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Introduction

Introduction

Density waves in cigar–shaped Bose–Einstein condensates are modeled by
the Gross-Pitaevskii equation

iut + ε2 uxx + (1 − x2)u − |u|2u = 0,

where ε is a small parameter.

Limit ε → 0 is referred to as the semi-classical limit or the Thomas–Fermi
approximation since the work of L.H. Thomas (1927) and E. Fermi (1928).

Theorem (Ignat & Milot, 2006): For sufficiently small ε > 0, there exists a
real-valued, positive-definite global minimizer of the Gross–Pitaevskii energy

Eε(u) =

∫

R

(

1
2

ε2 |ux |2 +
1
2

(x2 − 1)|u|2 +
1
4
|u|4

)

dx

in the energy space

H1 =
{

u ∈ H1(R) : xu ∈ L2(R)
}

.
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Introduction

Ground state in the variational theory

Let ηε be a global minimizer of Eε. From Euler–Lagrange equations, it solves

− ε2 η′′
ε (x) +

(

η2
ε + x2 − 1

)

ηε(x) = 0, ∀x ∈ R.

The formal limit for the ground state is

η0(x) =

{

(1 − x2)1/2, for |x | < 1,

0, for |x | > 1,

By variational analysis via sub- and super-solutions, it is true that
{

0 ≤ ηε(x) ≤ C ε1/3 exp
(

1−x2

4 ε2/3

)

for |x | ≥ 1,

0 ≤ (1 − x2)1/2 − ηε(x) ≤ C ε1/3(1 − x2)1/2 for |x | ≤ 1 − ε1/3,

where C is ε-independent.
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Introduction

Ground state in the asymptotic theory

Asymptotic solution is constructed on the three scales:

|x | ≤ 1 − ε2/3, |x | ∈ (1 − ε2/3, 1 + ε2/3), and |x | ≥ 1 + ε2/3 .

with the WKB solutions, Painleve solutions, and Airy function solutions.

Let

ηε(x) = ε1/3 νε(y), y =
1 − x2

ε2/3

and write an equation on ηε(y):

4(1 − ε2/3 y)ν′′
ε (y)− 2 ε2/3 ν′

ε(y) + yνε(y)− ν3
ε (y) = 0, y ∈ (−∞, ε−2/3).

The formal limit ε → 0 gives the Painleve–II equation

4ν′′(y) + yν(y) − ν3(y) = 0, y ∈ R,

that admits a unique Hasting–McLeod (1986) solution ν0(y) satisfying

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → −∞.

Boscolo, et al. (2002); Konotop & Kevrekidis (2003); Zezyulin et al. (2008)
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Introduction

Spectral stability

Linearization of the Gross–Pitaevskii equation with

u(x , t) = ηε(x) + [u(x) + iw(x)] eλt + [ū(x) − iw̄(x)] eλ̄t + O(‖u‖2 + ‖w‖2)

results in the non-self-adjoint eigenvalue problem
{

− ε2 u′′ + (x2 − 1 + 3η2
ε)u = −λw ,

− ε2 w ′′ + (x2 − 1 + η2
ε)w = λu,

or, equivalently, in the generalized eigenvalue problem

(

− ε2 ∂2
x + x2 − 1 + η2

ε

)

w = γ
(

− ε2 ∂2
x + x2 − 1 + 3η2

ε

)−1
w ,

where γ = −λ2.
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Introduction

Eigenvalues in the formal Thomas–Fermi limit

Restrict the generalized eigenvalue problem on (−1, 1) and drop
ε-dependent terms in the right hand side:

(

− ε2 ∂2
x + x2 − 1 + η2

ε

)

w =
γw

2(1 − x2)
, x ∈ (−1, 1).

Let γ = 2 ε2 Γ and use the definition of ηε in the left hand side:

−w ′′(x) +
η′′

ε (x)w(x)

ηε(x)
=

Γw(x)

(1 − x2)
, x ∈ (−1, 1).

Substitution of w(x) = v(x)ηε(x) and taking the limit ε → 0 result in the
Legendre equation

−(1 − x2)v ′′(x) + 2xv ′(x) = Γv(x), x ∈ (−1, 1),

with eigenvalues at Γ = n(n + 1), n ∈ N.

Stringari (1996); Fliesser et al. (1997); Eberlein et al. (2005)
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Introduction

Main objectives and results

Obtain the uniform asymptotic approximation of the ground state ηε in
terms of solutions of the Painleve–II equation

Study distribution of eigenvalues of the spectral stability for small ε > 0

Extend the results to excited states with zeros on R that includes
“one-dimensional vortices” (dark solitons).

Gallo & P., J. Math. Anal. Appl. 355, 495 (2009)
Gallo & P., preprint (2009).
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Introduction

Possible application: oscillations of 1-dim vortices
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P. & Kevrekidis, Cont.Math. 473, 159 (2008)
P. & Kevrekidis, ZAMP 59, 559 (2008)
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Introduction

Possible application: stability of m-node vortices

Zezulin, Alfimov, Konotop, & Perez–Garcia, PRA (2008)
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Uniform asymptotic expansions

Asymptotic construction of the ground state

Let

ηε(x) = ε1/3 νε(y), y =
1 − x2

ε2/3

and write an equation on ηε(y):

4(1 − ε2/3 y)ν′′
ε (y) − 2 ε2/3 ν′

ε(y) + yνε(y) − ν3
ε (y) = 0, y ∈ Jε,

where
Jε := (−∞, ε−2/3)

and νε(y) decays to zero as y → −∞ and satisfies the Neumann boundary
condition at ε−2/3:

η′
ε(0) = 0 ⇐⇒ lim

y↑ε−2/3

√

1 − ε2/3 yν′
ε(y) = 0.
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Uniform asymptotic expansions

Asymptotic construction of the ground state

Fix N ≥ 0 and look for solutions in the form

νε(y) =

N
∑

n=0

ε2n/3 νn(y) + ε2(N+1)/3 RN,ε(y), y ∈ Jε,

where
ν0 solves the Painlevé-II equation

4ν′′
0 (y) + yν0(y) − ν3

0(y) = 0, y ∈ R,

for 1 ≤ n ≤ N, νn solves

M0νn := −4ν′′
n (y) +

(

3ν2
0(y) − y

)

νn(y) = Fn(y), y ∈ R,

RN,ε solves

−4(1−ε2/3 y)R′′
N,ε+2 ε2/3 R′

N,ε+
(

3ν2
0(y) − y

)

RN,ε = FN,ε(y , RN,ε), y ∈ Jε,

Note: νn(y) does not depend on ε and is defined on R, whereas the
remainder term RN,ε is only defined on Jε.
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Uniform asymptotic expansions

Main result

Theorem

Let ν0 be the unique solution of the Painlevé II equation such that

ν0(y) ∼ y1/2 as y → +∞ and ν0(y) → 0 as y → −∞.

For n ≥ 1, νn is the unique solution of the linearized Painlevé equation in
C2(R) ∩ L2(R). For every N ≥ 0, there exists εN > 0 and CN > 0 such that for
every 0 < ε < εN , there is

RN,ε ∈ L∞(Jε), with ‖RN,ε‖L∞(Jε) ≤ CN , lim
y→−∞

RN,ε(y) = 0,

such that for every x ∈ R,

ηε(x) = ε1/3
N

∑

n=0

ε2n/3 νn

(

1 − x2

ε2/3

)

+ ε2N/3+1 RN,ε

(

1 − x2

ε2/3

)

.
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Uniform asymptotic expansions

Step I: Hasting-McLeod solution

Ref: Fokas, Its, Kapaev, Novokshenov, AMS Monographs (2006)

The Painlevé-II equation

4ν′′(y) + yν(y) − ν3(y) = 0, y ∈ R,

admits a unique solution ν0 ∈ C∞(R) such that

ν0(y) =
1

2
√

π
(−2y)−1/4e− 2

3 (−2y)3/2
(

1 + O(|y |−3/4)
)

≈
y→−∞

0,

ν0(y) ≈
y→+∞

y1/2
∞
∑

n=0

bn

(2y)3n/2
.
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Uniform asymptotic expansions

Step II: Linearized Painlevé-II equation

Let us consider the operator M0 on L2(R), defined by

M0 := −4∂2
y + W0(y), W0(y) = 3ν2

0(y) − y .

From the asymptotic behaviors of ν0(y) as y → ±∞, we infer that

W0(y) ∼ 2y as y → +∞ and W0(y) ∼ −y as y → −∞.

Moreover, we prove that
inf

y∈R

W0(y) > 0

and W0(y) has the only extremum at the global minimum near y = 0.

For any n ∈ {1, 2, ..., N}, corrections νn ∈ C2(R) ∩ L2(R) are found from the
inhomogeneous equations M0νn = fn such that

νn(y) ≈
y→+∞

y−5/2−2n
∞
∑

m=0

gn,my−3m/2, νn(y) ≈
y→−∞

0.
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Uniform asymptotic expansions

Step III: Remainder term

The remainder term satisfies

T εRN,ε(y) =
FN,ε(y , RN,ε)
√

1 − ε2/3 y
, y ∈ Jε,

where

T ε = −4∂y

√

1 − ε2/3 y∂y +
W0(y)

√

1 − ε2/3 y
and FN,ε(y , R) = FN,0(y) + GN,ε(y , R) with

‖FN,0‖L2
ε

. 1, ‖GN,ε‖H1
ε

. ε2/3 + ε(2N+1)/3 ‖R‖2
H1

ε
+ ε4(N+1)/3 ‖R‖3

H1
ε
.

Here the norm in H1
ε is defined by

‖u‖2
H1

ε
:=

∫ ε−2/3

−∞

[

W0(y)u(y)2

√

1 − ε2/3 y
+ 4

√

1 − ε2/3 y(u′(y))2

]

dy

and we show that H1
ε is a Banach algebra with Sobolev’s embedding

‖u‖L∞(Jε) ≤ C‖u‖H1
ε
,

where C is ε-independent.
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Uniform asymptotic expansions

Grand finale

The map

Ψε : f 7→ φ := (T ε)−1 f
√

1 − ε2/3 y

is continuous from L2
ε into H1

ε and the norm of Ψε is uniformly bounded in
ε.

By the Fixed Point Theorem, there exists a unique fixed point RN,ε ∈ H1
ε

such that
‖RN,ε − R0

N,ε‖H1
ε

. ε2/3 + ε(2N+1)/3 .

We prove that νε(y) > 0 for all y ∈ Jε so that it is the ground state ηε by
uniqueness of the positive solution ηε.
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Eigenvalues of linearized operators

Operators of the linearized problem

The spectral problem is given by

Lε
+u = −λw , Lε

−w = λu,

where
Lε

+ = − ε2 ∂2
x + Vε(x), Vε(x) = 3η2

ε(x) − 1 + x2,

and

Lε
− = − ε2 ∂2

x + Ṽε(x), Ṽε(x) = η2
ε(x) − 1 + x2 =

ε2 η′′
ε (x)

ηε(x)
.
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0
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Eigenvalues of linearized operators

Semi-classical limit for eigenvalues of Lε
+

Consider the eigenvalue problem
(

−∂2
x + ε−2Vε(x)

)

un(x) = ε−2λnun(x), x ∈ R,

where

Vε(x) ∈ C∞(R) for any small ε > 0,

lim
ε→0

Vε(x) = V0(x) ∈ C(R) given by

V0(x) =

{

2(1 − x2), |x | ≤ 1,

x2 − 1, |x | ≥ 1,

Vε(x) takes its absolute minimum near x = ±1, and

Vε(x) → +∞ as |x | → ∞.

By the Bohr–Sommerfeld rule,

1
π

∫ xε
+

xε
−

√

λ − Vε(x)dx ∼ ε

(

n − 1
2

)

, as ε → 0, n ≥ 1,
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Eigenvalues of linearized operators

Reduction to the linearized Painlevé equation

Changing variables

y =
1 − x2

ε2/3
, λ = ε2/3 µ, V ε

+ = ε2/3 Wε(y),

where Wε(y) = 3ν2
ε (y) − y , we obtain

∫ yε
+

yε
−

√

µ − Wε(y)
√

1 − ε2/3 y
dy ∼ 2π

(

n − 1
2

)

, as ε → 0, n ≥ 1.

Claim: The quantization formula above does not give a correct limit ε → 0 at
least for small n ≥ 1. Instead, the eigenvalues {µε

n}n≥1 converge to
eigenvalues of the linearized Painlevé operator

M0u(y) := −4u′′(y) + W0(y)u(y) = µu(y).
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Eigenvalues of linearized operators

Convergence of eigenvalues

Theorem

For ε > 0 sufficiently small, the spectrum of Lε
+ consists of an increasing

sequence of positive eigenvalues {λε
n}n≥1 such that for each n ≥ 1,

lim
ε↓0

λε
2n−1

ε2/3
= lim

ε↓0

λε
2n

ε2/3
= µn. (1)

Further news: The same results can be extended in the space of d
dimensions for radially symmetric parabolic traps:

iut + ε2 ∆u + (1 − |x|2)u − |u|2u = 0, x ∈ R
d ,

for any d ≥ 1.
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