Thomas–Fermi ground state in a parabolic trap

Clément Gallo and Dmitry Pelinovsky

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

AMS Sectional Meeting, Worcester MA, April 25, 2009

Introduction

Density waves in cigar–shaped Bose–Einstein condensates are modeled by the Gross-Pitaevskii equation

$$iu_t + \varepsilon^2 u_{xx} + (1 - x^2)u - |u|^2 u = 0,$$

where ε is a small parameter.

Limit $\varepsilon \rightarrow 0$ is referred to as the semi-classical limit or the Thomas–Fermi approximation since the work of L.H. Thomas (1927) and E. Fermi (1928).

Theorem(Ignat & Milot, 2006): For sufficiently small $\varepsilon > 0$, there exists a real-valued, positive-definite global minimizer of the Gross–Pitaevskii energy

$$E_{\varepsilon}(u) = \int_{\mathbb{R}} \left(\frac{1}{2} \, \varepsilon^2 \, |u_x|^2 + \frac{1}{2} (x^2 - 1) |u|^2 + \frac{1}{4} |u|^4 \right) \, dx$$

in the energy space

$$\mathcal{H}_1 = \left\{ u \in H^1(\mathbb{R}) : xu \in L^2(\mathbb{R}) \right\}.$$

Ground state in the variational theory

Let η_{ε} be a global minimizer of E_{ε} . From Euler–Lagrange equations, it solves

$$- \varepsilon^2 \, \eta_{\varepsilon}''({m x}) + \left(\eta_{\varepsilon}^2 + {m x}^2 - {m 1}
ight) \eta_{\varepsilon}({m x}) = {m 0}, \quad \forall {m x} \in {\mathbb R}.$$

The formal limit for the ground state is

$$\eta_0(\mathbf{x}) = \left\{ egin{array}{ccc} (1-\mathbf{x}^2)^{1/2}, & \mbox{ for } |\mathbf{x}| < 1, \ 0, & \mbox{ for } |\mathbf{x}| > 1, \end{array}
ight.$$

By variational analysis via sub- and super-solutions, it is true that

$$\begin{cases} 0 \leq \eta_{\varepsilon}(\boldsymbol{x}) \leq C \, \varepsilon^{1/3} \exp\left(\frac{1-\boldsymbol{x}^2}{4 \, \varepsilon^{2/3}}\right) & \text{for } |\boldsymbol{x}| \geq 1, \\ 0 \leq (1-\boldsymbol{x}^2)^{1/2} - \eta_{\varepsilon}(\boldsymbol{x}) \leq C \, \varepsilon^{1/3} (1-\boldsymbol{x}^2)^{1/2} & \text{for } |\boldsymbol{x}| \leq 1 - \varepsilon^{1/3}, \end{cases}$$

where *C* is ε -independent.

Ground state in the asymptotic theory

• Asymptotic solution is constructed on the three scales:

 $|\boldsymbol{x}| \leq 1 - \varepsilon^{2/3}, \quad |\boldsymbol{x}| \in (1 - \varepsilon^{2/3}, 1 + \varepsilon^{2/3}), \quad \text{and} \quad |\boldsymbol{x}| \geq 1 + \varepsilon^{2/3} \,.$

with the WKB solutions, Painleve solutions, and Airy function solutions.

Let

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \nu_{\varepsilon}(\mathbf{y}), \quad \mathbf{y} = \frac{1 - \mathbf{x}^2}{\varepsilon^{2/3}}$$

and write an equation on $\eta_{\varepsilon}(\mathbf{y})$:

 $4(1-\varepsilon^{2/3} y)\nu_{\varepsilon}''(y)-2\,\varepsilon^{2/3}\,\nu_{\varepsilon}'(y)+y\nu_{\varepsilon}(y)-\nu_{\varepsilon}^{3}(y)=0,\quad y\in(-\infty,\varepsilon^{-2/3}).$

● The formal limit ε → 0 gives the Painleve–II equation

$$4
u''(\mathbf{y}) + \mathbf{y}
u(\mathbf{y}) -
u^3(\mathbf{y}) = \mathbf{0}, \quad \mathbf{y} \in \mathbb{R},$$

that admits a unique Hasting–McLeod (1986) solution $\nu_0(y)$ satisfying

$$\nu_0(y)\sim y^{1/2} \quad \text{as} \quad y\to +\infty \quad \text{and} \quad \nu_0(y)\to 0 \quad \text{as} \quad y\to -\infty.$$

Boscolo, et al. (2002); Konotop & Kevrekidis (2003); Zezyulin et al. (2008)

Linearization of the Gross-Pitaevskii equation with

$$u(\mathbf{x},t) = \eta_{\varepsilon}(\mathbf{x}) + [u(\mathbf{x}) + iw(\mathbf{x})] \mathbf{e}^{\lambda t} + [\bar{u}(\mathbf{x}) - i\bar{w}(\mathbf{x})] \mathbf{e}^{\bar{\lambda}t} + \mathcal{O}(||u||^2 + ||w||^2)$$

results in the non-self-adjoint eigenvalue problem

$$\begin{cases} -\varepsilon^2 u'' + (x^2 - 1 + 3\eta_{\varepsilon}^2)u = -\lambda w, \\ -\varepsilon^2 w'' + (x^2 - 1 + \eta_{\varepsilon}^2)w = -\lambda u, \end{cases}$$

or, equivalently, in the generalized eigenvalue problem

$$\left(-\varepsilon^2 \,\partial_x^2 + x^2 - 1 + \eta_{\varepsilon}^2\right) w = \gamma \left(-\varepsilon^2 \,\partial_x^2 + x^2 - 1 + 3\eta_{\varepsilon}^2\right)^{-1} w,$$

where $\gamma = -\lambda^2$.

Eigenvalues in the formal Thomas–Fermi limit

• Restrict the generalized eigenvalue problem on (-1, 1) and drop ε -dependent terms in the right hand side:

$$\left(-\varepsilon^2 \partial_x^2 + x^2 - 1 + \eta_{\varepsilon}^2\right) w = \frac{\gamma w}{2(1-x^2)}, \quad x \in (-1,1).$$

• Let $\gamma = 2 \varepsilon^2 \Gamma$ and use the definition of η_{ε} in the left hand side:

$$-w''(x)+rac{\eta_{arepsilon}''(x)w(x)}{\eta_{arepsilon}(x)}=rac{\Gamma w(x)}{(1-x^2)},\quad x\in(-1,1).$$

 Substitution of w(x) = v(x)η_ε(x) and taking the limit ε → 0 result in the Legendre equation

$$-(1-x^2)v''(x)+2xv'(x)=\Gamma v(x), \quad x\in (-1,1),$$

with eigenvalues at $\Gamma = n(n + 1)$, $n \in \mathbb{N}$.

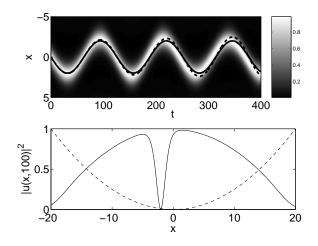
Stringari (1996); Fliesser et al. (1997); Eberlein et al. (2005)

Main objectives and results

- Obtain the uniform asymptotic approximation of the ground state η_{ε} in terms of solutions of the Painleve–II equation
- Study distribution of eigenvalues of the spectral stability for small ε > 0
- Extend the results to excited states with zeros on ℝ that includes "one-dimensional vortices" (dark solitons).

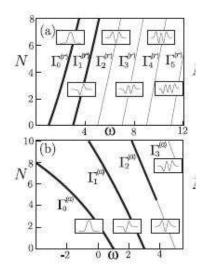
Gallo & P., J. Math. Anal. Appl. **355**, 495 (2009) Gallo & P., preprint (2009).

Possible application: oscillations of 1-dim vortices



P. & Kevrekidis, Cont.Math. **473**, 159 (2008) P. & Kevrekidis, ZAMP **59**, 559 (2008)

Possible application: stability of *m*-node vortices



Zezulin, Alfimov, Konotop, & Perez–Garcia, PRA (2008)

D.Pelinovsky (McMaster University)

Asymptotic construction of the ground state

Let

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \nu_{\varepsilon}(\mathbf{y}), \quad \mathbf{y} = \frac{1 - \mathbf{x}^2}{\varepsilon^{2/3}}$$

and write an equation on $\eta_{\varepsilon}(\mathbf{y})$:

$$4(1-\varepsilon^{2/3}\,y)\nu_\varepsilon''(y)-2\,\varepsilon^{2/3}\,\nu_\varepsilon'(y)+y\nu_\varepsilon(y)-\nu_\varepsilon^3(y)=0,\quad y\in J_\varepsilon,$$

where

$$J_{\varepsilon} := (-\infty, \varepsilon^{-2/3})$$

and $\nu_{\varepsilon}(y)$ decays to zero as $y \to -\infty$ and satisfies the Neumann boundary condition at $\varepsilon^{-2/3}$:

$$\eta_{\varepsilon}'(0)=0 \quad \Longleftrightarrow \quad \lim_{y\uparrow \varepsilon^{-2/3}} \sqrt{1-\varepsilon^{2/3}}\, y \nu_{\varepsilon}'(y)=0.$$

프 🖌 🛪 프 🛌

Asymptotic construction of the ground state

Fix $N \ge 0$ and look for solutions in the form

$$u_{arepsilon}(\mathbf{y}) = \sum_{n=0}^{N} arepsilon^{2n/3} \,
u_n(\mathbf{y}) + arepsilon^{2(N+1)/3} \, \mathcal{R}_{N,arepsilon}(\mathbf{y}), \quad \mathbf{y} \in J_{arepsilon},$$

where

ν₀ solves the Painlevé-II equation

$$4
u_0^{\prime\prime}(oldsymbol{y})+oldsymbol{y}
u_0(oldsymbol{y})-
u_0^3(oldsymbol{y})=oldsymbol{0},\quadoldsymbol{y}\in\mathbb{R},$$

• for $1 \le n \le N$, ν_n solves

$$M_0
u_n := -4
u_n''(\mathbf{y}) + (3
u_0^2(\mathbf{y}) - \mathbf{y})
u_n(\mathbf{y}) = F_n(\mathbf{y}), \quad \mathbf{y} \in \mathbb{R}$$

*R*_{N,ε} solves

$$-4(1-\varepsilon^{2/3}\,y)\mathcal{R}_{\mathsf{N},\varepsilon}''+2\,\varepsilon^{2/3}\,\mathcal{R}_{\mathsf{N},\varepsilon}'+\left(3\nu_0^2(y)-y\right)\mathcal{R}_{\mathsf{N},\varepsilon}=\mathcal{F}_{\mathsf{N},\varepsilon}(y,\mathcal{R}_{\mathsf{N},\varepsilon}),\quad y\in J_\varepsilon,$$

Note: $\nu_n(y)$ does not depend on ε and is defined on \mathbb{R} , whereas the remainder term $R_{N,\varepsilon}$ is only defined on J_{ε} .

D.Pelinovsky (McMaster University)

Main result

Theorem

Let ν_0 be the unique solution of the Painlevé II equation such that

$$u_0(y)\sim y^{1/2} \quad \text{as} \quad y\to +\infty \quad \text{and} \quad \nu_0(y)\to 0 \quad \text{as} \quad y\to -\infty.$$

For $n \ge 1$, ν_n is the unique solution of the linearized Painlevé equation in $C^2(\mathbb{R}) \cap L^2(\mathbb{R})$. For every $N \ge 0$, there exists $\varepsilon_N > 0$ and $C_N > 0$ such that for every $0 < \varepsilon < \varepsilon_N$, there is

$$R_{N,\varepsilon} \in L^{\infty}(J_{\varepsilon}), \quad \text{with} \quad \|R_{N,\varepsilon}\|_{L^{\infty}(J_{\varepsilon})} \leq C_{N}, \quad \lim_{y \to -\infty} R_{N,\varepsilon}(y) = 0,$$

such that for every $x \in \mathbb{R}$,

$$\eta_{\varepsilon}(\mathbf{x}) = \varepsilon^{1/3} \sum_{n=0}^{N} \varepsilon^{2n/3} \nu_n \left(\frac{1-\mathbf{x}^2}{\varepsilon^{2/3}} \right) + \varepsilon^{2N/3+1} R_{N,\varepsilon} \left(\frac{1-\mathbf{x}^2}{\varepsilon^{2/3}} \right).$$

Step I: Hasting-McLeod solution

Ref: Fokas, Its, Kapaev, Novokshenov, AMS Monographs (2006) The Painlevé-II equation

$$4
u''(\mathbf{y}) + \mathbf{y}
u(\mathbf{y}) -
u^3(\mathbf{y}) = \mathbf{0}, \quad \mathbf{y} \in \mathbb{R},$$

admits a unique solution $\nu_0\in\mathcal{C}^\infty(\mathbb{R})$ such that

$$\nu_{0}(y) = \frac{1}{2\sqrt{\pi}} (-2y)^{-1/4} e^{-\frac{2}{3}(-2y)^{3/2}} \left(1 + \mathcal{O}(|y|^{-3/4})\right) \underset{y \to -\infty}{\approx} 0,$$

$$\nu_{0}(y) \underset{y \to +\infty}{\approx} y^{1/2} \sum_{n=0}^{\infty} \frac{b_{n}}{(2y)^{3n/2}}.$$

12. Hastings-McLeod solution of the Painlevé II equation.

(문) (문)

Step II: Linearized Painlevé-II equation

Let us consider the operator M_0 on $L^2(\mathbb{R})$, defined by

$$M_0 := -4\partial_y^2 + W_0(y), \quad W_0(y) = 3\nu_0^2(y) - y.$$

From the asymptotic behaviors of $\nu_0(y)$ as $y \to \pm \infty$, we infer that

$$W_0(y) \sim 2y$$
 as $y \to +\infty$ and $W_0(y) \sim -y$ as $y \to -\infty$.

Moreover, we prove that

$$\inf_{y\in\mathbb{R}}W_0(y)>0$$

and $W_0(y)$ has the only extremum at the global minimum near y = 0.

For any $n \in \{1, 2, ..., N\}$, corrections $\nu_n \in C^2(\mathbb{R}) \cap L^2(\mathbb{R})$ are found from the inhomogeneous equations $M_0\nu_n = f_n$ such that

$$u_n(\mathbf{y}) \underset{\mathbf{y} \to +\infty}{\approx} \mathbf{y}^{-5/2-2n} \sum_{m=0}^{\infty} g_{n,m} \mathbf{y}^{-3m/2}, \quad \nu_n(\mathbf{y}) \underset{\mathbf{y} \to -\infty}{\approx} \mathbf{0}.$$

Step III: Remainder term

The remainder term satisfies

$$\mathcal{T}^{arepsilon}\mathcal{R}_{N,arepsilon}(oldsymbol{y}) = rac{\mathcal{F}_{N,arepsilon}(oldsymbol{y}, \mathcal{R}_{N,arepsilon})}{\sqrt{1-arepsilon^{2/3}oldsymbol{y}}}, \quad oldsymbol{y}\in oldsymbol{J}_{arepsilon},$$

where

$$T^{\varepsilon} = -4\partial_{y}\sqrt{1-\varepsilon^{2/3}y}\partial_{y} + \frac{W_{0}(y)}{\sqrt{1-\varepsilon^{2/3}y}}$$

and $F_{N,\varepsilon}(y,R) = F_{N,0}(y) + G_{N,\varepsilon}(y,R)$ with

$$\|F_{N,0}\|_{L^2_{\varepsilon}} \lesssim 1, \quad \|G_{N,\varepsilon}\|_{H^1_{\varepsilon}} \lesssim \varepsilon^{2/3} + \varepsilon^{(2N+1)/3} \|R\|_{H^1_{\varepsilon}}^2 + \varepsilon^{4(N+1)/3} \|R\|_{H^1_{\varepsilon}}^3.$$

Here the norm in H^1_{ε} is defined by

$$\|u\|_{H^{1}_{\varepsilon}}^{2} := \int_{-\infty}^{\varepsilon^{-2/3}} \left[\frac{W_{0}(y)u(y)^{2}}{\sqrt{1 - \varepsilon^{2/3} y}} + 4\sqrt{1 - \varepsilon^{2/3} y}(u'(y))^{2} \right] dy$$

and we show that H_{ε}^{1} is a Banach algebra with Sobolev's embedding

$$\|u\|_{L^{\infty}(J_{\varepsilon})}\leq C\|u\|_{H^{1}_{\varepsilon}},$$

where *C* is ε -independent.

D.Pelinovsky (McMaster University)

< ∃→

Grand finale

The map

$$\Psi_{\varepsilon}: f \mapsto \phi := (T^{\varepsilon})^{-1} \frac{f}{\sqrt{1 - \varepsilon^{2/3} y}}$$

is continuous from L^2_{ε} into H^1_{ε} and the norm of Ψ_{ε} is uniformly bounded in ε .

By the Fixed Point Theorem, there exists a unique fixed point R_{N,ε} ∈ H¹_ε such that

$$\| \mathcal{R}_{\mathcal{N},arepsilon} - \mathcal{R}^0_{\mathcal{N},arepsilon} \|_{\mathcal{H}^1_arepsilon} \lesssim arepsilon^{2/3} + arepsilon^{(2N+1)/3}$$
 .

We prove that ν_ε(y) > 0 for all y ∈ J_ε so that it is the ground state η_ε by uniqueness of the positive solution η_ε.

Operators of the linearized problem

The spectral problem is given by

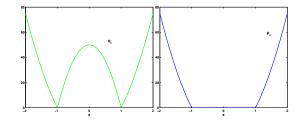
$$L^{\varepsilon}_{+}u = -\lambda w, \quad L^{\varepsilon}_{-}w = \lambda u,$$

where

$$L^{\varepsilon}_{+} = - \varepsilon^2 \, \partial_x^2 + V_{\varepsilon}(x), \quad V_{\varepsilon}(x) = 3\eta_{\varepsilon}^2(x) - 1 + x^2,$$

and

$$L^{\varepsilon}_{-} = -\varepsilon^2 \,\partial_x^2 + \tilde{V}_{\varepsilon}(x), \quad \tilde{V}_{\varepsilon}(x) = \eta_{\varepsilon}^2(x) - 1 + x^2 = \frac{\varepsilon^2 \,\eta_{\varepsilon}''(x)}{\eta_{\varepsilon}(x)}.$$



.≣ ≯

Semi-classical limit for eigenvalues of L_{+}^{ε}

Consider the eigenvalue problem

$$\left(-\partial_x^2+\varepsilon^{-2}V_{\varepsilon}(x)\right)u_n(x)=\varepsilon^{-2}\lambda_nu_n(x),\quad x\in\mathbb{R},$$

where

• $V_{\varepsilon}(x) \in C^{\infty}(\mathbb{R})$ for any small $\varepsilon > 0$,

• $\lim_{arepsilon
ightarrow 0} V_arepsilon(x) = V_0(x) \in C(\mathbb{R})$ given by

$$V_0(x) = \left\{ egin{array}{cc} 2(1-x^2), & |x| \leq 1, \ x^2-1, & |x| \geq 1, \end{array}
ight.$$

V_ε(x) takes its absolute minimum near x = ±1, and
V_ε(x) → +∞ as |x| → ∞.

By the Bohr-Sommerfeld rule,

$$\frac{1}{\pi}\int_{\mathbf{x}_{-}^{\varepsilon}}^{\mathbf{x}_{+}^{\varepsilon}}\sqrt{\lambda-V_{\varepsilon}(\mathbf{x})}d\mathbf{x}\sim\varepsilon\left(n-\frac{1}{2}\right),\quad\text{as}\quad\varepsilon\rightarrow0,\ n\geq1,$$

Reduction to the linearized Painlevé equation

Changing variables

$$\mathbf{y} = rac{1-\mathbf{x}^2}{arepsilon^{2/3}}, \quad \lambda = arepsilon^{2/3} \mu, \quad \mathbf{V}^{arepsilon}_+ = arepsilon^{2/3} \mathbf{W}_{arepsilon}(\mathbf{y}),$$

where $W_{\varepsilon}(y) = 3\nu_{\varepsilon}^2(y) - y$, we obtain

$$\int_{y_{-}^{\varepsilon}}^{y_{+}^{\varepsilon}} \frac{\sqrt{\mu - W_{\varepsilon}(y)}}{\sqrt{1 - \varepsilon^{2/3} \, y}} dy \sim 2\pi \left(n - \frac{1}{2}\right), \quad \text{as} \quad \varepsilon \to 0, \ n \ge 1.$$

Claim: The quantization formula above does not give a correct limit $\varepsilon \to 0$ at least for small $n \ge 1$. Instead, the eigenvalues $\{\mu_n^{\varepsilon}\}_{n\ge 1}$ converge to eigenvalues of the linearized Painlevé operator

$$M_0u(y) := -4u''(y) + W_0(y)u(y) = \mu u(y).$$

Convergence of eigenvalues

Theorem

For $\varepsilon > 0$ sufficiently small, the spectrum of L^{ε}_{+} consists of an increasing sequence of positive eigenvalues $\{\lambda^{\varepsilon}_{n}\}_{n\geq 1}$ such that for each $n \geq 1$,

$$\lim_{\varepsilon \downarrow 0} \frac{\lambda_{2n-1}^{\varepsilon}}{\varepsilon^{2/3}} = \lim_{\varepsilon \downarrow 0} \frac{\lambda_{2n}^{\varepsilon}}{\varepsilon^{2/3}} = \mu_n.$$
(1)

Further news: The same results can be extended in the space of *d* dimensions for radially symmetric parabolic traps:

$$iu_t + \varepsilon^2 \Delta u + (1 - |\mathbf{x}|^2)u - |u|^2 u = 0, \quad \mathbf{x} \in \mathbb{R}^d,$$

for any $d \ge 1$.