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Introduction

Introduction

Density waves in cigar–shaped Bose–Einstein condensates with repulsive
inter-atomic interactions and a harmonic potential are modeled by the
Gross-Pitaevskii equation

ivτ = −1
2

vξξ +
1
2

ξ2v + |v |2v − µv ,

where µ is the chemical potential.

Using the scaling transformation,

v(ξ, t) = µ1/2u(x , t), ξ = (2µ)1/2x , τ = 2t ,

the Gross–Pitaevskii equation is transformed to the semi-classical form

i ε ut + ε2 uxx + (1 − x2 − |u|2)u = 0,

where ε = (2µ)−1 is a small parameter.
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Introduction

Ground state

Limit µ → ∞ or ε → 0 is referred to as the semi-classical or Thomas–Fermi
limit. Physically, it is the limit of large density of the atomic cloud.

Let ηε be the positive solution of the stationary problem (ground state)

ε2 η′′
ε (x) + (1 − x2 − η2

ε(x))ηε(x) = 0, x ∈ R.

Theorem (Ignat & Milot, JFA (2006))

For sufficiently small ε > 0, there exists a global minimizer of the
Gross–Pitaevskii energy

Eε(u) =

∫

R

(

1
2

ε2 |ux |2 +
1
2

(x2 − 1)|u|2 +
1
4
|u|4

)

dx

in the energy space

H1 =
{

u ∈ H1(R) : xu ∈ L2(R)
}

.
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Introduction

Ground state in the asymptotic theory

For small ε > 0, the ground state ηε ∈ C∞(R) decays to zero as |x | → ∞
faster than any exponential function and satisfies

η0(x) := lim
ε→0

ηε(x) =

{

(1 − x2)1/2, for |x | < 1,

0, for |x | > 1,

For any compact subset K ⊂ (−1, 1), there is CK > 0 such that

‖ηε − η0‖C1(K ) ≤ CK ε2 .

There is C > 0 such that

‖ηε − η0‖L∞ ≤ C ε1/3, ‖η′
ε‖L∞ ≤ C ε−1/3 .

There is C > 0 such that

C ε1/3 ≤ ηε(x) ≤ 1, |x | ≤ 1, 0 ≤ ηε(x) ≤ C ε1/3 exp
(

1 − x2

4 ε2/3

)

|x | ≥ 1.

Gallo & P., Asymptotic Analysis (2010)
D.Pelinovsky (McMaster University) Ground and excited states 4 / 36



Introduction

Excited states in the asymptotic theory

Let uε be the non-positive solution of the stationary problem (an excited state)

ε2 u′′
ε (x) + (1 − x2 − u2

ε(x))uε(x) = 0, x ∈ R.

The excited states are classified by the number m of zeros of uε(x) on R.

The product representation

u(x , t) = ηε(x)v(x , t)

brings the Gross–Pitaevskii equation to the equivalent form

i ε η2
εvt + ε2 (

η2
εvx

)

x + η4
ε(1 − |v |2)v = 0,

where limx→±∞ |v(x)| = 1.
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Introduction

Stability of the m-th excited state

Zezulin, Alfimov, Konotop, & Perez–Garcia, PRA (2008)
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Introduction

Main objectives

Justify the asymptotic bounds on the ground state ηε

Study variational approximations of the m-th excited state

Justify the variational results using rigorous methods

Study distribution of eigenfrequencies of the ground and excited states

Extend the results to vortices in two and three dimensions.
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Asymptotic results

Asymptotic construction of the ground state

Let

ηε(x) = ε1/3 νε(y), y =
1 − x2

ε2/3

and write an equation on ηε(y):

4(1 − ε2/3 y)ν′′
ε (y) − 2 ε2/3 ν′

ε(y) + yνε(y) − ν3
ε (y) = 0, y ∈ Jε,

where
Jε := (−∞, ε−2/3)

and νε(y) decays to zero as y → −∞ and satisfies the Neumann boundary
condition at ε−2/3:

η′
ε(0) = 0 ⇐⇒ lim

y↑ε−2/3

√

1 − ε2/3 yν′
ε(y) = 0.

D.Pelinovsky (McMaster University) Ground and excited states 8 / 36



Asymptotic results

Asymptotic construction of the ground state

Fix N ≥ 0 and look for solutions in the form

νε(y) =
N

∑

n=0

ε2n/3 νn(y) + ε2(N+1)/3 RN,ε(y), y ∈ Jε,

ν0 solves the Painlevé-II equation

4ν′′
0 (y) + yν0(y) − ν3

0(y) = 0, y ∈ R,

for 1 ≤ n ≤ N, νn solves

M0νn := −4ν′′
n (y) +

(

3ν2
0(y) − y

)

νn(y) = Fn(y), y ∈ R,

RN,ε solves

−4(1−ε2/3 y)R′′
N,ε+2 ε2/3 R′

N,ε+
(

3ν2
0(y) − y

)

RN,ε = FN,ε(y , RN,ε), y ∈ Jε,

Remark: νn(y) does not depend on ε and is defined on R.
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Asymptotic results

Main result

Theorem

Let ν0 be the unique solution of the Painlevé II equation such that

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → −∞.

For n ≥ 1, νn is the unique solution of the linearized Painlevé equation in
C2(R) ∩ L2(R). For every N ≥ 0, there exists εN > 0 and CN > 0 such that for
every 0 < ε < εN , there is

RN,ε ∈ L∞(Jε), with ‖RN,ε‖L∞(Jε) ≤ CN , lim
y→−∞

RN,ε(y) = 0,

such that for every x ∈ R,

ηε(x) = ε1/3
N

∑

n=0

ε2n/3 νn

(

1 − x2

ε2/3

)

+ ε2N/3+1 RN,ε

(

1 − x2

ε2/3

)

.
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Asymptotic results

Step I: Hasting-McLeod solution

The Painlevé-II equation

4ν′′(y) + yν(y) − ν3(y) = 0, y ∈ R,

admits a unique solution ν0 ∈ C∞(R) such that

ν0(y) =
1

2
√

π
(−2y)−1/4e− 2

3 (−2y)3/2
(

1 + O(|y |−3/4)
)

≈
y→−∞

0,

ν0(y) ≈
y→+∞

y1/2
∞
∑

n=0

bn

(2y)3n/2
.

Fokas, Its, Kapaev, Novokshenov, AMS Monographs (2006)
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Asymptotic results

Step II: Linearized Painlevé-II equation

Let us consider the operator M0 on L2(R), defined by

M0 := −4∂2
y + W0(y), W0(y) = 3ν2

0(y) − y .

From the asymptotic behaviors of ν0(y) as y → ±∞, we infer that

W0(y) ∼ 2y as y → +∞ and W0(y) ∼ −y as y → −∞.

Moreover, we prove that
inf

y∈R

W0(y) > 0

and W0(y) has the only extremum at the global minimum near y = 0.

For any n ∈ {1, 2, ..., N}, corrections νn ∈ C2(R) ∩ L2(R) are found from the
inhomogeneous equations M0νn = fn such that

νn(y) ≈
y→+∞

y−5/2−2n
∞
∑

m=0

gn,my−3m/2, νn(y) ≈
y→−∞

0.
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Asymptotic results

Step III: Remainder term

The remainder term satisfies

T εRN,ε(y) =
FN,ε(y , RN,ε)
√

1 − ε2/3 y
, y ∈ Jε,

where

T ε = −4∂y

√

1 − ε2/3 y∂y +
W0(y)

√

1 − ε2/3 y
and FN,ε(y , R) = FN,0(y) + GN,ε(y , R) with

‖FN,0‖L2
ε

. 1, ‖GN,ε‖H1
ε

. ε2/3 + ε(2N+1)/3 ‖R‖2
H1

ε
+ ε4(N+1)/3 ‖R‖3

H1
ε
.

Here the norm in H1
ε is defined by

‖u‖2
H1

ε
:=

∫ ε−2/3

−∞

[

W0(y)u(y)2

√

1 − ε2/3 y
+ 4

√

1 − ε2/3 y(u′(y))2

]

dy

and we show that H1
ε is a Banach algebra with Sobolev’s embedding

‖u‖L∞(Jε) ≤ C‖u‖H1
ε
,

where C is ε-independent.
D.Pelinovsky (McMaster University) Ground and excited states 13 / 36



Asymptotic results

Grand finale

The map

Ψε : f 7→ φ := (T ε)−1 f
√

1 − ε2/3 y

is continuous from L2
ε into H1

ε and the norm of Ψε is uniformly bounded in
ε.

By the Fixed Point Theorem, there exists a unique fixed point RN,ε ∈ H1
ε

such that
‖RN,ε − R0

N,ε‖H1
ε

. ε2/3 + ε(2N+1)/3 .

We prove that νε(y) > 0 for all y ∈ Jε so that it is the ground state ηε by
uniqueness of the positive solution ηε.
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Eigenvalues of linearized operators

Linearized operators

Associated with the stationary equation

ε2 η′′
ε (x) + (1 − x2 − η2

ε(x))ηε(x) = 0, x ∈ R.

is the linearized operator

Lε = − ε2 ∂2
x + Vε(x), Vε(x) = 3η2

ε(x) − 1 + x2,

where

lim
ε→0

Vε(x) =

{

2(1 − x2), |x | ≤ 1,

x2 − 1, |x | ≥ 1.

−2 −1 0 1 2
0

20

40

60

80

x

qε
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Eigenvalues of linearized operators

Convergence of eigenvalues

Theorem

For ε > 0 sufficiently small, the spectrum of Lε consists of an increasing
sequence of positive eigenvalues {λε

n}n≥1 such that for each n ≥ 1,

lim
ε↓0

λε
2n−1

ε2/3
= lim

ε↓0

λε
2n

ε2/3
= µn,

where {µn}n≥1 are eigenvalues of the linearized Painlevé operator

M0u(y) := −4u′′(y) + W0(y)u(y).
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Variational results

Variational construction of excited states

The equivalent Gross–Pitaevskii equation

i ε η2
εvt + ε2 (

η2
εvx

)

x + η4
ε(1 − |v |2)v = 0,

is the Euler–Lagrange equation for the Lagrangian L(v) = K (v) + Λ(v) with
the kinetic energy

K (v) =
i
2

ε

∫

R

η2
ε(x)(v v̄t − v̄vt)dx

and the potential energy

Λ(v) = ε2
∫

R

η2
ε(x)|vx |2dx +

1
2

∫

R

η4
ε(x)(1 − |v |2)2dx .

If ηε ≡ 1, the Gross–Pitaevskii equation has the exact dark soliton

v1(x , t) =
√

1 − b2(t) tanh
(

ε−1 B(t)(x − a(t))
)

+ ib(t),

where

B =
1√
2

√

1 − b2, a = a0 +
√

2b0t , b = b0.
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Variational results

Variational approximation of 1-soliton

For ηε 6= 1, we substitute the dark soliton solution and compute the averaged
Lagrangian

L(v1) =
ε ḃ√

1 − b2

∫

R

η2
ε(x) tanh(z)dx + b

√

1 − b2Bȧ
∫

R

η2
ε(x)sech2(z)dx

− ε b
√

1 − b2ḂB−1
∫

R

η2
ε(x)zsech2(z)dx + (1 − b2)B2

∫

R

η2
ε(x)sech4(z)dx

+
1
2

(1 − b2)2
∫

R

η4
ε(x)sech4(z)dx ,

where z = ε−1 B(x − a), B > 0, and a ∈ (−1, 1).

Asymptotic analysis gives

L1 := lim
ε→0

L(v1)

2 ε
= − ḃ√

1 − b2
(a − 1

3
a3) + b

√

1 − b2(1 − a2)ȧ

+
2
3

(1 − a2)(1 − b2)B +
1

3B
(1 − a2)2(1 − b2)2.
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Variational results

Main variational result for 1-soliton

Since Ḃ is absent in L1 := L1(a, b, B), variation of L1 with respect to B gives

B =
1√
2

√

1 − a2
√

1 − b2.

Eliminating B from L1(a, b, B), the effective Lagrangian becomes

L1(a, b) =
2
√

2
3

(1 − a2)3/2(1 − b2)3/2 − 2
√

1 − b2ḃ(a − 1
3

a3).

The Euler–Lagrange equations are now

ȧ =
√

2
√

1 − a2b, ḃ = −
√

2a(1 − b2)√
1 − a2

,

which is equivalent to the linear oscillator equation

ä + 2a = 0.
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Variational results

Eigenfrequencies of 1-soliton

Recall the transformation µ = 1
2 ε and Im(λ) = ω

2 .

−10 −5 0 5 10 15
0

1

2

3

4

5

µ

λ i

P. & Kevrekidis, Cont.Math. (2008)
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Rigorous results

Lyapunov–Schmidt decomposition

The first excited state is an odd stationary solution such that

uε(0) = 0, uε(x) > 0 for all x > 0, and lim
x→∞

uε(x) = 0.

Theorem

For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with
properties above and there is C > 0 such that

∥

∥

∥

∥

uε − ηε tanh
( ·√

2 ε

)∥

∥

∥

∥

L∞

≤ C ε2/3 .

In particular, the solution converges pointwise as ε → 0 to

u0(x) := lim
ε→0

uε(x) = η0(x)sign(x), x ∈ R.
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Rigorous results

Steps of the proof

Step 1: Decomposition.
We substitute

uε(x) = ηε(x) tanh
(

x√
2 ε

)

+ wε(x)

and obtain
Lεwε = Hε + Nε(wε),

where

Lε := − ε2 ∂2
x + x2 − 1 + 3η2

ε(x) tanh2
(

x√
2 ε

)

,

Hε(x) := ηε(x)
(

η2
ε(x) − 1

)

sech2
(

x√
2 ε

)

tanh
(

x√
2 ε

)

+
√

2 ε η′
ε(x)sech2

(

x√
2 ε

)

and

Nε(wε)(x) = −3ηε(x) tanh
(

x√
2 ε

)

w2
ε (x) − w3

ε (x).
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Rigorous results

Steps of the proof

Step 2: Linear estimates.
Using variable x =

√
2 ε z, we obtain

L̂ε = −1
2

∂2
z + 2 ε2 z2 − 1 + 3η̂2

ε(z) tanh2(z) = L̂0 + Ûε(z),

where

L̂0 := −1
2

∂2
z + 2 − 3sech2(z)

and
Ûε(z) := 2 ε2 z2 + 3(η̂2

ε(z) − 1) tanh2(z).

The spectrum of L̂0 consists of two eigenvalues at 0 and 3
2 with eigenfunctions

sech2(z) and tanh(z)sech(z) and the continuous spectrum on [2,∞).
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Rigorous results

Steps of the proof

−2 −1 0 1 2
−1

0

1

2

3

x

Figure: Potentials of operators Lε (solid line) and L0 (dots) for the first excited state.

Resolvent of the unperturbed operator:

∃C > 0, α > 0 : ∀f̂ ∈ L2
odd(R) ∩ L∞

α (R) : ‖L̂−1
0 f̂‖H2∩L∞

α
≤ C‖f̂‖L2∩L∞

α
.

Resolvent of the full operator:

∃C > 0 : ∀f̂ ∈ L2
odd(R) : ‖L̂−1

ε f̂‖H2 ≤ C ε−2/3 ‖f̂‖L2 .
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Rigorous results

Steps of the proof

Step 3: Bounds on the inhomogeneous and nonlinear terms.
Recall that we are solving

Lεwε = Hε + Nε(wε),

where
Ĥε ∈ L2

odd(R) and N̂ε(ŵε) : H2
odd(R) 7→ L2

odd(R).

For any ε > 0 and α ∈ (0, 2), we have

‖Ĥε‖L2∩L∞
α

≤ ‖ηε‖L∞‖(1 − η̂2
ε)sech2(·)‖L2∩L∞

α
+
√

2 ε ‖η′
ε‖L∞‖sech2(·)‖L2∩L∞

α

≤ C ε2/3 .

For any ŵε ∈ H2(R), we have

‖N̂ε(ŵε)‖L2 ≤ 3‖ηε‖L∞‖ŵ2
ε ‖H2 + ‖ŵ3

ε ‖H2 ≤ 3‖ŵε‖2
H2 + ‖ŵε‖3

H2 .
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Rigorous results

Steps of the proof

Step 4: Normal-form transformation.
Let

ŵε = ŵ1 + ŵ2 + ϕ̂ε, ŵ1 = L̂−1
0 Ĥε, ŵ2 = −3L̂−1

0 η̂ε tanh(z)ŵ2
1 ,

where
∃C > 0 : ‖ŵ1‖H2∩L∞

α
≤ C ε2/3, ‖ŵ2‖H2∩L∞

α
≤ C ε4/3 .

The remainder term ϕ̂ε solves the new problem

Lεϕ̂ε = Hε + Nε(ϕ̂ε),

where
‖Hε‖L2 ≤ C ε2,

∀ϕ̂ε ∈ Bδ(H2
odd) : ‖Nε(ϕ̂ε)‖L2 ≤ C(δ)‖ϕ̂ε‖2

H2 ,

and

∀ϕ̂ε, φ̂ε ∈ Bδ(H2
odd) : ‖Nε(ϕ̂ε)−Nε(φ̂ε)‖L2 ≤ C(δ)

(

‖ϕ̂ε‖H2 + ‖φ̂ε‖H2

)

‖ϕ̂ε−φ̂‖H2 .
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Rigorous results

Steps of the proof

Step 5: Fixed-point arguments.
Since

∃C > 0 : ∀f̂ ∈ L2
odd(R) : ‖L−1

ε f̂‖H2 ≤ C ε−2/3 ‖f̂‖L2 ,

the map ϕ̂ε 7→ L−1
ε Nε(ϕ̂ε) is a contraction in the ball Bδ(H2

odd) if δ ≪ ε2/3.

On the other hand, the source term L−1
ε Hε is as small as O(ε4/3). Therefore,

Banach’s Fixed-Point Theorem applies in the ball Bδ(H2
odd) with δ ∼ ε4/3.

Step 6: Properties of uε(x). It remains to prove that uε(x) > 0 for all x > 0.
This property does not come immediately from the fixed-point solution

uε(x) = ηε(x) tanh
(

x√
2 ε

)

+ wε(x),

where ‖wε‖L∞ ≤ C ε2/3.
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Results on the second excited state

Variational approximation of 2-solitons

A superposition of two dark solitons

v2(x , t) =
[

A1(t) tanh
(

ε−1 B1(t)(x − a1(t))
)

+ ib1(t)
]

×
[

A2(t) tanh
(

ε−1 B2(t)(x − a2(t))
)

+ ib2(t)
]

, (1)

where aj ∈ (−1, 1), bj ∈ (−1, 1), and

Aj =
√

1 − b2
j , Bj =

1√
2

√

1 − a2
j

√

1 − b2
j , j = 1, 2.

Out-of-phase oscillations for

a1 = −a, a2 = a, b1 = −b, b2 = b,

where
a ≤ C1 ε1/6, e−4Ba ε−1 ≤ C2 ε2 | log(ε)|,

The first condition ensures that the dark solitons are close to the center of the
harmonic potential. The second condition ensures that the overlapping
between the dark solitons is small.
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Results on the second excited state

Averaged Lagrangian for 2-solitons

Potential energy

Λ2 :=
Λ(v2)

2 ε
= Λ+ + Λ− + Λoverlap,

where

lim
ε→0

(Λ+ + Λ−) =
2
√

2
3

(1 − a2)3/2(1 − b2)3/2.

and

Λoverlap = −8
√

2(1 − a2)3/2(1 − b2)5/2 e−4Ba ε−1
(

1 + O(ε1/3)
)

.

Kinetic energy

K2 :=
K (v2)

2 ε
= K+ + K− + Koverlap,

where

lim
ε→0

(K+ + K−) = −4
√

1 − b2ḃ(a − 1
3

a3).
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Results on the second excited state

Main variational results for 2-solitons

In variables (a, b), the Euler–Lagrange equations at the leading order give

ȧ =
√

2b, ḃ = −
√

2a + 8 ε−1 e−2
√

2a ε−1

,

or, equivalently,

ä + 2a = 8
√

2 ε−1 e− 2
√

2a
ε .

The equilibrium state a0(ε) is given asymptotically by

a =
ε√
2

(

− log(ε) − 1
2

log | log(ε)| + 3
2

log(2) + o(1)

)

as ε → 0.

The linear out-of-phase oscillations near the stationary state have squared
frequency

ω2
0(ε) = −4 log(ε) − 2 log | log(ε)| + 2 + 6 log(2) + o(1), as ε → 0.
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Results on the second excited state

Eigenfrequencies of 2-solitons
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Results on the second excited state

Rigorous results

The second excited state is an odd stationary solution such that

uε(x) > 0 for all |x | > x0, uε(x) < 0 for all |x | < x0, and lim
x→∞

uε(x) = 0.

Theorem

For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with
properties above and there exist a > 0 and C > 0 such that

∥

∥

∥

∥

uε − ηε tanh
( · − a√

2 ε

)

tanh
( · + a√

2 ε

)
∥

∥

∥

∥

L∞

≤ C ε2/3

and

a = − ε√
2

(

log(ε) +
1
2

log | log(ε)| − 3
2

log(2) + o(1)

)

as ε → 0.

In particular, x0 = a + O(ε5/3).
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Results on the second excited state

Steps of the proof
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Figure: Potential of operator Lε (solid line) and L0 (dots) for the second excited state.

Here the leading-order operator

L̂0(ζ) = −1
2
∂2

z + 2 − 3sech2(z + ζ) − 3sech2(z − ζ), ζ =
a√
2 ε

,

has two eigenvalues in the neighborhood of 0 for large ζ because of the
double-well potential centered at z = ±ζ.
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Results on higher excited state

Main variational results for m-solitons

We can set up the leading-order averaged Lagrangian for m dark solitons:

Lm ∼ −
√

2
m

∑

j=1

(

a2
j + b2

j

)

− 2
m

∑

j=1

aj ḃj − 8
√

2
m−1
∑

j=1

e−
√

2(aj+1−aj ) ε−1

,

which generate the Euler–Lagrangian equations

äj + 2aj + 8
√

2 ε−1
(

e−
√

2(aj+1−aj ) ε−1 − e−
√

2(aj−aj−1) ε−1
)

= 0.

The center of mass 〈a〉 = 1
m

∑m
j=1 aj satisfies

¨〈a〉 + 2〈a〉 = 0,

The normal coordinates

xj =
√

2(aj+1 − aj) ε−1, j ∈ {1, 2, ..., m − 1},
satisfy

ẍj + 2xj + 16 ε−2 (

e−xj+1 − 2e−xj + e−xj−1
)

= 0, j ∈ {1, 2, ..., m − 1}.
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Results on higher excited state

Eigenfrequencies of 3-solitons
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Results on higher excited state

Summary of our results

We justified asymptotic representations of the ground and excited states

We predicted asymptotic dependence of the distance between dark
solitons for m-excited states.

We predicted asymptotic dependence of the eigenfrequencies of
oscillations for m-excited states related to the dynamics of dark solitons
with respect to each other and to the harmonic potential.

We illustrated both asymptotic predictions numerically.

Analysis of vortices, dipoles, and other vortex configurations in the space
of two dimensions is currently in progress.
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