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Introduction

Density waves in cigar—shaped Bose—Einstein condensates with repulsive
inter-atomic interactions and a harmonic potential are modeled by the
Gross-Pitaevskii equation

; 1 2 1 2 2
iV, = —Evév + §|§| V4 |V|TV = uv,
where 1 is the chemical potential, ¢ € RY, and Vg is the Laplacian in €.

Using the scaling transformation,
V() = pPu(x,t), E=(u)'Px, T=2t,
the Gross—Pitaevskii equation is transformed to the semi-classical form
ieu +e>Vau+ (1 — x> = [ul*)u =0,

where e = (2u)~1 is a small parameter.
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Ground state

Limit © — oo or e — 0 is referred to as the semi-classical or Thomas—Fermi
limit. Physically, it is the limit of large density of the atomic cloud.

Let 7. be the real positive solution of the stationary problem (ground state)
V2. + (1 — x> =n?)m. =0, xcRY,

where d is either 1, 2, or 3.

Theorem ( , JFA (2006))

For sufficiently small ¢ > 0, there exists a global minimizer of the
Gross—Pitaevskii energy

_ 1 2 2 E 2 2 E 4
Ew= [ (25 [Vt 4 SO~ D)Jul? + 7Juf*) dx
in the energy space

Hy = {u e HYRY): |x]ue LZ(R“)}.
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Introduction

Ground state in the asymptotic theory

For small € > 0, the ground state 7. € C*°(R) decays to zero as |x| — oo
faster than any exponential function

1-|x?
4£2/3

O<n5(x)§Cal/3exp< ), forall |x|> 1.

The Thomas—Fermi approximation is

L [ @-x?»Y2  for |x| <1,
mo(x) = Elﬂqong(x) - { 0, for x| > 1,

@ For any compact subset K in the unit disk, there is Cx > 0 such that

m- — nollcrk)y < Ck 2.

@ There is C > 0 such that

e — mollLe < Ce¥3, [ VynelLe < Ce™Y3.
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Excited states (vortices) in the asymptotic theory

Let u. be the non-positive solution of the stationary problem (an excited state)
e2V2u. + (1 — [x? = JusP)u. =0, x e R%

Ifd =1, u. is real and the excited states are classified by the number m of
zeros of u.(x) on R.

If d = 2, u. can be complex-valued for vortex configurations (single vortices,
dipoles, quadrupoles, etc).

The product representation
u(x,t) = n.(x)v(x,t)
brings the Gross—Pitaevskii equation to the equivalent form
ien?vi +e? Vy (2Vxv) +n2(1 — [v[?)v =0,

where limy . [v(x)| = 1.
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Introduction

Vortices in harmonic potentials

Earlier results in physics literature:

@ Mottonen et al. (2005) - computation of the interaction energy for two,
three, and four vortices and prediction of stationary dipoles and
quadrupoles

@ Lietal. (2008) - dynamics of a vortex-antivortex pair on a phase plane

@ Kevrekidis & P (2010) - numerical computations of eigenvalues of the
ground state and comparison with the hydrodynamical theory of Stringari
(1996)

@ Kollar & Pego (2010) - numerical computations of eigenvalues for
charge-one and charge-two vortices

@ Middelkamp et al. (2010) - numerical computations of eigenvalues for
single vortices, dipoles and quadrupoles.
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Introduction

Eigenvalues of the spectral stability problem

Left: ground state 7.. Right: charge-one vortex.
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Introduction

Dipole configurations

4 6 8 10 12 14 169 T 6 8wl 12 14 16
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Variational results

Variational construction of vortices

The equivalent Gross—Pitaevskii equation
i en2ve + €2 Vx (12Vxv) +12(1 = [v[)v =0,
is the Euler-Lagrange equation for the Lagrangian L(v) = K(v) + A(v) with
the kinetic energy _
K(v) = L a/ n2 (V¥ — Vv )dx
2 Jpe

and the potential energy

1
A(V) = 52/ n?|Vxv|?dx + —/ nH(1 — |v|?)%dx.
R2 2 Jre
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Free vortex of the defocusing NLS equation

If n. = 1, the defocusing NLS equation has a single vortex of charge m:
Vim(X) = Vn(R)eM, R =re?
where m € N and W (R) is a solution of
W+ RN - mPR2W, 4 (L - W2 )W, =0, R >0,
such that Wi, (0) = 0, ¥p(R) > 0 forall R > 0, and limg .. ¥Ym(R) = 1.
The short-range asymptotics is
Vn(R) = amR™ + O(R™?2) a R —0
The long-range asymptotics is

m?2

1
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Kinetic energy

We can use variables
X=Xo+eX, y=VYo+eVY,
and write the kinetic energy as
K(Vm) = —XoKx(Vm) — YoKy (Vm),
where

yw2

XW2
KX(Vm):—maz/ n2(x) 7 dxdY, Ky(Vm):mez/ n2(x) ="
R2 R2

R2

dxdy.

For small e > 0 and small (xo, o) € R?, the kinetic energy of a single vortex is
represented by

K (Vi) = 7m £(XoYo — YoXo) (1 + O(e) + O(x3 +y&)) .
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Justification

The symmetry of the integrand implies that Ky (Vm)l|y,—0 = 0. We can write
Kx(Vm) = J1 + J2, where

Y (W2 -1 Y
Ji = _mEZ/ ngm%ww, Jo = —mez/ 12 (x) 55 dXdY .
R2 R R2 R

For small e > 0 and small (xo,Yo) € R?, there is C > 0 such that
1] < Ce®lyol, |d2| < Celyol.

Finally, we compute
Y
Bdaboyimo = —me? [ (QrR(0)e-er)gzdXaY

27 [e's)
- —mez/ d0/ AR(Om2(1) |- ) SN (6)
0 0

= amen?(0) = Tme +O(e%),
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Potential energy

We write the potential energy as

dv,\?> m? )
( )+¥wm

MVn) = [ 1200) | (G

dxdy + %82/ n2(x)(1 — W3)2dXdY
R2

Lemma

For small e > 0 and small (xo, o) € R?, the potential energy of a single vortex
is represented by

AVin) = A(Vim) komyo=0 = — & Muin(x§ +¥8) (1 + O(¥%) + O(x§ +y3))

where wn, is given by

dWn\* m? (1, R
drR R2 m 1+R2?
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Justification

We can write A(Vn) = 11 + |2, where

dv,\2 m? R2
2 2 m L 2
= /Rzne(x) (dR) T Re (wm 1+R2>
and

2
2=&m /Rz 1+ de d R2 g2 +(X — Xo)2 + (y — yo)2 dxdy

For small e > 0 and small (xo,Yo) € R?, there is C > 0 such that
| <Ce% |lz| < Ce?[log(e)|-

dxdy + ...

Finally, we compute
3x2 —y%2 —¢?

Blohomyero = 26207 [ 200 5

oo , 2 2
_ 2 nZ(eR)(R* - 1)R
= 4mm /0 1+ RO drR

dxdy
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Eigenfrequencies of the charge-one vortex

Euler—Lagrange equations for the leading part of L(Vm) = K(Vm) + A(Vm) give
—Xo = wmYo, Yo = wmXo,

Recall the transformation ;. = 5= and Im(\) = 4.
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Free dipole

A dipole consists of a pair of the charge-one vortex and the charge-one
antivortex,

Va(X,y) = Vi(X — Xo,Y — Yo)V1(X + Xo,Y — Yo).

Note that
Nal*  |Va " ry (1 Va2 = OR) as R — oo
X oY d '

Although the potential energy needs not be renormalized, the interaction
2 |oVy

energy is
/ Ng ", |OVa
R2 3)( 8Y

= 27log(A)+O(1) as A— oo,

21
+5(1 = Vo |2)2> dxdy

Ar(Vg)

where xo = €A (Ovchinnikov & Sigal, 2002).
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Kinetic and potential energy

The single vortices for the stationary dipole are placed at (xo,0) and (—xo, 0),
where it will be assumed that xo — 0 and A = xg/ e — o0 as e — 0.

Lemma

For small ¢ > 0 and small (xo,Yo) € R? such that xo/ ¢ is large as ¢ — 0, the
kinetic and potential energies of a dipole are represented by

K(Vg) = 2rme(XoYo — YoXo) (1 + O(e) + O(x§ +Y&)) -

and

AVa) = A(Va)lo=yo=o = 4me(x§ +Y§) (log(e) + O(1) + O(x§ +Y5))
+2me? (log(xo/ €) + O(1)) .
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Eigenfrequencies of the dipole

Euler—Lagrange equations for the leading part of L(Vq) = K(Vq) + A(Vqg) give
{ Yo +2¢log(e)xo + 5 =0,
—Xo + 2¢elog(e)yo = 0.
The equilibrium state for the stationary dipole is
oo L
2] log(e)[/2’
and the eigenfrequency of the epicyclic precession is

wg = 2V2¢e|log(e)| = V2wi 4 O(e).

yO:07

46 8 W0 12 14 1,
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Variational results

Quadrupole

Variational ansatz

Vq(x,y) = Vi(x _Xan_yO)vl(X +Xo,Y —Yo)V1(x +Xo,Y+yo)\71(X —Xo,Y +Yo)-
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First excited state

Consider the non-positive real stationary solutions
2u”(x) + (1 —x% —u?(x))u.(x) =0, x€eR.
The first excited state is an odd stationary solution such that

u-(0) =0, uc(x)>0 foral x>0, and XILmOO u.(x) =0.

Theorem

For sufficiently small e > 0, there exists a unique solution u. € C*°(R) with
properties above and there is C > 0 such that

u. — n. tanh [ —
! (ﬁ)

In particular, the solution converges pointwise as € — 0 to

§C52/3.
LOO

Up(X) := a"LnOUE(X) =no(x)sign(x), x €R.
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Steps of the proof

Step 1: Decomposition.
We substitute

U-(x) = n-(x) tanh (%) + W (x)

and obtain
Lew. = H. + No(w.),
where
L. == — 282 + x? — 1 + 3n?(x) tanh? (\/)%J :
H.(x) = n-(x) (n2(x) — 1) sech? < X ) tanh ( X )+\/§sng(x)sech2 ( X )
V2e V2e V2e
and

N.(w.)(x) = —37.(x) tanh <\/25> w2(x) — w3(x).
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Steps of the proof

Step 2: Linear estimates.
Using variable x = v/2 ¢z, we obtain

. 1 A
L. = —5822 +2£222 — 14 37%(z) tanh?(z) = Lo + U.(2),

where 1
Lo = —5622 + 2 — 3sech?(2)

and .
U.(z) :=2£22% 4+ 3(7%(z) — 1) tanh®(z).

The spectrum of Lo consists of two eigenvalues at 0 and % with eigenfunctions
sech?(z) and tanh(z)sech(z) and the continuous spectrum on [2, cc).
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Steps of the proof

Figure: Potentials of operators L. (solid line) and Lo (dots) for the first excited state.

Resolvent of the unperturbed operator:
IC>0,a>0: W elZyR)NLYMR):  [|lLg llnene < ClIfflznie-
Resolvent of the full operator:

IC>0: Wel?24(R): LM ||y < Ce23f).
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Steps of the proof

Step 3: Bounds on the inhomogeneous and nonlinear terms.
Recall that we are solving

LEWE - HE + NE(WE))

where

Forany e > 0 and a € (0, 2), we have

IN

Hellenige el | (1 — 72)sech?(:)llznize + V2 [l L= [lsech® () [lienis

Ce?/8.

IN

For any W. € H2(R), we have

N (We)le < 31me e 2 Iz + WSl < 3l + (WelFe-
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Steps of the proof

Step 4: Normal-form transformation.
Let

We =Wy +Wo + @, Wy = I:0‘1I3|5, = —3L0 Ae tanh(z)wlz,

where
iC >0: ||Wl||H2ng° < sz/gv ||W2||H20Lg° <Ce'3,

The remainder term ¢. solves the new problem
LEQ’O\E = HE +Ns(¢s)7

where
||7_(€||L2 S C 527

V@ € Bs(Hoa) © V(@) < C(O)lIellfe,
and

Ve, b € Bs(H) 1 INa(@)=Ne(B2)lle < C0) (I12e e + 19 e ) 16—l
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Steps of the proof

Step 5: Fixed-point arguments.
Since . . N
IC>0: Vfel?24(R): [|L7M |y < Ce 23 |f|2,

the map ¢. — LZ*N_($.) is a contraction in the ball Bs(H2y,) if § < /3.
On the other hand, the source term £-1H. is as small as O(<*/?). Therefore,
Banach'’s Fixed-Point Theorem applies in the ball Bs(H2,,) with & ~ £4/3.

Step 6: Properties of u.(x). It remains to prove that u.(x) > 0 for all x > 0.
This property does not come immediately from the fixed-point solution

X

V2e

u-(x) = n-(x) tanh ( ) + w.(x),

where ||w, L~ < Ce?/3,
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Second excited state

The second excited state is an odd stationary solution such that

u-(x) >0 forall |x|>xXo, u.(x)<O0 foral |x| <X, and XIim u.(x) =0.

Theorem

For sufficiently small e > 0, there exists a unique solution u. € C*°(R) with
properties above and there exista > 0 and C > 0 such that

n;nanh(\/_E)ta h(\/_8>

<C52/3

and

a= - (log(e) + 3 logll0g(2) - 3 loa(2) +o(1)) & < —0.

In particular, xo = a + O(e%/3).
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Steps of the proof

Figure: Potential of operator L. (solid line) and L, (dots) for the second excited state.

Here the leading-order operator

i _ 15 _ 2 _ 20, _a

Lo(¢) = 262 +2—3sech”(z +¢) —3sech”(z — (), (= o
has two eigenvalues in the neighborhood of 0 for large ¢ because of the
double-well potential centered at z = +(.
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Summary of our results

@ We justified asymptotic representations of the ground and excited states

@ We predicted asymptotic dependence of the distance between individual
solitons/vortices for m-excited states.

@ We predicted asymptotic dependence of the eigenfrequencies of
oscillations for m-excited states related to the dynamics of
solitons/vortices with respect to each other and to the harmonic potential.

@ We illustrated both asymptotic predictions numerically.
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