/3 .

Therefore, ν(y) decays much slower than ν0(y) as y → −∞.
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Towards the proof of Conjecture

Step 2: mapping ν → χ

We integrate the second equation of the system

(

ν2χ
)′
(y) = −ην2(y) ⇒ χ(y) = −

η

ν2(y)

∫ y

−∞

ν2(s)ds.

Lemma

Let ν ∈ L2 ∩ C0(−∞, ε−2/3) satisfy for (ε, η)-independent C+ > 1 and C− > 0:

C−1
+ y ≤ ν2(y) ≤ C+(1 + y), y ∈ (0, ε−2/3),

1

ν2(y)

∫ y

−∞

ν2(s)ds ≤ C−, y ∈ (−∞,0).

Then, χ ∈ L∞(−∞, ε−2/3) is well-defined and satisfies

C−1
+ |η|y ≤ |χ(y)| ≤ C+|η|(1 + y), y ∈ (0, ε−2/3)

|χ(y)| ≤ C−|η|, y ∈ (−∞,0).
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Towards the proof of Conjecture

Two problems in step 2

We know that the second constraint on ν is satisfied as y → −∞:

ν(y) ∼
y→−∞

γ|y |
1−ε−ξ2

∞
4 ε e

−
|y|

2 ε1/3 ⇒
1

ν2(y)

∫ y

−∞

ν2(s)ds ∼
y→−∞

ε1/3 .

However, it is hard to justify this constraint for all y ∈ (−∞,0).

Lipschitz continuity of the mapping ν → χ is only justified on (y0, ε
−2/3)

for an ε-independent y0 ∈ (−∞,0).

Lemma

Let χ1,2 be defined for ν1,2 ∈ L2(−∞, ε−2/3) ∩ C0(−∞, ε−2/3) s.t.

‖ν1,2 − ν0‖L2(−∞,ε−2/3) + ‖ν1,2 − ν0‖L∞(−∞,ε−2/3) ≤ δ.

Then,

‖χ1 − χ2‖L∞(0,ε−2/3) ≤ C|η|
(

‖ν1 − ν2‖L2(−∞,ε−2/3) + ε−1/3 ‖ν1 − ν2‖L∞(0,ε−2/3)

)

,

‖χ1 − χ2‖L∞(y0,0) ≤ C(y0)|η|
(

‖ν1 − ν2‖L2(−∞,ε−2/3) + ‖ν1 − ν2‖L∞(−∞,ε−2/3)

)

.

Dmitry Pelinovsky (McMaster University, Canada) Thomas–Fermi ground state 21 / 24



Towards the proof of Conjecture

Step 3: convergence of the alternating iterations

Let us start the alternating iteration scheme with ν = ν0 and define

χ0(y) = −
η

ν2
0(y)

∫ y

−∞

ν2
0(s)ds.

Then, we have χ0 ∈ C∞(R) such that

χ0(y) = −η

{

1
2
y + 3

2
y−2 +O(y−5) as y → +∞

|y |−1/2 +O(|y |−5/4) as y → −∞
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Figure : Components ν0 (left) and χ0 (right) for η = ε and ε = 0.0067.
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Towards the proof of Conjecture

Numerical iteration scheme

Using the mapping χ→ ν, we obtain ν1 from χ0. Using the mapping ν → χ,

we obtain χ1 from ν1. And so on... The iterations are terminated when the

distance between two subsequent approximations is smaller than 10−15.
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Figure : Component R (top left panel), component χ (top right panel), component ν

(bottom panels) in comparison with various asymptotic values shown by dashed lines.
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Towards the proof of Conjecture

Conclusion

Starting with

ε2 u′′(x) +
(

1 − x2 − 2iα ε1/2 x − |u(x)|2
)

u(x) = 0, x ∈ R

and using

u(x) = ϕ(x)eǫ−1
∫

x
−∞

ξ(x′)dx′

,

we considered the Thomas–Fermi limit for the PT-symmetric ground state:

{
(

1 − x2 − ϕ2(x)− ξ2(x)
)

ϕ(x) = − ε2 ϕ′′(x),
(

ϕ2ξ
)′
(x) = 2ηxϕ2(x),

x ∈ R,

where α = ε1/2 η.

We proved existence of the limiting compact state for small η and conjectured

on the persistence of the Hastings–McLeod solution for η = O(εq) with q > 5
6
.

Numerical results show the persistence for η = O(εq) with q ≥ 0.2. Rigorous

proof is still opened for further studies...
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