Vortices in a harmonic potential

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada http://dmpeli.math.mcmaster.ca

SIAM conference on nonlinear waves, Philadelphia, August 17, 2010

References:
C. Gallo \& P., preprint (2010)
M. Coles, D.P., P. Kevrekidis, Nonlinearity 23, 1753-1770 (2010)
P., Nonlinear Analysis 73, 2631-2643 (2010)
D.P., P. Kevrekidis, preprint (2010)

Introduction

Density waves in cigar-shaped Bose-Einstein condensates with repulsive inter-atomic interactions and a harmonic potential are modeled by the Gross-Pitaevskii equation

$$
i v_{\tau}=-\frac{1}{2} \nabla_{\xi}^{2} v+\frac{1}{2}|\xi|^{2} v+|v|^{2} v-\mu v,
$$

where μ is the chemical potential, $\xi \in \mathbb{R}^{d}$, and ∇_{ξ}^{2} is the Laplacian in ξ.
Using the scaling transformation,

$$
v(\xi, t)=\mu^{1 / 2} u(x, t), \quad \xi=(2 \mu)^{1 / 2} x, \quad \tau=2 t
$$

the Gross-Pitaevskii equation is transformed to the semi-classical form

$$
i \varepsilon u_{t}+\varepsilon^{2} \nabla_{x}^{2} u+\left(1-|x|^{2}-|u|^{2}\right) u=0,
$$

where $\varepsilon=(2 \mu)^{-1}$ is a small parameter.

Ground state

Limit $\mu \rightarrow \infty$ or $\varepsilon \rightarrow 0$ is referred to as the semi-classical or Thomas-Fermi limit. Physically, it is the limit of large density of the atomic cloud.

Let η_{ε} be the real positive solution of the stationary problem (ground state)

$$
\varepsilon^{2} \nabla_{x}^{2} \eta_{\varepsilon}+\left(1-|x|^{2}-\eta_{\varepsilon}^{2}\right) \eta_{\varepsilon}=0, \quad x \in \mathbb{R}^{d},
$$

where d is either 1,2 , or 3 .

Theorem (Ignat \& Milot, JFA (2006))

For sufficiently small $\varepsilon>0$, there exists a global minimizer of the Gross-Pitaevskii energy

$$
E_{\varepsilon}(u)=\int_{\mathbb{R}^{d}}\left(\frac{1}{2} \varepsilon^{2}\left|\nabla_{x} u\right|^{2}+\frac{1}{2}\left(|x|^{2}-1\right)|u|^{2}+\frac{1}{4}|u|^{4}\right) d x
$$

in the energy space

$$
\mathcal{H}_{1}=\left\{u \in H^{1}\left(\mathbb{R}^{d}\right):|x| u \in L^{2}\left(\mathbb{R}^{d}\right)\right\} .
$$

Ground state in the asymptotic theory

For small $\varepsilon>0$, the ground state $\eta_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R})$ decays to zero as $|x| \rightarrow \infty$ faster than any exponential function

$$
0<\eta_{\varepsilon}(x) \leq C \varepsilon^{1 / 3} \exp \left(\frac{1-|x|^{2}}{4 \varepsilon^{2 / 3}}\right), \quad \text { for all }|x| \geq 1 .
$$

The Thomas-Fermi approximation is

$$
\eta_{0}(x):=\lim _{\varepsilon \rightarrow 0} \eta_{\varepsilon}(x)=\left\{\begin{array}{cc}
\left(1-x^{2}\right)^{1 / 2}, & \text { for }|x|<1, \\
0, & \text { for }|x|>1,
\end{array}\right.
$$

- For any compact subset K in the unit disk, there is $C_{K}>0$ such that

$$
\left\|\eta_{\varepsilon}-\eta_{0}\right\|_{C^{1}(K)} \leq C_{K} \varepsilon^{2}
$$

- There is $C>0$ such that

$$
\left\|\eta_{\varepsilon}-\eta_{0}\right\|_{L \infty} \leq C \varepsilon^{1 / 3}, \quad\left\|\nabla_{x} \eta_{\varepsilon}\right\|_{L_{\infty}} \leq C \varepsilon^{-1 / 3} .
$$

Excited states (vortices) in the asymptotic theory

Let u_{ε} be the non-positive solution of the stationary problem (an excited state)

$$
\varepsilon^{2} \nabla_{x}^{2} u_{\varepsilon}+\left(1-|x|^{2}-\left|u_{\varepsilon}\right|^{2}\right) u_{\varepsilon}=0, \quad x \in \mathbb{R}^{d} .
$$

If $d=1, u_{\varepsilon}$ is real and the excited states are classified by the number m of zeros of $u_{\varepsilon}(x)$ on \mathbb{R}.
If $d=2, u_{\varepsilon}$ can be complex-valued for vortex configurations (single vortices, dipoles, quadrupoles, etc).

The product representation

$$
u(x, t)=\eta_{\varepsilon}(x) v(x, t)
$$

brings the Gross-Pitaevskii equation to the equivalent form

$$
i \varepsilon \eta_{\varepsilon}^{2} v_{t}+\varepsilon^{2} \nabla_{X}\left(\eta_{\varepsilon}^{2} \nabla_{X} v\right)+\eta_{\varepsilon}^{4}\left(1-|v|^{2}\right) v=0,
$$

where $\lim _{|x| \rightarrow \infty}|v(x)|=1$.

Vortices in harmonic potentials

Earlier results in physics literature:

- Möttönen et al. (2005) - computation of the interaction energy for two, three, and four vortices and prediction of stationary dipoles and quadrupoles
- Li et al. (2008) - dynamics of a vortex-antivortex pair on a phase plane
- Kevrekidis \& P (2010) - numerical computations of eigenvalues of the ground state and comparison with the hydrodynamical theory of Stringari (1996)
- Kollar \& Pego (2010) - numerical computations of eigenvalues for charge-one and charge-two vortices
- Middelkamp et al. (2010) - numerical computations of eigenvalues for single vortices, dipoles and quadrupoles.

Eigenvalues of the spectral stability problem

Left: ground state η_{ε}. Right: charge-one vortex.

Dipole configurations

Variational construction of vortices

The equivalent Gross-Pitaevskii equation

$$
i \varepsilon \eta_{\varepsilon}^{2} v_{t}+\varepsilon^{2} \nabla_{x}\left(\eta_{\varepsilon}^{2} \nabla_{x} v\right)+\eta_{\varepsilon}^{4}\left(1-|v|^{2}\right) v=0,
$$

is the Euler-Lagrange equation for the Lagrangian $L(v)=K(v)+\Lambda(v)$ with the kinetic energy

$$
K(v)=\frac{i}{2} \varepsilon \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}\left(v \bar{v}_{t}-\bar{v} v_{t}\right) d x
$$

and the potential energy

$$
\Lambda(v)=\varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}\left|\nabla_{X} v\right|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{4}\left(1-|v|^{2}\right)^{2} d x
$$

Free vortex of the defocusing NLS equation

If $\eta_{\varepsilon} \equiv 1$, the defocusing NLS equation has a single vortex of charge m :

$$
V_{m}(x)=\Psi_{m}(R) e^{i m \theta}, \quad R=r \epsilon^{-1}
$$

where $m \in \mathbb{N}$ and $\Psi_{m}(R)$ is a solution of

$$
\Psi_{m}^{\prime \prime}+R^{-1} \Psi_{m}^{\prime}-m^{2} R^{-2} \Psi_{m}+\left(1-\Psi_{m}^{2}\right) \Psi_{m}=0, \quad R>0
$$

such that $\Psi_{m}(0)=0, \Psi_{m}(R)>0$ for all $R>0$, and $\lim _{R \rightarrow \infty} \Psi_{m}(R)=1$.
The short-range asymptotics is

$$
\Psi_{m}(R)=\alpha_{m} R^{m}+\mathcal{O}\left(R^{m+2}\right) \quad \text { as } \quad R \rightarrow 0
$$

The long-range asymptotics is

$$
\Psi_{m}^{2}(R)=1-\frac{m^{2}}{R^{2}}+\mathcal{O}\left(\frac{1}{R^{4}}\right) \quad \text { as } \quad R \rightarrow \infty
$$

Kinetic energy

We can use variables

$$
x=x_{0}+\varepsilon X, \quad y=y_{0}+\varepsilon Y
$$

and write the kinetic energy as

$$
K\left(V_{m}\right)=-\dot{x}_{0} K_{x}\left(V_{m}\right)-\dot{y}_{0} K_{y}\left(V_{m}\right),
$$

where
$K_{x}\left(V_{m}\right)=-m \varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x) \frac{Y \Psi_{m}^{2}}{R^{2}} d X d Y, \quad K_{y}\left(V_{m}\right)=m \varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x) \frac{X \Psi_{m}^{2}}{R^{2}} d X d Y$.

Lemma

For small $\varepsilon>0$ and small $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, the kinetic energy of a single vortex is represented by

$$
K\left(V_{m}\right)=\pi m \varepsilon\left(x_{0} \dot{y}_{0}-y_{0} \dot{x}_{0}\right)\left(1+\mathcal{O}(\varepsilon)+\mathcal{O}\left(x_{0}^{2}+y_{0}^{2}\right)\right) .
$$

Justification

The symmetry of the integrand implies that $\left.K_{x}\left(V_{m}\right)\right|_{y_{0}=0}=0$. We can write $K_{x}\left(V_{m}\right)=J_{1}+J_{2}$, where

$$
J_{1}=-m \varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x) \frac{Y\left(\Psi_{m}^{2}-1\right)}{R^{2}} d X d Y, \quad J_{2}=-m \varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x) \frac{Y}{R^{2}} d X d Y
$$

For small $\varepsilon>0$ and small $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, there is $C>0$ such that

$$
\left|J_{1}\right| \leq C \varepsilon^{2}\left|y_{0}\right|, \quad\left|J_{2}\right| \leq C \varepsilon\left|y_{0}\right| .
$$

Finally, we compute

$$
\begin{aligned}
\left.\partial_{y_{0}} J_{2}\right|_{x_{0}=y_{0}=0} & =-m \varepsilon^{2} \int_{\mathbb{R}^{2}}\left(\left.\partial_{y} \eta_{\varepsilon}^{2}(r)\right|_{r=\varepsilon} R\right) \frac{Y}{R^{2}} d X d Y \\
& =-m \varepsilon^{2} \int_{0}^{2 \pi} d \theta \int_{0}^{\infty} d R\left(\left.\partial_{r} \eta_{\varepsilon}^{2}(r)\right|_{r=\varepsilon}\right) \sin ^{2}(\theta) \\
& =\pi m \varepsilon \eta_{\varepsilon}^{2}(0)=\pi m \varepsilon+\mathcal{O}\left(\varepsilon^{3}\right),
\end{aligned}
$$

Potential energy

We write the potential energy as
$\Lambda\left(V_{m}\right)=\varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x)\left[\left(\frac{d \Psi_{m}}{d R}\right)^{2}+\frac{m^{2}}{R^{2}} \Psi_{m}^{2}\right] d X d Y+\frac{1}{2} \varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{4}(x)\left(1-\Psi_{m}^{2}\right)^{2} d X d Y$

Lemma

For small $\varepsilon>0$ and small $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, the potential energy of a single vortex is represented by

$$
\Lambda\left(V_{m}\right)-\left.\Lambda\left(V_{m}\right)\right|_{x_{0}=y_{0}=0}=-\pi \varepsilon m \omega_{m}\left(x_{0}^{2}+y_{0}^{2}\right)\left(1+\mathcal{O}\left(\varepsilon^{1 / 3}\right)+\mathcal{O}\left(x_{0}^{2}+y_{0}^{2}\right)\right)
$$

where ω_{m} is given by

$$
\omega_{m}=\varepsilon m\left[1-2 \log (\varepsilon)+\frac{2}{m^{2}} \int_{0}^{\infty}\left[\left(\frac{d \Psi_{m}}{d R}\right)^{2}+\frac{m^{2}}{R^{2}}\left(\Psi_{m}^{2}-\frac{R^{2}}{1+R^{2}}\right)\right] R d R\right] .
$$

Justification

We can write $\Lambda\left(V_{m}\right)=I_{1}+I_{2}$, where

$$
I_{1}=\varepsilon^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x)\left[\left(\frac{d \Psi_{m}}{d R}\right)^{2}+\frac{m^{2}}{R^{2}}\left(\Psi_{m}^{2}-\frac{R^{2}}{1+R^{2}}\right)\right] d X d Y+\ldots
$$

and

$$
I_{2}=\varepsilon^{2} m^{2} \int_{\mathbb{R}^{2}} \frac{\eta_{\varepsilon}^{2}(x)}{1+R^{2}} d X d Y=\varepsilon^{2} m^{2} \int_{\mathbb{R}^{2}} \frac{\eta_{\varepsilon}^{2}(x)}{\varepsilon^{2}+\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} d x d y
$$

For small $\varepsilon>0$ and small $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, there is $C>0$ such that

$$
\left|I_{1}\right| \leq C \varepsilon^{2}, \quad\left|I_{2}\right| \leq C \varepsilon^{2}|\log (\varepsilon)| .
$$

Finally, we compute

$$
\begin{aligned}
\left.\partial_{x_{0}}^{2} l_{2}\right|_{x_{0}=y_{0}=0} & =2 \varepsilon^{2} m^{2} \int_{\mathbb{R}^{2}} \eta_{\varepsilon}^{2}(x) \frac{3 x^{2}-y^{2}-\varepsilon^{2}}{\left(\varepsilon^{2}+x^{2}+y^{2}\right)^{3}} d x d y \\
& =4 \pi m^{2} \int_{0}^{\infty} \frac{\eta_{\varepsilon}^{2}(\varepsilon R)\left(R^{2}-1\right) R}{\left(1+R^{2}\right)^{3}} d R \\
& =4 \pi m^{2} \varepsilon^{2}\left(\log (\varepsilon)+\frac{1}{2}\right)+\mathcal{O}\left(\varepsilon^{2+1 / 3}\right)
\end{aligned}
$$

Eigenfrequencies of the charge-one vortex

Euler-Lagrange equations for the leading part of $L\left(V_{m}\right)=K\left(V_{m}\right)+\Lambda\left(V_{m}\right)$ give

$$
-\dot{x}_{0}=\omega_{m} y_{0}, \quad \dot{y}_{0}=\omega_{m} x_{0}
$$

Recall the transformation $\mu=\frac{1}{2 \varepsilon}$ and $\operatorname{Im}(\lambda)=\frac{\omega}{2}$.

Free dipole

A dipole consists of a pair of the charge-one vortex and the charge-one antivortex,

$$
V_{d}(x, y)=V_{1}\left(x-x_{0}, y-y_{0}\right) \bar{V}_{1}\left(x+x_{0}, y-y_{0}\right) .
$$

Note that

$$
\left|\frac{\partial V_{d}}{\partial X}\right|^{2}+\left|\frac{\partial V_{d}}{\partial Y}\right|^{2}=\mathcal{O}\left(R^{-4}\right) \quad\left(1-\left|V_{d}\right|^{2}\right)^{2}=\mathcal{O}\left(R^{-4}\right) \quad \text { as } \quad R \rightarrow \infty
$$

Although the potential energy needs not be renormalized, the interaction energy is

$$
\begin{aligned}
\Lambda_{R}\left(V_{d}\right) & =\int_{\mathbb{R}^{2}}\left(\left|\frac{\partial V_{d}}{\partial X}\right|^{2}+\left|\frac{\partial V_{d}}{\partial Y}\right|^{2}+\frac{1}{2}\left(1-\left|V_{d}\right|^{2}\right)^{2}\right) d X d Y \\
& =2 \pi \log (A)+\mathcal{O}(1) \text { as } A \rightarrow \infty
\end{aligned}
$$

where $x_{0}=\epsilon A$ (Ovchinnikov \& Sigal, 2002).

Kinetic and potential energy

The single vortices for the stationary dipole are placed at $\left(x_{0}, 0\right)$ and $\left(-x_{0}, 0\right)$, where it will be assumed that $x_{0} \rightarrow 0$ and $A=x_{0} / \varepsilon \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Lemma

For small $\varepsilon>0$ and small $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that x_{0} / ε is large as $\varepsilon \rightarrow 0$, the kinetic and potential energies of a dipole are represented by

$$
K\left(V_{d}\right)=2 \pi m \varepsilon\left(x_{0} \dot{y}_{0}-y_{0} \dot{x}_{0}\right)\left(1+\mathcal{O}(\varepsilon)+\mathcal{O}\left(x_{0}^{2}+y_{0}^{2}\right)\right) .
$$

and

$$
\begin{aligned}
\Lambda\left(V_{d}\right)-\left.\Lambda\left(V_{d}\right)\right|_{x_{0}=y_{0}=0}= & 4 \pi \varepsilon^{2}\left(x_{0}^{2}+y_{0}^{2}\right)\left(\log (\varepsilon)+\mathcal{O}(1)+\mathcal{O}\left(x_{0}^{2}+y_{0}^{2}\right)\right) \\
& +2 \pi \varepsilon^{2}\left(\log \left(x_{0} / \varepsilon\right)+\mathcal{O}(1)\right)
\end{aligned}
$$

Eigenfrequencies of the dipole

Euler-Lagrange equations for the leading part of $L\left(V_{d}\right)=K\left(V_{d}\right)+\Lambda\left(V_{d}\right)$ give

$$
\left\{\begin{array}{l}
\dot{y}_{0}+2 \varepsilon \log (\varepsilon) x_{0}+\frac{\varepsilon}{2 x_{0}}=0, \\
-\dot{x}_{0}+2 \varepsilon \log (\varepsilon) y_{0}=0 .
\end{array}\right.
$$

The equilibrium state for the stationary dipole is

$$
x_{0}=\frac{1}{2|\log (\varepsilon)|^{1 / 2}}, \quad y_{0}=0
$$

and the eigenfrequency of the epicyclic precession is

$$
\omega_{d}=2 \sqrt{2} \varepsilon|\log (\varepsilon)| \approx \sqrt{2} \omega_{1}+\mathcal{O}(\varepsilon)
$$

Quadrupole

Variational ansatz

$$
V_{q}(x, y)=V_{1}\left(x-x_{0}, y-y_{0}\right) \bar{V}_{1}\left(x+x_{0}, y-y_{0}\right) V_{1}\left(x+x_{0}, y+y_{0}\right) \bar{V}_{1}\left(x-x_{0}, y+y_{0}\right) .
$$

First excited state

Consider the non-positive real stationary solutions

$$
\varepsilon^{2} u_{\varepsilon}^{\prime \prime}(x)+\left(1-x^{2}-u_{\varepsilon}^{2}(x)\right) u_{\varepsilon}(x)=0, \quad x \in \mathbb{R} .
$$

The first excited state is an odd stationary solution such that

$$
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(x)>0 \text { for all } x>0, \quad \text { and } \quad \lim _{x \rightarrow \infty} u_{\varepsilon}(x)=0
$$

Theorem

For sufficiently small $\varepsilon>0$, there exists a unique solution $u_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R})$ with properties above and there is $C>0$ such that

$$
\left\|u_{\varepsilon}-\eta_{\varepsilon} \tanh \left(\frac{\cdot}{\sqrt{2} \varepsilon}\right)\right\|_{L \infty} \leq C \varepsilon^{2 / 3} .
$$

In particular, the solution converges pointwise as $\varepsilon \rightarrow 0$ to

$$
u_{0}(x):=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x)=\eta_{0}(x) \operatorname{sign}(x), \quad x \in \mathbb{R}
$$

Steps of the proof

Step 1: Decomposition.

We substitute

$$
u_{\varepsilon}(x)=\eta_{\varepsilon}(x) \tanh \left(\frac{x}{\sqrt{2} \varepsilon}\right)+w_{\varepsilon}(x)
$$

and obtain

$$
L_{\varepsilon} \boldsymbol{W}_{\varepsilon}=H_{\varepsilon}+N_{\varepsilon}\left(\boldsymbol{W}_{\varepsilon}\right),
$$

where

$$
L_{\varepsilon}:=-\varepsilon^{2} \partial_{x}^{2}+x^{2}-1+3 \eta_{\varepsilon}^{2}(x) \tanh ^{2}\left(\frac{x}{\sqrt{2} \varepsilon}\right)
$$

$H_{\varepsilon}(x):=\eta_{\varepsilon}(x)\left(\eta_{\varepsilon}^{2}(x)-1\right) \operatorname{sech}^{2}\left(\frac{x}{\sqrt{2} \varepsilon}\right) \tanh \left(\frac{x}{\sqrt{2} \varepsilon}\right)+\sqrt{2} \varepsilon \eta_{\varepsilon}^{\prime}(x) \operatorname{sech}^{2}\left(\frac{x}{\sqrt{2} \varepsilon}\right)$ and

$$
N_{\varepsilon}\left(w_{\varepsilon}\right)(x)=-3 \eta_{\varepsilon}(x) \tanh \left(\frac{x}{\sqrt{2} \varepsilon}\right) w_{\varepsilon}^{2}(x)-w_{\varepsilon}^{3}(x) .
$$

Steps of the proof

Step 2: Linear estimates.

Using variable $x=\sqrt{2} \varepsilon z$, we obtain

$$
\hat{L}_{\varepsilon}=-\frac{1}{2} \partial_{z}^{2}+2 \varepsilon^{2} z^{2}-1+3 \hat{\eta}_{\varepsilon}^{2}(z) \tanh ^{2}(z)=\hat{L}_{0}+\hat{U}_{\varepsilon}(z)
$$

where

$$
\hat{L}_{0}:=-\frac{1}{2} \partial_{z}^{2}+2-3 \operatorname{sech}^{2}(z)
$$

and

$$
\hat{U}_{\varepsilon}(z):=2 \varepsilon^{2} z^{2}+3\left(\hat{\eta}_{\varepsilon}^{2}(z)-1\right) \tanh ^{2}(z) .
$$

The spectrum of \hat{L}_{0} consists of two eigenvalues at 0 and $\frac{3}{2}$ with eigenfunctions $\operatorname{sech}^{2}(z)$ and $\tanh (z) \operatorname{sech}(z)$ and the continuous spectrum on $[2, \infty)$.

Steps of the proof

Figure: Potentials of operators L_{ε} (solid line) and L_{0} (dots) for the first excited state.

Resolvent of the unperturbed operator:

$$
\exists C>0, \alpha>0: \quad \forall \hat{f} \in L_{\text {odd }}^{2}(\mathbb{R}) \cap L_{\alpha}^{\infty}(\mathbb{R}): \quad\left\|\hat{L}_{0}^{-1} \hat{f}\right\|_{H^{2} \cap L_{\alpha}^{\infty}} \leq C\|\hat{f}\|_{L^{2} \cap L_{\alpha}^{\infty}} .
$$

Resolvent of the full operator:

$$
\exists C>0: \quad \forall \hat{f} \in L_{\text {odd }}^{2}(\mathbb{R}): \quad\left\|\hat{L}_{\varepsilon}^{-1} \hat{f}\right\|_{H^{2}} \leq C \varepsilon^{-2 / 3}\|\hat{f}\|_{L^{2}}
$$

Steps of the proof

Step 3: Bounds on the inhomogeneous and nonlinear terms.

Recall that we are solving

$$
L_{\varepsilon} W_{\varepsilon}=H_{\varepsilon}+N_{\varepsilon}\left(W_{\varepsilon}\right),
$$

where

$$
\hat{H}_{\varepsilon} \in L_{\text {odd }}^{2}(\mathbb{R}) \quad \text { and } \quad \hat{N}_{\varepsilon}\left(\hat{W}_{\varepsilon}\right): H_{\text {odd }}^{2}(\mathbb{R}) \mapsto L_{\text {odd }}^{2}(\mathbb{R}) .
$$

For any $\varepsilon>0$ and $\alpha \in(0,2)$, we have

$$
\begin{aligned}
\left\|\hat{H}_{\varepsilon}\right\|_{L^{2} \cap L_{\alpha}^{\infty}} & \leq\left\|\eta_{\varepsilon}\right\|_{L_{\infty}}\left\|\left(1-\hat{\eta}_{\varepsilon}^{2}\right) \operatorname{sech}^{2}(\cdot)\right\|_{L^{2} \cap L_{\alpha}^{\infty}}+\sqrt{2} \varepsilon\left\|\eta_{\varepsilon}^{\prime}\right\|_{L_{\infty}}\left\|\operatorname{sech}^{2}(\cdot)\right\|_{L^{2} \cap L_{\alpha}^{\infty}} \\
& \leq C \varepsilon^{2 / 3} .
\end{aligned}
$$

For any $\hat{w}_{\varepsilon} \in H^{2}(\mathbb{R})$, we have

$$
\left\|\hat{N}_{\varepsilon}\left(\hat{w}_{\varepsilon}\right)\right\|_{L^{2}} \leq 3\left\|\eta_{\varepsilon}\right\|_{L^{\infty}}\left\|\hat{w}_{\varepsilon}^{2}\right\|_{H^{2}}+\left\|\hat{w}_{\varepsilon}^{3}\right\|_{H^{2}} \leq 3\left\|\hat{W}_{\varepsilon}\right\|_{H^{2}}^{2}+\left\|\hat{w}_{\varepsilon}\right\|_{H^{2}}^{3} .
$$

Steps of the proof

Step 4: Normal-form transformation.

Let

$$
\hat{w}_{\varepsilon}=\hat{w}_{1}+\hat{w}_{2}+\hat{\varphi}_{\varepsilon}, \quad \hat{w}_{1}=\hat{L}_{0}^{-1} \hat{H}_{\varepsilon}, \quad \hat{w}_{2}=-3 \hat{L}_{0}^{-1} \hat{\eta}_{\varepsilon} \tanh (z) \hat{w}_{1}^{2},
$$

where

$$
\exists C>0: \quad\left\|\hat{w}_{1}\right\|_{H^{2} \cap L_{\alpha}^{\infty}} \leq C \varepsilon^{2 / 3}, \quad\left\|\hat{w}_{2}\right\|_{H^{2} \cap L_{\alpha}^{\infty}} \leq C \varepsilon^{4 / 3} .
$$

The remainder term $\hat{\varphi}_{\varepsilon}$ solves the new problem

$$
\mathcal{L}_{\varepsilon} \hat{\varphi}_{\varepsilon}=\mathcal{H}_{\varepsilon}+\mathcal{N}_{\varepsilon}\left(\hat{\varphi}_{\varepsilon}\right),
$$

where

$$
\begin{gathered}
\left\|\mathcal{H}_{\varepsilon}\right\|_{L^{2}} \leq C \varepsilon^{2}, \\
\forall \hat{\varphi}_{\varepsilon} \in B_{\delta}\left(H_{\text {odd }}^{2}\right): \quad\left\|\mathcal{N}_{\varepsilon}\left(\hat{\varphi}_{\varepsilon}\right)\right\|_{L^{2}} \leq C(\delta)\left\|\hat{\varphi}_{\varepsilon}\right\|_{H^{2}}^{2},
\end{gathered}
$$

and
$\forall \hat{\varphi}_{\varepsilon}, \hat{\phi}_{\varepsilon} \in B_{\delta}\left(H_{\text {odd }}^{2}\right): \quad\left\|\mathcal{N}_{\varepsilon}\left(\hat{\varphi}_{\varepsilon}\right)-\mathcal{N}_{\varepsilon}\left(\hat{\phi}_{\varepsilon}\right)\right\|_{L^{2}} \leq C(\delta)\left(\left\|\hat{\varphi}_{\varepsilon}\right\|_{H^{2}}+\left\|\hat{\phi}_{\varepsilon}\right\|_{H^{2}}\right)\left\|\hat{\varphi}_{\varepsilon}-\hat{\phi}\right\|_{H^{2}}$.

Steps of the proof

Step 5: Fixed-point arguments.

Since

$$
\exists C>0: \quad \forall \hat{f} \in L_{\text {odd }}^{2}(\mathbb{R}): \quad\left\|\mathcal{L}_{\varepsilon}^{-1} \hat{f}\right\|_{H^{2}} \leq C \varepsilon^{-2 / 3}\|\hat{f}\|_{L^{2}},
$$

the map $\hat{\varphi}_{\varepsilon} \mapsto \mathcal{L}_{\varepsilon}^{-1} \mathcal{N}_{\varepsilon}\left(\hat{\varphi}_{\varepsilon}\right)$ is a contraction in the ball $B_{\delta}\left(H_{\text {odd }}^{2}\right)$ if $\delta \ll \varepsilon^{2 / 3}$.
On the other hand, the source term $\mathcal{L}_{\varepsilon}^{-1} \mathcal{H}_{\varepsilon}$ is as small as $\mathcal{O}\left(\varepsilon^{4 / 3}\right)$. Therefore, Banach's Fixed-Point Theorem applies in the ball $B_{\delta}\left(H_{\text {odd }}^{2}\right)$ with $\delta \sim \varepsilon^{4 / 3}$.

Step 6: Properties of $u_{\varepsilon}(x)$. It remains to prove that $u_{\varepsilon}(x)>0$ for all $x>0$. This property does not come immediately from the fixed-point solution

$$
u_{\varepsilon}(x)=\eta_{\varepsilon}(x) \tanh \left(\frac{x}{\sqrt{2} \varepsilon}\right)+w_{\varepsilon}(x)
$$

where $\left\|\boldsymbol{w}_{\varepsilon}\right\|_{L^{\infty}} \leq \boldsymbol{C} \varepsilon^{2 / 3}$.

Second excited state

The second excited state is an odd stationary solution such that
$u_{\varepsilon}(x)>0$ for all $|x|>x_{0}, \quad u_{\varepsilon}(x)<0$ for all $|x|<x_{0}, \quad$ and $\quad \lim _{x \rightarrow \infty} u_{\varepsilon}(x)=0$.

Theorem

For sufficiently small $\varepsilon>0$, there exists a unique solution $u_{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R})$ with properties above and there exist $a>0$ and $C>0$ such that

$$
\left\|u_{\varepsilon}-\eta_{\varepsilon} \tanh \left(\frac{\cdot-a}{\sqrt{2} \varepsilon}\right) \tanh \left(\frac{\cdot+a}{\sqrt{2} \varepsilon}\right)\right\|_{L^{\infty}} \leq C \varepsilon^{2 / 3}
$$

and

$$
a=-\frac{\varepsilon}{\sqrt{2}}\left(\log (\varepsilon)+\frac{1}{2} \log |\log (\varepsilon)|-\frac{3}{2} \log (2)+o(1)\right) \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

In particular, $x_{0}=a+\mathcal{O}\left(\varepsilon^{5 / 3}\right)$.

Steps of the proof

Figure: Potential of operator L_{ε} (solid line) and L_{0} (dots) for the second excited state.
Here the leading-order operator

$$
\hat{L}_{0}(\zeta)=-\frac{1}{2} \partial_{z}^{2}+2-3 \operatorname{sech}^{2}(z+\zeta)-3 \operatorname{sech}^{2}(z-\zeta), \quad \zeta=\frac{a}{\sqrt{2} \varepsilon}
$$

has two eigenvalues in the neighborhood of 0 for large ζ because of the double-well potential centered at $z= \pm \zeta$.

Summary of our results

- We justified asymptotic representations of the ground and excited states
- We predicted asymptotic dependence of the distance between individual solitons/vortices for m-excited states.
- We predicted asymptotic dependence of the eigenfrequencies of oscillations for m-excited states related to the dynamics of solitons/vortices with respect to each other and to the harmonic potential.
- We illustrated both asymptotic predictions numerically.

