Thomas–Fermi ground state in a PT-symmetric confining potential

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada

with Clement Gallo (University of Montpellier, France)

10th AIMS Conference, Madrid, Spain, July 7-11, 2014

Introduction

Introduction

The Gross-Pitaevskii equation with a harmonic confining potential can be written in the semi-classical form

$$i \varepsilon u_t = -\varepsilon^2 u_{xx} + x^2 u - u + |u|^2 u_x$$

The limit $\varepsilon \rightarrow 0$ for large-density stationary states is referred to as the Thomas–Fermi limit since L.H. Thomas (1927) and E. Fermi (1928).

Theorem (Ignat & Milot, 2006): For sufficiently small $\varepsilon > 0$, there exists a real-valued, positive-definite global minimizer of the Gross–Pitaevskii energy

$$E_{\varepsilon}(u) = \int_{\mathbb{R}} \left(\varepsilon^2 |u_x|^2 + x^2 |u|^2 - |u|^2 + \frac{1}{2} |u|^4 \right) dx$$

in the energy space

$$X = \left\{ u \in H^1(\mathbb{R}) : xu \in L^2(\mathbb{R}) \right\}.$$

Ground state in the variational theory

Let η_{ε} be a global minimizer of E_{ε} . From Euler–Lagrange equations, it solves

$$- arepsilon^2 \eta_arepsilon''(x) + \left(\eta_arepsilon^2 + x^2 - 1
ight) \eta_arepsilon(x) = 0, \quad x \in \mathbb{R}.$$

The formal limit for the ground state is

$$\eta_0(x) = \left\{ egin{array}{ccc} (1-x^2)^{1/2}, & \mbox{ for } |x| < 1, \ 0, & \mbox{ for } |x| > 1, \end{array}
ight.$$

By variational analysis via sub- and super-solutions, it was found that

$$\begin{cases} 0 \leq \eta_{\varepsilon}(x) \leq C \, \varepsilon^{1/3} \exp\left(\frac{1-x^2}{4 \, \varepsilon^{2/3}}\right) & \text{for } |x| \geq 1, \\ (1 - C \, \varepsilon^{1/3})(1 - x^2)^{1/2} \leq \eta_{\varepsilon}(x) \leq (1 - x^2)^{1/2} & \text{for } |x| \leq 1 - \varepsilon^{1/3}, \end{cases}$$

where *C* is ε -independent.

Introduction

Ground state in the asymptotic theory

Let

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \nu_{\varepsilon}(\mathbf{y}), \quad \mathbf{y} = \frac{1 - x^2}{\varepsilon^{2/3}}$$

and rewrite the stationary equation for $\nu_{\varepsilon}(y)$:

$$4(1-\varepsilon^{2/3} y)\nu_{\varepsilon}''(y)-2\,\varepsilon^{2/3}\,\nu_{\varepsilon}'(y)+y\nu_{\varepsilon}(y)-\nu_{\varepsilon}^{3}(y)=0,\quad y\in(-\infty,\varepsilon^{-2/3}).$$

The formal limit $\varepsilon \rightarrow 0$ gives the Painleve–II equation

$$4
u''(\mathbf{y}) + \mathbf{y}
u(\mathbf{y}) -
u^3(\mathbf{y}) = \mathbf{0}, \quad \mathbf{y} \in \mathbb{R},$$

that admits a unique Hastings–McLeod (1986) solution $\nu_0(y)$ satisfying

$$\nu_0(y)\sim y^{1/2}\quad\text{as}\quad y\to+\infty,\quad \nu_0(y)\sim |y|^{-1/4}e^{-|y|^{3/2}/3}\quad\text{as}\quad y\to-\infty.$$

Boscolo et al. (2002); Konotop & Kevrekidis (2003); Aftalion et al. (2003)

ヘロン ヘヨン ヘヨン ・

Introduction

Rigorous result

Theorem (C. Gallo & D.P., 2011): Let ν_0 be the unique Hastings–McLeod solution of the Painlevé II equation. Then, there exists $\varepsilon_0 > 0$ and $C_0 > 0$ s.t. for every $\varepsilon \in (0, \varepsilon_0)$, there is

$$R_{arepsilon}\in L^{\infty}(-\infty,arepsilon^{-2/3}), \hspace{1em} ext{with} \hspace{1em} \|R_{arepsilon}\|_{L^{\infty}}\leq C_{0}, \hspace{1em} \lim_{y
ightarrow -\infty}R_{arepsilon}(y)=0,$$

such that for every $x \in \mathbb{R}$,

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \nu_0 \left(\frac{1-x^2}{\varepsilon^{2/3}} \right) + \varepsilon \mathbf{R}_{\varepsilon} \left(\frac{1-x^2}{\varepsilon^{2/3}} \right).$$

The proof is based on the fixed-point arguments.

• The method works for radially symmetric states in dimensions 2 and 3.

 More complicated cases: non-radial potentials (Karali & Sourdis, 2013); coupled Gross–Pitaevskii equations (Gallo, 2014).

< ロ > < 同 > < 臣 > < 臣 >

Rigorous result

Theorem (C. Gallo & D.P., 2011): Let ν_0 be the unique Hastings–McLeod solution of the Painlevé II equation. Then, there exists $\varepsilon_0 > 0$ and $C_0 > 0$ s.t. for every $\varepsilon \in (0, \varepsilon_0)$, there is

$$R_{arepsilon}\in L^{\infty}(-\infty,arepsilon^{-2/3}), \hspace{1em} ext{with} \hspace{1em} \|R_{arepsilon}\|_{L^{\infty}}\leq C_{0}, \hspace{1em} \lim_{y
ightarrow -\infty}R_{arepsilon}(y)=0,$$

such that for every $x \in \mathbb{R}$,

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \nu_0 \left(\frac{1 - x^2}{\varepsilon^{2/3}} \right) + \varepsilon \, \mathbf{R}_{\varepsilon} \left(\frac{1 - x^2}{\varepsilon^{2/3}} \right).$$

- The proof is based on the fixed-point arguments.
- The method works for radially symmetric states in dimensions 2 and 3.
- More complicated cases: non-radial potentials (Karali & Sourdis, 2013); coupled Gross–Pitaevskii equations (Gallo, 2014).

PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and PT-symmetric potentials takes the form

$$\mu U(X) = \left(-\partial_X^2 + X^2 + 2ilpha W(X) + |U(X)|^2\right) U(X), \quad X \in \mathbb{R},$$

where $\mu \in \mathbb{R}$ is the chemical potential, *W* is real and odd, and $\alpha \in \mathbb{R}$: $i\alpha W(-X) = -i\alpha W(X)$.

In what follows, we take W(X) = X. The spectrum of

$$L_0 := -\partial_X^2 + X^2 + 2i\alpha X = -\partial_X^2 + (X + i\alpha)^2 + \alpha^2$$

is purely discrete and real. The ground state bifurcates from the smallest eigenvalue $\mu_0 = 1 + \alpha^2$ and exists for $\mu \ge \mu_0$ (Zezyulin & Konotop, 2012).

The Thomas–Fermi limit corresponds to $\mu \to \infty$ and rescaling $\mu = \varepsilon^{-1}$, $U(X) = \varepsilon^{-1/2} u(x)$, and $x = \varepsilon^{1/2} X$:

$$arepsilon^2 u^{\prime\prime}(x) + \left(1 - x^2 - 2ilpha \, arepsilon^{1/2} \, x - |u(x)|^2
ight) u(x) = 0, \quad x \in \mathbb{R}.$$

イロト イヨト イヨト イヨト 三日

PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and PT-symmetric potentials takes the form

$$\mu U(X) = \left(-\partial_X^2 + X^2 + 2i\alpha W(X) + |U(X)|^2\right) U(X), \quad X \in \mathbb{R},$$

where $\mu \in \mathbb{R}$ is the chemical potential, W is real and odd, and $\alpha \in \mathbb{R}$: $i\alpha W(-X) = -i\alpha W(X)$.

In what follows, we take W(X) = X. The spectrum of

$$L_0 := -\partial_X^2 + X^2 + 2i\alpha X = -\partial_X^2 + (X + i\alpha)^2 + \alpha^2$$

is purely discrete and real. The ground state bifurcates from the smallest eigenvalue $\mu_0 = 1 + \alpha^2$ and exists for $\mu \ge \mu_0$ (Zezyulin & Konotop, 2012).

The Thomas–Fermi limit corresponds to $\mu \to \infty$ and rescaling $\mu = \varepsilon^{-1}$, $U(X) = \varepsilon^{-1/2} u(x)$, and $x = \varepsilon^{1/2} X$:

$$\varepsilon^2 u''(x) + \left(1 - x^2 - 2i\alpha \, \varepsilon^{1/2} \, x - |u(x)|^2\right) u(x) = 0, \quad x \in \mathbb{R}.$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and PT-symmetric potentials takes the form

$$\mu U(X) = \left(-\partial_X^2 + X^2 + 2i\alpha W(X) + |U(X)|^2\right) U(X), \quad X \in \mathbb{R},$$

where $\mu \in \mathbb{R}$ is the chemical potential, W is real and odd, and $\alpha \in \mathbb{R}$: $i\alpha W(-X) = -i\alpha W(X)$.

In what follows, we take W(X) = X. The spectrum of

$$L_0 := -\partial_X^2 + X^2 + 2i\alpha X = -\partial_X^2 + (X + i\alpha)^2 + \alpha^2$$

is purely discrete and real. The ground state bifurcates from the smallest eigenvalue $\mu_0 = 1 + \alpha^2$ and exists for $\mu \ge \mu_0$ (Zezyulin & Konotop, 2012).

The Thomas–Fermi limit corresponds to $\mu \to \infty$ and rescaling $\mu = \varepsilon^{-1}$, $U(X) = \varepsilon^{-1/2} u(x)$, and $x = \varepsilon^{1/2} X$:

$$arepsilon^2 u^{\prime\prime}(x) + \left(1-x^2-2ilpha\,arepsilon^{1/2}\,x-|u(x)|^2
ight)u(x) = 0, \quad x\in\mathbb{R}.$$

(ロ) (四) (三) (三) (三)

Numerical approximations

Figure : Numerical approximations: D.Zezyulin–V. Konotop, PRA 85 (2012), 043840.

PT-symmetric ground state

We are looking for the ground state with |u(x)| > 0 for all $x \in \mathbb{R}$. The ground state is *PT*-symmetric if $u(-x) = \overline{u}(x)$, when we can write

$$u(x) = \varphi(x)e^{\epsilon^{-1}\int_{-\infty}^{x}\xi(x')dx'}$$

and obtain

$$\left\{ egin{array}{ll} \left(1-x^2-arphi^2(x)-\xi^2(x)
ight)arphi(x)=-arepsilon^2\,arphi''(x), \ \left(arphi^2\xi
ight)'(x)=2\eta xarphi^2(x), \end{array}
ight. x\in\mathbb{R},
ight.$$

where $\alpha = \varepsilon^{1/2} \eta$. Both φ and ξ are real and even.

Under the condition $\lim_{x \to \pm \infty} \varphi^2(x) \xi(x) = 0$, one can uniquely write

$$\xi(x) = \frac{2\eta}{\varphi^2(x)} \int_{-\infty}^x s\varphi^2(s) ds,$$

PT-symmetric ground state

We are looking for the ground state with |u(x)| > 0 for all $x \in \mathbb{R}$. The ground state is *PT*-symmetric if $u(-x) = \overline{u}(x)$, when we can write

$$u(x) = \varphi(x)e^{\epsilon^{-1}\int_{-\infty}^{x}\xi(x')dx'}$$

and obtain

$$\left\{ egin{array}{ll} \left(1-x^2-arphi^2(x)-\xi^2(x)
ight)arphi(x)=-arepsilon^2\,arphi''(x), \ \left(arphi^2\xi
ight)'(x)=2\eta xarphi^2(x), \end{array}
ight. x\in\mathbb{R},
ight.$$

where $\alpha = \varepsilon^{1/2} \eta$. Both φ and ξ are real and even.

Under the condition $\lim_{x \to \pm \infty} \varphi^2(x) \xi(x) = 0$, one can uniquely write

$$\xi(\mathbf{x}) = \frac{2\eta}{\varphi^2(\mathbf{x})} \int_{-\infty}^{\mathbf{x}} s\varphi^2(s) ds,$$

Limiting Thomas–Fermi state

Formal limit $\epsilon = 0$ corresponds to the compact approximation

$$\left\{ \begin{array}{ll} 1-x^2-\varphi^2(x)-\xi^2(x)=0,\\ \left(\varphi^2\xi\right)'(x)=2\eta x\varphi^2(x), \end{array} \right. \quad x\in [-1,1],$$

subject to the boundary conditions $\varphi(\pm 1) = \xi(\pm 1) = 0$. Again, we can write

$$\xi(x)=rac{2\eta}{arphi^2(x)}\int_{-1}^xsarphi^2(s)ds,\quad x\in(-1,1).$$

Theorem (C. Gallo & D.P., 2014): There exists $\eta_0 > 0$ s.t. for any $|\eta| < \eta_0$, there exists a unique solution $\varphi_{\text{TF}} \in C^{\infty}(-1, 1)$ s.t. $\varphi_{\text{TF}}(x) > 0$ for all $x \in (-1, 1)$ and

$$\varphi_{\text{TF}}^2(x) = 1 - x^2 + \mathcal{O}((1 - x^2)^2) \text{ as } |x| \to 1.$$

イロン イボン イヨン 一日

Limiting Thomas–Fermi state

Formal limit $\epsilon = 0$ corresponds to the compact approximation

$$\left\{ \begin{array}{ll} 1-x^2-\varphi^2(x)-\xi^2(x)=0,\\ \left(\varphi^2\xi\right)'(x)=2\eta x\varphi^2(x), \end{array} \right. \quad x\in [-1,1],$$

subject to the boundary conditions $\varphi(\pm 1) = \xi(\pm 1) = 0$. Again, we can write

$$\xi(x)=\frac{2\eta}{\varphi^2(x)}\int_{-1}^x s\varphi^2(s)ds, \quad x\in(-1,1).$$

Theorem (C. Gallo & D.P., 2014): There exists $\eta_0 > 0$ s.t. for any $|\eta| < \eta_0$, there exists a unique solution $\varphi_{\text{TF}} \in C^{\infty}(-1, 1)$ s.t. $\varphi_{\text{TF}}(x) > 0$ for all $x \in (-1, 1)$ and

$$\varphi_{\text{TF}}^2(x) = 1 - x^2 + \mathcal{O}((1 - x^2)^2) \text{ as } |x| \to 1.$$

イロト イポト イヨト イヨト 二日

Numerical approximations of the limiting state

Figure : Components φ (left) and ξ (right) for the numerical solution to the limiting problem for three different values of η .

Justification of the limiting Thomas–Fermi state

Setting

$$\varphi(\mathbf{x}) = \varepsilon^{1/3} \nu(\mathbf{y}), \quad \xi(\mathbf{x}) = \varepsilon^{2/3} \chi(\mathbf{y}), \quad \mathbf{y} = \frac{1 - x^2}{\varepsilon^{2/3}},$$

we obtain for $y \in (-\infty, \varepsilon^{-2/3})$,

$$\begin{cases} 4\nu''(y) + y\nu(y) - \nu^{3}(y) = \varepsilon^{2/3} \left(4y\nu''(y) + 2\nu'(y) + \chi^{2}(y)\nu(y) \right), \\ \left(\nu^{2}\chi\right)'(y) = -\eta\nu^{2}(y), \end{cases}$$

subject to the decay condition $\nu(y) \rightarrow 0$ as $y \rightarrow -\infty$.

Recall the unique Hastings–McLeod solution ν_0 of the Painleve–II equation

$$4\nu''(y)+y\nu(y)-\nu^3(y)=0,\quad y\in\mathbb{R},$$

satisfying

 $u_0(y) \sim y^{1/2} \text{ as } y \to +\infty \text{ and } \nu_0(y) \sim |y|^{-1/4} e^{-|y|^{3/2}/3} \text{ as } y \to -\infty.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Justification of the limiting Thomas–Fermi state

Setting

$$\varphi(\mathbf{x}) = \varepsilon^{1/3} \nu(\mathbf{y}), \quad \xi(\mathbf{x}) = \varepsilon^{2/3} \chi(\mathbf{y}), \quad \mathbf{y} = \frac{1 - x^2}{\varepsilon^{2/3}},$$

we obtain for $y \in (-\infty, \varepsilon^{-2/3})$,

$$\begin{cases} 4\nu^{\prime\prime}(\mathbf{y}) + \mathbf{y}\nu(\mathbf{y}) - \nu^{3}(\mathbf{y}) = \varepsilon^{2/3} \left(4\mathbf{y}\nu^{\prime\prime}(\mathbf{y}) + 2\nu^{\prime}(\mathbf{y}) + \chi^{2}(\mathbf{y})\nu(\mathbf{y}) \right), \\ \left(\nu^{2}\chi\right)^{\prime}(\mathbf{y}) = -\eta\nu^{2}(\mathbf{y}), \end{cases}$$

subject to the decay condition $\nu(y) \rightarrow 0$ as $y \rightarrow -\infty$.

Recall the unique Hastings–McLeod solution ν_0 of the Painleve–II equation

$$4
u''(y)+y
u(y)-
u^3(y)=0,\quad y\in\mathbb{R},$$

satisfying

$$\nu_0(y)\sim y^{1/2}\quad \text{as}\quad y\to+\infty\quad \text{and}\quad \nu_0(y)\sim |y|^{-1/4}e^{-|y|^{3/2}/3}\quad \text{as}\quad y\to-\infty.$$

イロト イヨト イヨト イヨト 三日

Persistence of the Hastings–McLeod solution

Conjecture (C. Gallo & D.P., 2014): Let ν_0 be the Hastings–McLeod solution of the Painlevé-II equation. For any $q > \frac{5}{6}$, there exist $\varepsilon_q > 0$, $\eta_q > 0$, and $C_q > 0$ s.t. for every $\varepsilon \in (0, \varepsilon_q)$ and $|\eta| < \eta_q \varepsilon^q$, there exists a unique solution $\nu_P, \chi_p \in C^{\infty}(-\infty, \varepsilon^{-2/3})$ s.t. $\nu_P(y) > 0$ for all $y \in (-\infty, \varepsilon^{-2/3})$ and

$$\sup_{y\in(-\infty,\varepsilon^{-2/3})}|\nu_{\mathrm{P}}(y)-\nu_{0}(y)|\leq C_{q}\left\{\begin{array}{ll}\varepsilon^{2q-4/3}\left|\log(\varepsilon)\right|^{1/2},&q\leq1,\\\varepsilon^{2/3},&q>1.\end{array}\right.$$

• An alternating fixed-point iteration scheme is proposed but the convergence of the scheme is only confirmed numerically.

• Since η is ε -dependent and small, for every $x \in (-1, 1)$, we have

$$arepsilon^{2/3}
u_{
m P}^2(y)
ightarrow 1 - x^2 \quad {
m as} \quad arepsilon
ightarrow 0.$$

• The main challenge is to control the decay of $\nu_P(y) \rightarrow 0$ as $y \rightarrow -\infty$.

イロト イヨト イヨト イヨト

Persistence of the Hastings–McLeod solution

Conjecture (C. Gallo & D.P., 2014): Let ν_0 be the Hastings–McLeod solution of the Painlevé-II equation. For any $q > \frac{5}{6}$, there exist $\varepsilon_q > 0$, $\eta_q > 0$, and $C_q > 0$ s.t. for every $\varepsilon \in (0, \varepsilon_q)$ and $|\eta| < \eta_q \varepsilon^q$, there exists a unique solution $\nu_P, \chi_p \in C^{\infty}(-\infty, \varepsilon^{-2/3})$ s.t. $\nu_P(y) > 0$ for all $y \in (-\infty, \varepsilon^{-2/3})$ and

$$\sup_{\boldsymbol{y}\in(-\infty,\varepsilon^{-2/3})}|\nu_{\mathrm{P}}(\boldsymbol{y})-\nu_{0}(\boldsymbol{y})|\leq C_{q}\left\{\begin{array}{ll}\varepsilon^{2q-4/3}\left|\log(\varepsilon)\right|^{1/2},&q\leq1,\\\varepsilon^{2/3},&q>1.\end{array}\right.$$

- An alternating fixed-point iteration scheme is proposed but the convergence of the scheme is only confirmed numerically.
- Since η is ε -dependent and small, for every $x \in (-1, 1)$, we have

$$\varepsilon^{2/3} \nu_{\mathrm{P}}^2(y) \to 1 - x^2 \quad \mathrm{as} \quad \varepsilon \to 0.$$

The main challenge is to control the decay of *ν*_P(*y*) → 0 as *y* → −∞.

Numerical approximations of the stationary state

Figure : Components ν (left) and χ (right) for the numerical solution to the coupled system with $\varepsilon = 0.0067$ and three different values of η .

Proof of Theorem

Proof of Theorem on the limiting Thomas–Fermi state

We are solving

$$\left\{ \begin{array}{ll} 1-x^2-\varphi^2(x)-\xi^2(x)=0,\\ \left(\varphi^2\xi\right)'(x)=2\eta x\varphi^2(x), \end{array} \right. \quad x\in [-1,1],$$

subject to the boundary conditions $\varphi(\pm 1) = \xi(\pm 1) = 0$.

Let $z := 1 - x^2$ and $\omega(z) := \varphi^2(x) = z - \xi^2(z)$. Then, we are solving the first-order differential equation

$$rac{d}{dz}\left(z\xi-\xi^3
ight)=-\eta(z-\xi^2),\quad z\in[0,1].$$

subject to the boundary condition $\xi(0) = 0$. In fact, we have

$$\xi(z) = -\frac{1}{2}\eta z \left[1 + \frac{1}{8}\eta^2 z + \mathcal{O}(\eta^4 z^2)\right].$$

イロト イポト イヨト イヨト 二日

Proof of Theorem

Unfolding the singularities

Writing $\xi(z) = -\frac{1}{2}\eta z\psi(\zeta)$ and $\zeta := \eta^2 z$, we obtain

$$rac{d\psi}{d\zeta}=rac{4(1-\psi)-\zeta\psi^2(1-rac{3}{2}\psi)}{2\zeta(1-rac{3}{4}\zeta\psi^2)},\quad \zeta\in[0,\eta^2],$$

subject to $\psi(0) = 1$.

Let $\tau := \log(\zeta)$ for $\zeta > 0$. Then, the first-order equation becomes a planar autonomous dynamical system

$$\dot{\zeta} = \zeta, \quad \dot{\psi} = \frac{4(1-\psi) - \zeta \psi^2 (1-\frac{3}{2}\psi)}{2(1-\frac{3}{4}\zeta\psi^2)}$$

where $(\zeta, \psi) = (0, 1)$ is an equilibrium point. It is a saddle point with an unstable manifold of the linearized system along the line $\psi - 1 = \frac{1}{8}\zeta$.

・ロ・・ (日・・ (日・・ 日・・)

Unfolding the singularities

Writing
$$\xi(z) = -\frac{1}{2}\eta z\psi(\zeta)$$
 and $\zeta := \eta^2 z$, we obtain

$$rac{d\psi}{d\zeta}=rac{4(1-\psi)-\zeta\psi^2(1-rac{3}{2}\psi)}{2\zeta(1-rac{3}{4}\zeta\psi^2)},\quad \zeta\in[0,\eta^2],$$

subject to $\psi(0) = 1$.

Let $\tau := \log(\zeta)$ for $\zeta > 0$. Then, the first-order equation becomes a planar autonomous dynamical system

$$\dot{\zeta} = \zeta, \quad \dot{\psi} = \frac{4(1-\psi) - \zeta \psi^2 (1-\frac{3}{2}\psi)}{2(1-\frac{3}{4}\zeta \psi^2)}$$

where $(\zeta, \psi) = (0, 1)$ is an equilibrium point. It is a saddle point with an unstable manifold of the linearized system along the line $\psi - 1 = \frac{1}{8}\zeta$.

イロト イヨト イヨト イヨト

The Thomas–Fermi limiting state

By the Unstable Manifold Theorem, there exists a unique trajectory in the right half-plane (ζ, ψ) such that $\psi \to 1$ as $\zeta \to 0$. The solution exists locally for $\tau \in (-\infty, \tau_0)$ for some $\tau_0 \in \mathbb{R}$ or for $\zeta \in [0, \zeta_0)$ for some η -independent $\zeta_0 > 0$.

Unfolding back the previous transformations, the solution exists for $z \in [0, \zeta_0 \eta^{-2})$, which includes [0, 1] if η is sufficiently small. Then, $\varphi_{\text{TF}}(x) = \sqrt{1 - x^2 - \xi^2(1 - x^2)}$ is the Thomas–Fermi limiting state.

Theorem (C. Gallo & D.P., 2014): There exists $\eta_0 > 0$ s.t. for any $|\eta| < \eta_0$, there exists a unique solution $\varphi_{\text{TF}} \in C^{\infty}(-1, 1)$ s.t.

$$\varphi_{\mathrm{TF}}(x) > 0, \quad x \in (-1, 1)$$

and

$$\varphi^2_{\rm TF}(x) = 1 - x^2 + \mathcal{O}((1 - x^2)^2)$$
 as $|x| \to 1$.

Remark: The solution breaks at $\eta = \eta_0$, when $\xi'(x)$ becomes infinite at x = 0.

・ロト ・回ト ・ヨト ・ヨト … ヨ

The Thomas–Fermi limiting state

By the Unstable Manifold Theorem, there exists a unique trajectory in the right half-plane (ζ, ψ) such that $\psi \to 1$ as $\zeta \to 0$. The solution exists locally for $\tau \in (-\infty, \tau_0)$ for some $\tau_0 \in \mathbb{R}$ or for $\zeta \in [0, \zeta_0)$ for some η -independent $\zeta_0 > 0$.

Unfolding back the previous transformations, the solution exists for $z \in [0, \zeta_0 \eta^{-2})$, which includes [0, 1] if η is sufficiently small. Then, $\varphi_{\text{TF}}(x) = \sqrt{1 - x^2 - \xi^2(1 - x^2)}$ is the Thomas–Fermi limiting state.

Theorem (C. Gallo & D.P., 2014): There exists $\eta_0 > 0$ s.t. for any $|\eta| < \eta_0$, there exists a unique solution $\varphi_{\text{TF}} \in C^{\infty}(-1, 1)$ s.t.

$$\varphi_{\mathrm{TF}}(x) > 0, \quad x \in (-1, 1)$$

and

$$\varphi_{\rm TF}^2(x) = 1 - x^2 + \mathcal{O}((1 - x^2)^2)$$
 as $|x| \to 1$.

Remark: The solution breaks at $\eta = \eta_0$, when $\xi'(x)$ becomes infinite at x = 0.

Towards the proof of Conjecture

We are solving for $y \in (-\infty, \varepsilon^{-2/3})$

 $\begin{cases} 4\nu''(\mathbf{y}) + \mathbf{y}\nu(\mathbf{y}) - \nu^{3}(\mathbf{y}) = \varepsilon^{2/3} \left(4\mathbf{y}\nu''(\mathbf{y}) + 2\nu'(\mathbf{y}) + \chi^{2}(\mathbf{y})\nu(\mathbf{y}) \right), \\ \left(\nu^{2}\chi\right)'(\mathbf{y}) = -\eta\nu^{2}(\mathbf{y}), \end{cases}$

subject to the decay condition $\nu(y) \rightarrow 0$ as $y \rightarrow -\infty$.

- Assume that χ ∈ L[∞](-∞, ε^{-2/3}) is given with a suitable behavior in ε and η. Prove that there exists a solution of the first equation for ν ∈ L²(-∞, ε^{-2/3}) ∩ C⁰(-∞, ε^{-2/3}) near the Hastings–McLeod solution.
- Assume that ν ∈ L²(-∞, ε^{-2/3}) ∩ C⁰(-∞, ε^{-2/3}) is given with a suitable behavior in ε and η. Prove that there exists a solution of the second equation for χ ∈ L[∞](-∞, ε^{-2/3}).
- Develop an alternating iterative scheme and show that it converges to a suitable solution of the coupled system.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1: mapping $\chi \rightarrow \nu$

Theorem

Let ν_0 be the Hastings–McLeod solution of the Painlevé-II equation. Let $\chi \in L^{\infty}(-\infty, \varepsilon^{-2/3})$ satisfy for some (ε, η) -independent $C_+ > 1$ and $C_- > 0$:

$$egin{aligned} \mathcal{C}_+^{-1} |\eta| \mathbf{y} &\leq |\chi(\mathbf{y})| \leq \mathcal{C}_+ |\eta| (\mathbf{1} + \mathbf{y}), & \mathbf{y} \in (\mathbf{0}, arepsilon^{-2/3}) \ |\chi(\mathbf{y})| \leq \mathcal{C}_- |\eta|, & \mathbf{y} \in (-\infty, \mathbf{0}). \end{aligned}$$

For any $q > \frac{5}{6}$, there exist $\varepsilon_q > 0$, $\eta_q > 0$, and $C_q > 0$ s.t. for every $\varepsilon \in (0, \varepsilon_q)$ and $|\eta| < \eta_q \varepsilon^q$, there exists a unique solution $R \in L^2 \cap C^0(-\infty, \varepsilon^{-2/3})$ s.t. $\nu(y) = \nu_0(y) + R(y) > 0$ for all $y \in (-\infty, \varepsilon^{-2/3})$ and

$$\|\boldsymbol{R}\|_{L^{\infty}(-\infty,\varepsilon^{-2/3})} \leq C_q \left\{ \begin{array}{ll} \varepsilon^{2q-4/3} \left| \log(\varepsilon) \right|^{1/2}, & \text{if } q \leq 1, \\ \varepsilon^{2/3}, & \text{if } q > 1. \end{array} \right.$$

Furthermore, if $\nu_{1,2}$ correspond to $\chi_{1,2}$, then there exists an ε -independent positive constant C such that

$$\|\nu_1 - \nu_2\|_{L^2 \cap L^{\infty}} \leq C \varepsilon^{2/3} \|\chi_1^2 - \chi_2^2\|_{L^{\infty}} \|\nu_1\|_{L^2}.$$

Dmitry Pelinovsky (McMaster University, Canada)

Decay of the solution $\nu(y)$ as $y \to -\infty$

Recall the growth and decay of the Hastings–McLeod solution ν_0 :

$$u_0(y)\sim y^{1/2} \quad \text{as} \quad y \to +\infty \quad \text{and} \quad \nu_0(y)\sim |y|^{-1/4}e^{-|y|^{3/2}/3} \quad \text{as} \quad y \to -\infty.$$

Because *R* is bounded, $\nu(y) = \nu_0(y) + R(y)$ has the same growth at $y = O(\varepsilon^{-2/3})$ as $\varepsilon \to 0$. On the other hand, the WKB theory for

$$arepsilon^2 arphi''(x) + \left(1 - x^2 - \xi_\infty^2\right) arphi(x) = \mathbf{0},$$

with $\xi_{\infty} := \lim_{|x| \to \infty} \xi(x)$, shows that there is $\gamma > 0$ such that

$$u(\mathbf{y}) \underset{\mathbf{y} \to -\infty}{\sim} \gamma |\mathbf{y}|^{\frac{1-\varepsilon - \xi_{\infty}^2}{4\varepsilon}} \mathbf{e}^{-\frac{|\mathbf{y}|}{2\varepsilon^{1/3}}}.$$

Therefore, $\nu(y)$ decays much slower than $\nu_0(y)$ as $y \to -\infty$.

イロン イヨン イヨン ・ ヨン

Step 2: mapping $\nu \rightarrow \chi$

We integrate the second equation of the system

$$(\nu^2 \chi)'(\mathbf{y}) = -\eta \nu^2(\mathbf{y}) \quad \Rightarrow \quad \chi(\mathbf{y}) = -\frac{\eta}{\nu^2(\mathbf{y})} \int_{-\infty}^{\mathbf{y}} \nu^2(\mathbf{s}) d\mathbf{s}.$$

Lemma

Let $\nu \in L^2 \cap C^0(-\infty, \varepsilon^{-2/3})$ satisfy for (ε, η) -independent $C_+ > 1$ and $C_- > 0$:

$$egin{aligned} \mathcal{C}_+^{-1} y &\leq
u^2(y) \leq \mathcal{C}_+(1+y), \quad y \in (0, arepsilon^{-2/3}), \ &rac{1}{
u^2(y)} \int_{-\infty}^y
u^2(s) ds \leq \mathcal{C}_-, \quad y \in (-\infty, 0). \end{aligned}$$

Then, $\chi \in L^{\infty}(-\infty, \varepsilon^{-2/3})$ is well-defined and satisfies

$$egin{aligned} & \mathcal{C}_+^{-1} |\eta| \mathbf{y} \leq |\chi(\mathbf{y})| \leq \mathcal{C}_+ |\eta| (\mathbf{1} + \mathbf{y}), & \mathbf{y} \in (\mathbf{0}, arepsilon^{-2/3}) \ & |\chi(\mathbf{y})| \leq \mathcal{C}_- |\eta|, & \mathbf{y} \in (-\infty, \mathbf{0}). \end{aligned}$$

Two problems in step 2

• We know that the second constraint on ν is satisfied as $y \to -\infty$:

$$\nu(\mathbf{y}) \underset{\mathbf{y} \to -\infty}{\sim} \gamma |\mathbf{y}|^{\frac{1-\varepsilon - \xi_{\infty}^2}{4\varepsilon}} e^{-\frac{|\mathbf{y}|}{2\varepsilon^{1/3}}} \quad \Rightarrow \quad \frac{1}{\nu^2(\mathbf{y})} \int_{-\infty}^{\mathbf{y}} \nu^2(\mathbf{s}) d\mathbf{s} \underset{\mathbf{y} \to -\infty}{\sim} \varepsilon^{1/3}$$

However, it is hard to justify this constraint for all $y \in (-\infty, 0)$.

Lipschitz continuity of the mapping ν → χ is only justified on (y₀, ε^{-2/3}) for an ε-independent y₀ ∈ (-∞, 0).

Lemma

Let
$$\chi_{1,2}$$
 be defined for $\nu_{1,2} \in L^2(-\infty, \varepsilon^{-2/3}) \cap C^0(-\infty, \varepsilon^{-2/3})$ s.t.

$$\|\nu_{1,2}-\nu_0\|_{L^2(-\infty,\varepsilon^{-2/3})}+\|\nu_{1,2}-\nu_0\|_{L^\infty(-\infty,\varepsilon^{-2/3})}\leq \delta.$$

Then,

$$\begin{aligned} \|\chi_{1} - \chi_{2}\|_{L^{\infty}(0,\varepsilon^{-2/3})} &\leq C |\eta| \left(\|\nu_{1} - \nu_{2}\|_{L^{2}(-\infty,\varepsilon^{-2/3})} + \varepsilon^{-1/3} \|\nu_{1} - \nu_{2}\|_{L^{\infty}(0,\varepsilon^{-2/3})} \right), \\ \|\chi_{1} - \chi_{2}\|_{L^{\infty}(y_{0},0)} &\leq C(y_{0}) |\eta| \left(\|\nu_{1} - \nu_{2}\|_{L^{2}(-\infty,\varepsilon^{-2/3})} + \|\nu_{1} - \nu_{2}\|_{L^{\infty}(-\infty,\varepsilon^{-2/3})} \right). \end{aligned}$$

Towards the proof of Conjecture

Step 3: convergence of the alternating iterations

Let us start the alternating iteration scheme with $\nu = \nu_0$ and define

$$\chi_0(y) = -rac{\eta}{
u_0^2(y)} \int_{-\infty}^y
u_0^2(s) ds.$$

Then, we have $\chi_0 \in \mathcal{C}^{\infty}(\mathbb{R})$ such that

$$\chi_0(\mathbf{y}) = -\eta \left\{ \begin{array}{ll} \frac{1}{2}\mathbf{y} + \frac{3}{2}\mathbf{y}^{-2} + \mathcal{O}(\mathbf{y}^{-5}) & \text{as} \quad \mathbf{y} \to +\infty \\ |\mathbf{y}|^{-1/2} + \mathcal{O}(|\mathbf{y}|^{-5/4}) & \text{as} \quad \mathbf{y} \to -\infty \end{array} \right.$$

Figure : Components ν_0 (left) and χ_0 (right) for $\eta = \varepsilon$ and $\varepsilon = 0.0067$.

Numerical iteration scheme

Using the mapping $\chi \to \nu$, we obtain ν_1 from χ_0 . Using the mapping $\nu \to \chi$, we obtain χ_1 from ν_1 . And so on... The iterations are terminated when the distance between two subsequent approximations is smaller than 10^{-15} .

Figure : Component *R* (top left panel), component χ (top right panel), component ν (bottom panels) in comparison with various asymptotic values shown by dashed lines.

Conclusion

Starting with

$$arepsilon^2 u^{\prime\prime}(x) + \left(1 - x^2 - 2ilpha \, arepsilon^{1/2} \, x - |u(x)|^2
ight) u(x) = 0, \quad x \in \mathbb{R}$$

and using

$$u(x) = \varphi(x) e^{\epsilon^{-1} \int_{-\infty}^{x} \xi(x') dx'},$$

we considered the Thomas-Fermi limit for the PT-symmetric ground state:

$$\left\{ egin{array}{ll} (1-x^2-arphi^2(x)-\xi^2(x))\,arphi(x)=-arepsilon^2\,arphi''(x),\ (arphi^2\xi)'(x)=2\eta xarphi^2(x), \end{array}
ight. x\in\mathbb{R}
ight.$$

where $\alpha = \varepsilon^{1/2} \eta$.

We proved existence of the limiting compact state for small η and conjectured on the persistence of the Hastings–McLeod solution for $\eta = O(\varepsilon^q)$ with $q > \frac{5}{6}$.

Numerical results show the persistence for $\eta = \mathcal{O}(\varepsilon^q)$ with $q \ge 0.2$. Rigorous proof is still opened for further studies...

Dmitry Pelinovsky (McMaster University, Canada)