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Introduction

The Gross-Pitaevskii equation with a harmonic confining potential can be
written in the semi-classical form

iEUt:—€2Uxx+X2U—U+|U|2U.

The limit e — 0 for large-density stationary states is referred to as the
Thomas—Fermi limit since L.H. Thomas (1927) and E. Fermi (1928).

Theorem (Ignat & Milot, 2006): For sufficiently small ¢ > 0, there exists a
real-valued, positive-definite global minimizer of the Gross—Pitaevskii energy

1
Es(u):A<52|ux|2+x2|u|2|u|2+2|u|4) dx

in the energy space

X={ueH[R): xuel’R)}.
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Introduction

Ground state in the variational theory

Let 7. be a global minimizer of E.. From Euler-Lagrange equations, it solves
—/(x)+ (M + X2 =1)n:(x) =0, xeR
The formal limit for the ground state is

(x) = (1—x?)"2 for |x] <1,
o) = 0, for |x| > 1,

By variational analysis via sub- and super-solutions, it was found that

0 <n.(x) < CeBexp (155) for |x| > 1,
(1—-Ce'"®)(1 = x®)12 <y (x) < (1 —x3)12 for |x| <18,

where C is e-independent.
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Introduction

Ground state in the asymptotic theory

Let 1 »
— X
ne(x) = '3 ve(y), y= 23

and rewrite the stationary equation for v (y):
41 =By (y) - 2P Ul(y) + yre(y) = v2(y) =0,y € (~o0,e 7).
The formal limit ¢ — 0 gives the Painleve—Il equation

4" (y) +yv(y) - (y) =0, yeR,
that admits a unique Hastings—McLeod (1986) solution v (y) satisfying

w(y) ~y"2 as y - +oo, w(y)~ly| e MR as y - —c.

Boscolo et al. (2002); Konotop & Kevrekidis (2003); Aftalion et al. (2003)
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Rigorous result

Theorem (C. Gallo & D.P., 2011): Let vy be the unique Hastings—McLeod
solution of the Painlevé Il equation. Then, there exists ¢g > 0 and Cy > 0 s.t.
for every ¢ € (0, 9), there is

A. € L(=00,e72%), with ||Afji < Co,  lim R.(y) =0,

such that for every x € R,

1—x2 1—x2
nE(X) = 51/3 Vo (({32/3> +€F1’E (52/3) .
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Rigorous result

Theorem (C. Gallo & D.P., 2011): Let vy be the unique Hastings—McLeod
solution of the Painlevé Il equation. Then, there exists ¢g > 0 and Cy > 0 s.t.
for every ¢ € (0, 9), there is

A. € L(=00,e72%), with ||Afji < Co,  lim R.(y) =0,

such that for every x € R,
1—x2 1—x2
ne(x) =g (Eg/;;> +eR. (52/3 ) :

@ The proof is based on the fixed-point arguments.
@ The method works for radially symmetric states in dimensions 2 and 3.

@ More complicated cases: non-radial potentials (Karali & Sourdis, 2013);
coupled Gross—Pitaevskii equations (Gallo, 2014).
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PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and
PT-symmetric potentials takes the form

pU(X) = (0% + X2 + 2iaW(X) + [UX)[?) U(X), X €R,

where 1 € R is the chemical potential, W is real and odd, and « € R:
iacW(=X) = —iaW(X).
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PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and
PT-symmetric potentials takes the form

pU(X) = (0% + X2 + 2iaW(X) + [UX)[?) U(X), X €R,

where 1 € R is the chemical potential, W is real and odd, and « € R:
iacW(=X) = —iaW(X).

In what follows, we take W(X) = X. The spectrum of
Lo := —0% + X? + 2iaX = —9% + (X + ia)? + a?

is purely discrete and real. The ground state bifurcates from the smallest
eigenvalue po = 1 + o2 and exists for 1 > o (Zezyulin & Konotop, 2012).
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PT-symmetric potentials

The stationary Gross-Pitaevskii equation with a harmonic confining and
PT-symmetric potentials takes the form

pU(X) = (0% + X2 + 2iaW(X) + [UX)[?) U(X), X €R,

where 1 € R is the chemical potential, W is real and odd, and « € R:
iacW(=X) = —iaW(X).

In what follows, we take W(X) = X. The spectrum of
Lo := —0% + X? + 2iaX = —9% + (X + ia)? + a?

is purely discrete and real. The ground state bifurcates from the smallest
eigenvalue po = 1 + o2 and exists for 1 > o (Zezyulin & Konotop, 2012).

The Thomas—Fermi limit corresponds to 1 — oo and rescaling = e~ ',
U(X) =e""2u(x),and x = <'/2 X:

2 (x) + (1 ~ X2 2jacPx - |u(x)\2> u(x) =0, xeR.
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PT-symmetric potentials

Numerical approximations
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Figure : Numerical approximations: D.Zezyulin—V. Konotop, PRA 85 (2012), 043840.
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PT-symmetric potentials

PT-symmetric ground state

We are looking for the ground state with |u(x)| > 0 for all x € R. The ground
state is PT-symmetric if u(—x) = u(x), when we can write

u(x) = p(x)e S S0
and obtain

{ (1= X% = 92(x) = €(x) p(x) = =¥ " (x),
(£2€) (x) = 2nx¢g?(x),

where a = £'/2y). Both ¢ and ¢ are real and even.

X € R,
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PT-symmetric potentials

PT-symmetric ground state

We are looking for the ground state with |u(x)| > 0 for all x € R. The ground
state is PT-symmetric if u(—x) = u(x), when we can write

u(x) = p(x)e S S0
and obtain

{ (1= X% = 92(x) = €(x) p(x) = =¥ " (x),
(£2€) (x) = 2nx¢g?(x),

where a = £'/2y). Both ¢ and ¢ are real and even.

X € R,

Under the condition X_|I>rl1 ©?(x)€(x) = 0, one can uniquely write

2 X
€)= s / _se(s)as,
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Main results

Limiting Thomas—Fermi state

Formal limit e = O corresponds to the compact approximation

(1 X2 — 2(x) - €2(x) = 0,
(0%€)" (x) = 2nx22(x),

subject to the boundary conditions ¢(+1) = £(+1) = 0. Again, we can write

x e [-1,1],

x) = 21 /Xswz(s)ds, x€(=1,1).
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Main results

Limiting Thomas—Fermi state

Formal limit e = O corresponds to the compact approximation

( X2 — 2(x) — €2(x) = 0,
(0%€)" (x) = 2nx22(x),

subject to the boundary conditions ¢(+1) = £(+1) = 0. Again, we can write

x e [-1,1],

x) = 21 /Xswz(s)ds, x€(=1,1).

Theorem (C. Gallo & D.P., 2014): There exists 19 > 0 s.t. for any || < no,
there exists a unique solution ¢z € C>*(—1,1) s.t. pre(x) > 0 for all
x e (—1,1)and

V(X)) =1-=x2+0((1 —x?)?) as |x| = 1.
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Main results

Numerical approximations of the limiting state
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Figure : Components ¢ (left) and ¢ (right) for the numerical solution to the limiting
problem for three different values of 7.
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Main results

Justification of the limiting Thomas—Fermi state

Setting
p(x)=<Puly), () =2x(y), y= 1527/;(2
we obtain for y € (—oo,e72/3),
{ 4 (y) + yuly) —2(y) = 22 (4" (y) + 20/ (V) + X2 (y))
(v*x) (v) = —n2(y),

subject to the decay condition v(y) — 0 as y — —oc.
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Main results

Justification of the limiting Thomas—Fermi state

Setting
s Y 1-—x2
e(x)=e"u(y), &x)=e""x(y), y= Te2/3

we obtain for y € (—o0,72/3),

{ 4" (y) + yv(y) - VAy) =23 (ayv"(y) + 20/ (y) + P )v(Y))
(v3x) (y) = —n2(y),

subject to the decay condition v(y) — 0 as y — —oc.
Recall the unique Hastings—McLeod solution v of the Painleve—Il equation
4" (y) +yv(y) - *(y) =0, yeR,

satisfying

w(y) ~y"2 as y—+oo and wo(y) ~ |yl /4e WP as y - —c.
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Main results

Persistence of the Hastings—McLeod solution

Conjecture (C. Gallo & D.P, 2014): Let v be the Hastings—McLeod solution
of the Painlevé-Il equation. For any q > %, there exist ¢4 > 0, g > 0, and

Cq > 0s.1. forevery € € (0,¢4) and |n| < nq <9, there exists a unique solution
vp, Xp € C®(—00,672/3) s.t. vp(y) > 0 for all y € (—o0,c72/%) and

29-4/3 |log(e)["?, g <1
_ <C,d ¢ Ty
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Main results

Persistence of the Hastings—McLeod solution

Conjecture (C. Gallo & D.P, 2014): Let v be the Hastings—McLeod solution
of the Painlevé-Il equation. For any q > % there exist ¢4 > 0, g > 0, and

Cq > 0s.1. forevery € € (0,¢4) and |n| < nq <9, there exists a unique solution
vp, Xp € C®(—00,672/3) s.t. vp(y) > 0 for all y € (—o0,c72/%) and

29-4/3 |log(e)|'/2, g <1
sup  [rp(y) —wo(y)| < Cq{ §2/3 el 351.7

yE(—o0,e72/3)

@ An alternating fixed-point iteration scheme is proposed but the
convergence of the scheme is only confirmed numerically.

@ Since 7 is e-dependent and small, for every x € (—1,1), we have
2B 3(y) = 1—x% as e—0.

® The main challenge is to control the decay of vp(y) - 0as y — —cc.
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Main results

Numerical approximations of the stationary state
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Figure : Components v (left) and x (right) for the numerical solution to the coupled
system with ¢ = 0.0067 and three different values of 7.
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Proof of Theorem

Proof of Theorem on the limiting Thomas—Fermi state

We are solving

{1—X2—s02(X)—€2(X)_0’ xel-1,1]

(¥3€) (x) = 2nx2(x),

subject to the boundary conditions ¢(+1) = £(+1) = 0.

Let z:= 1 — x% and w(2) := ¢?(x) = z — £2(2). Then, we are solving the
first-order differential equation

(&) =nz-€), zep1]

subject to the boundary condition £(0) = 0. In fact, we have

{(2) = —%nz 1+ %7722 +0(*2%)| .
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Unfolding the singularities

Writing £(2) = —3nz+(¢) and ¢ := 72z, we obtain

dy 41 =) — WP — 3y) »
k. 0 ,
dc 20(1 = 30?) . ¢e€[0,77]

subject to ¢(0) = 1.
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Unfolding the singularities

Writing £(2) = —3nz+(¢) and ¢ := 72z, we obtain

dy 41 =) — WP — 3y) »
— = 0
dc 20(1— 3¢0) . ¢e[0,n7,

subject to ¢(0) = 1.

Let 7 :=log(¢) for ¢ > 0. Then, the first-order equation becomes a planar
autonomous dynamical system

A =) - GvR(1 - By
e S e

where (¢, ) = (0, 1) is an equilibrium point. It is a saddle point with an
unstable manifold of the linearized system along the line ) — 1 = %C.
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Proof of Theorem

The Thomas—Fermi limiting state

By the Unstable Manifold Theorem, there exists a unique trajectory in the right
half-plane (¢, ) such that ¢» — 1 as ¢ — 0. The solution exists locally for
T € (—o00,T9) for some 7y € R or for ¢ € [0, (o) for some n-independent (o > 0.

Unfolding back the previous transformations, the solution exists for
z €0, ¢on~2), which includes [0, 1] if n is sufficiently small. Then,
ore(X) = /1 — x2 — £2(1 — x2) is the Thomas—Fermi limiting state.

Dmitry Pelinovsky (McMaster University, Canada) Thomas—Fermi ground state




Proof of Theorem

The Thomas—Fermi limiting state

By the Unstable Manifold Theorem, there exists a unique trajectory in the right
half-plane (¢, ) such that ¢» — 1 as ¢ — 0. The solution exists locally for
T € (—o00,T9) for some 7y € R or for ¢ € [0, (o) for some n-independent (o > 0.

Unfolding back the previous transformations, the solution exists for
z €0, ¢on~2), which includes [0, 1] if n is sufficiently small. Then,
ore(X) = /1 — x2 — £2(1 — x2) is the Thomas—Fermi limiting state.

Theorem (C. Gallo & D.P,, 2014): There exists 7o > 0 s.t. for any || < 7o,
there exists a unique solution ¢1r € C>*(—1,1) s.t.

ertr(x) >0, xe(-1,1)

and
V(X)) =1=x2+0((1 = x?)?) as |x| = 1.

Remark: The solution breaks at n = 7, when ¢’(x) becomes infinite at x = 0.
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Towards the proof of Conjecture

Towards the proof of Conjecture

We are solving for y € (—oc0,c72/3)
{ W(y) +y(y) - () = 2 (ayv"(y) + 20 () +EY))
(2x)" (¥) = =mA(y),

subject to the decay condition v(y) — 0 as y — —oc.

@ Assume that y € L>°(—o0,2/3) is given with a suitable behavior in ¢ and
7n. Prove that there exists a solution of the first equation for
v € [?(—00,e72/3) N C%(—o0,e~2/3) near the Hastings—McLeod solution.

© Assume that v € L?(—o0,e72/3) N C°%(—o0,e2/3) is given with a suitable
behavior in £ and . Prove that there exists a solution of the second
equation for x € L>(—o0,e7%/3).

© Develop an alternating iterative scheme and show that it converges to a
suitable solution of the coupled system.
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Step 1: mapping xy — v

Let vy be the Hastings—McLeod solution of the Painlevé-Il equation. Let
X € L>®(—o0,c2/3) satisfy for some (e, n)-independent C, > 1 and C_ > 0:

Clnly < Xl < Coll(1 +y), y €(0,e727)
Ix(¥)l < C-Inl, y € (—0,0).
For any q > 2, there existeq > 0, 1nq > 0, and C, > 0 s.t. for every ¢ € (0,¢4)

and |n| < nq 9, there exists a unique solution R € L2 N C°(—oo,e72/3) s.t.
v(y) =wo(y) + R(y) >0 forally € (—oo0,e2/3) and

e24=4/3log(e)|'?, ifq<1,
1Rl o0 (o0 e-273) < Cq{ £2/3 if g>1.

Furthermore, if v1 » correspond to x1 2, then there exists an e-independent
positive constant C such that

1 — vollizare < Ce®3 X2 — XBl|1 vt 2-
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Towards the proof of Conjecture

Decay of the solution v(y) as y — —oc

Recall the growth and decay of the Hastings—McLeod solution vy:

w(y) ~y"2 as y—+oo and wo(y) ~ |y| /4e WP as y - —c.

Because R is bounded, v(y) = vp(y) + R(y) has the same growth at
y = O(e72/3) as ¢ — 0. On the other hand, the WKB theory for

29" (x) + (1 - X2 = €5) p(x) = 0,
with £ := lim o0 €(X), shows that there is v > 0 such that

1—e—£2_ yl

v(y) ~ AlylT = e A,

Therefore, v(y) decays much slower than vy(y) as y — —oo.
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Step 2: mapping v — x

We integrate the second equation of the system

o \/ _ V2 _ n Yy V2
() 1) == = W)= gy [ RS

Lemma

Letv € L2 N CO(—o0,c2/3) satisty for (¢,1)-independent C, > 1 and C_ > 0:
Cily < A(y) < Ci(1+y), ye(0,e7%?),

1 Yo,
W/—ool/ (s)ds < C_, y € (~0,0).

Then, x € L>(—o0,e~2/3) is well-defined and satisfies

CIlnly < IxW)I < Celnl(1 +y), vy €(0,e727)
|X(y)| S C—|77|7 S (_OO,O)‘
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Two problems in step 2

@ We know that the second constraint on v is satisfied as y — —oc:

1—e —€5

7 E 72‘% 1 g 2 s)ds 1/3
V(Y)y_)N_OO7|Y| € 2¢ = 22(y) 7001/() T

However, it is hard to justify this constraint for all y € (—o0, 0).

@ Lipschitz continuity of the mapping v —  is only justified on (o, 2/3)
for an e-independent yy € (—o0, 0).

Lemma

Let x1 2 be defined for vy » € L2(—o00,e72/3) N CO(—00,e72/3) s.t.

1,2 = voll2(—0,e-2/3) + V1,2 — V0| oo (—o0,e-2/8) < 6.
Then,

~1/3

lIx1 — X2||L‘>°(O7a—2/3) < Cln| (HV1 - V2||L2(—oo,a—2/3) +e 1 — V2||L°°(07a—2/3)) )

X1 = X2l o,0) < COO)Il (Il1 = v2lliz(— oo e-2/9) + 11 = V2ll1oo(— o0 c-29))

y
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Towards the proof of Conjecture

Step 3: convergence of the alternating iterations

Let us start the alternating iteration scheme with v = 14 and define

Ui Y 2( )
xo(y :—7/ v5(s)ds.
W)=
Then, we have xo € C*°(R) such that
1 3,2 -5
_ Y +5y “+0(y™) as y— +oo
xo(¥) 77{ ‘y|71/2+0(|y|75/4) as y— —oo

-0.025

>& 005

-0.075

Figure : Components vy (left) and o (right) for n = € and € = 0.0067.
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Towards the proof of Conjecture

Numerical iteration scheme

Using the mapping x — v, we obtain vy from xo. Using the mapping v — ¥,
we obtain x4y from v4. And so on... The iterations are terminated when the
distance between two subsequent approximations is smaller than 1015,

x10°

) /i
0025
0

o2 N = 005

Figure : Component R (top left panel), component x (top right panel), component v
(bottom panels) in comparison with various asymptotic values shown by dashed lines.
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Towards the proof of Conjecture
Conclusion

Starting with
2u'(x) + (1 —x% = 2jae'? x - |u(x)|2) u(x)=0, xeR

and using L o
u(x) = p(x)e’ o 9,

we considered the Thomas—Fermi limit for the PT-symmetric ground state:

{ (1= X% = 92(x) = €2(x) p(x) = =" (x),
(£2€)" (x) = 2nx¢?(x),

where a = /2.

X € R,

We proved existence of the limiting compact state for small  and conjectured
on the persistence of the Hastings—McLeod solution for = O(¢9) with g > 2.

Numerical results show the persistence for n = O(e9) with g > 0.2. Rigorous
proof is still opened for further studies...
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