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Introduction

Introduction

Density waves in cigar–shaped Bose–Einstein condensates with repulsive
inter-atomic interactions and a harmonic potential are modeled by the
Gross-Pitaevskii equation

ivτ = −1
2
∇2

ξv +
1
2
|ξ|2v + |v |2v − µv ,

where µ is the chemical potential, ξ ∈ R
d , and ∇2

ξ is the Laplacian in ξ.

Using the scaling transformation,

v(ξ, t) = µ1/2u(x , t), ξ = (2µ)1/2x , τ = 2t ,

the Gross–Pitaevskii equation is transformed to the semi-classical form

i ε ut + ε2 ∇2
x u + (1 − |x |2 − |u|2)u = 0,

where ε = (2µ)−1 is a small parameter.
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Introduction

Ground state

Limit µ → ∞ or ε → 0 is referred to as the semi-classical or Thomas–Fermi
limit. Physically, it is the limit of large density of the atomic cloud.

Let ηε be the real positive solution of the stationary problem (ground state)

ε2 ∇2
xηε + (1 − |x |2 − η2

ε)ηε = 0, x ∈ R
d ,

where d is either 1, 2, or 3.

Theorem (Ignat & Milot, JFA (2006))

For sufficiently small ε > 0, there exists a global minimizer of the
Gross–Pitaevskii energy

Eε(u) =

∫

Rd

(

1
2

ε2 |∇x u|2 +
1
2

(|x |2 − 1)|u|2 +
1
4
|u|4

)

dx

in the energy space

H1 =
{

u ∈ H1(Rd) : |x |u ∈ L2(Rd )
}

.
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Introduction

Ground state in the asymptotic theory

For small ε > 0, the ground state ηε ∈ C∞(R) decays to zero as |x | → ∞
faster than any exponential function

0 < ηε(x) ≤ C ε1/3 exp
(

1 − |x |2
4 ε2/3

)

, for all |x | ≥ 1.

The Thomas–Fermi approximation is

η0(x) := lim
ε→0

ηε(x) =

{

(1 − x2)1/2, for |x | < 1,
0, for |x | > 1,

For any compact subset K in the unit disk, there is CK > 0 such that

‖ηε − η0‖C1(K ) ≤ CK ε2 .

There is C > 0 such that

‖ηε − η0‖L∞ ≤ C ε1/3, ‖∇xηε‖L∞ ≤ C ε−1/3 .
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Introduction

Excited states (vortices) in the asymptotic theory

Let uε be the non-positive solution of the stationary problem (an excited state)

ε2 ∇2
x uε + (1 − |x |2 − |uε|2)uε = 0, x ∈ R

d .

If d = 1, uε is real and the excited states are classified by the number m of
zeros of uε(x) on R.
If d = 2, uε can be complex-valued for vortex configurations (single vortices,
dipoles, quadrupoles, etc).

The product representation

u(x , t) = ηε(x)v(x , t)

brings the Gross–Pitaevskii equation to the equivalent form

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

where lim|x|→∞ |v(x)| = 1.
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Introduction

Vortices in harmonic potentials

Earlier results in physics literature:

Möttönen et al. (2005) - computation of the interaction energy for two,
three, and four vortices and prediction of stationary dipoles and
quadrupoles

Li et al. (2008) - dynamics of a vortex-antivortex pair on a phase plane

Kevrekidis & P (2010) - numerical computations of eigenvalues of the
ground state and comparison with the hydrodynamical theory of Stringari
(1996)

Kollar & Pego (2010) - numerical computations of eigenvalues for
charge-one and charge-two vortices

Middelkamp et al. (2010) - numerical computations of eigenvalues for
single vortices, dipoles and quadrupoles.
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Introduction

Eigenvalues of the spectral stability problem
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Left: ground state ηε. Right: charge-one vortex.
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Introduction

Dipole configurations
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Variational results

Variational construction of vortices

The equivalent Gross–Pitaevskii equation

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

is the Euler–Lagrange equation for the Lagrangian L(v) = K (v) + Λ(v) with
the kinetic energy

K (v) =
i
2

ε

∫

R2
η2

ε(v v̄t − v̄vt)dx

and the potential energy

Λ(v) = ε2
∫

R2
η2

ε |∇x v |2dx +
1
2

∫

R2
η4

ε(1 − |v |2)2dx .
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Variational results

Free vortex of the defocusing NLS equation

If ηε ≡ 1, the defocusing NLS equation has a single vortex of charge m:

Vm(x) = Ψm(R)eimθ , R = rǫ−1

where m ∈ N and Ψm(R) is a solution of

Ψ′′
m + R−1Ψ′

m − m2R−2Ψm + (1 − Ψ2
m)Ψm = 0, R > 0,

such that Ψm(0) = 0, Ψm(R) > 0 for all R > 0, and limR→∞ Ψm(R) = 1.

The short-range asymptotics is

Ψm(R) = αmRm + O(Rm+2) as R → 0

The long-range asymptotics is

Ψ2
m(R) = 1 − m2

R2 + O
(

1
R4

)

as R → ∞.
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Variational results

Kinetic energy

We can use variables

x = x0 + ε X , y = y0 + ε Y ,

and write the kinetic energy as

K (Vm) = −ẋ0Kx (Vm) − ẏ0Ky (Vm),

where

Kx (Vm) = −m ε2
∫

R2
η2

ε(x)
YΨ2

m

R2 dXdY , Ky (Vm) = m ε2
∫

R2
η2

ε(x)
XΨ2

m

R2 dXdY .

Lemma

For small ε > 0 and small (x0, y0) ∈ R
2, the kinetic energy of a single vortex is

represented by

K (Vm) = πm ε(x0ẏ0 − y0ẋ0)
(

1 + O(ε) + O(x2
0 + y2

0 )
)

.
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Variational results

Justification

The symmetry of the integrand implies that Kx (Vm)|y0=0 = 0. We can write
Kx (Vm) = J1 + J2, where

J1 = −m ε2
∫

R2
η2

ε(x)
Y (Ψ2

m − 1)

R2 dXdY , J2 = −m ε2
∫

R2
η2

ε(x)
Y
R2 dXdY .

For small ε > 0 and small (x0, y0) ∈ R
2, there is C > 0 such that

|J1| ≤ C ε2 |y0|, |J2| ≤ C ε |y0|.

Finally, we compute

∂y0J2|x0=y0=0 = −m ε2
∫

R2
(∂yη2

ε(r)|r=ε R)
Y
R2 dXdY

= −m ε2
∫ 2π

0
dθ

∫ ∞

0
dR(∂rη

2
ε(r)|r=ε R) sin2(θ)

= πm ε η2
ε(0) = πm ε +O(ε3),
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Variational results

Potential energy

We write the potential energy as

Λ(Vm) = ε2
∫

R2
η2

ε(x)

[

(

dΨm

dR

)2

+
m2

R2 Ψ2
m

]

dXdY +
1
2

ε2
∫

R2
η4

ε(x)(1 − Ψ2
m)2dXdY

Lemma

For small ε > 0 and small (x0, y0) ∈ R
2, the potential energy of a single vortex

is represented by

Λ(Vm) − Λ(Vm)|x0=y0=0 = −π ε mωm(x2
0 + y2

0 )
(

1 + O(ε1/3) + O(x2
0 + y2

0 )
)

,

where ωm is given by

ωm = ε m

[

1 − 2 log(ε) +
2

m2

∫ ∞

0

[

(

dΨm

dR

)2

+
m2

R2

(

Ψ2
m − R2

1 + R2

)

]

RdR

]

.
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Variational results

Justification

We can write Λ(Vm) = I1 + I2, where

I1 = ε2
∫

R2
η2

ε(x)

[

(

dΨm

dR

)2

+
m2

R2

(

Ψ2
m − R2

1 + R2

)

]

dXdY + ...

and

I2 = ε2 m2
∫

R2

η2
ε(x)

1 + R2 dXdY = ε2 m2
∫

R2

η2
ε(x)

ε2 +(x − x0)2 + (y − y0)2 dxdy .

For small ε > 0 and small (x0, y0) ∈ R
2, there is C > 0 such that

|I1| ≤ C ε2, |I2| ≤ C ε2 | log(ε)|.
Finally, we compute

∂2
x0

I2|x0=y0=0 = 2 ε2 m2
∫

R2
η2

ε(x)
3x2 − y2 − ε2

(ε2 +x2 + y2)3 dxdy

= 4πm2
∫ ∞

0

η2
ε(ε R)(R2 − 1)R

(1 + R2)3 dR

= 4πm2 ε2
(

log(ε) +
1
2

)

+ O(ε2+1/3).
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Variational results

Eigenfrequencies of the charge-one vortex

Euler–Lagrange equations for the leading part of L(Vm) = K (Vm) + Λ(Vm) give

−ẋ0 = ωmy0, ẏ0 = ωmx0,

Recall the transformation µ = 1
2 ε and Im(λ) = ω

2 .

5 10 15 20
0

0.5

1

1.5

2
λ

i/
Ω

µ/Ω

D.Pelinovsky (McMaster University) Ground and excited states 15 / 29



Variational results

Free dipole

A dipole consists of a pair of the charge-one vortex and the charge-one
antivortex,

Vd(x , y) = V1(x − x0, y − y0)V̄1(x + x0, y − y0).

Note that
∣

∣

∣

∣

∂Vd

∂X

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Vd

∂Y

∣

∣

∣

∣

2

= O(R−4) (1 − |Vd |2)2 = O(R−4) as R → ∞.

Although the potential energy needs not be renormalized, the interaction
energy is

ΛR(Vd ) =

∫

R2

(

∣

∣

∣

∣

∂Vd

∂X

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Vd

∂Y

∣

∣

∣

∣

2

+
1
2

(1 − |Vd |2)2

)

dXdY

= 2π log(A) + O(1) as A → ∞,

where x0 = ǫA (Ovchinnikov & Sigal, 2002).
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Variational results

Kinetic and potential energy

The single vortices for the stationary dipole are placed at (x0, 0) and (−x0, 0),
where it will be assumed that x0 → 0 and A = x0/ ε → ∞ as ε → 0.

Lemma

For small ε > 0 and small (x0, y0) ∈ R
2 such that x0/ ε is large as ε → 0, the

kinetic and potential energies of a dipole are represented by

K (Vd ) = 2πm ε(x0ẏ0 − y0ẋ0)
(

1 + O(ε) + O(x2
0 + y2

0 )
)

.

and

Λ(Vd) − Λ(Vd )|x0=y0=0 = 4π ε2(x2
0 + y2

0 )
(

log(ε) + O(1) + O(x2
0 + y2

0 )
)

+2π ε2 (log(x0/ ε) + O(1)) .
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Variational results

Eigenfrequencies of the dipole

Euler–Lagrange equations for the leading part of L(Vd ) = K (Vd ) + Λ(Vd) give
{

ẏ0 + 2 ε log(ε)x0 + ε
2x0

= 0,

−ẋ0 + 2 ε log(ε)y0 = 0.

The equilibrium state for the stationary dipole is

x0 =
1

2| log(ε)|1/2
, y0 = 0,

and the eigenfrequency of the epicyclic precession is

ωd = 2
√

2 ε | log(ε)| ≈
√

2ω1 + O(ε).
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Variational results

Quadrupole

Variational ansatz

Vq(x , y) = V1(x−x0, y−y0)V̄1(x +x0, y−y0)V1(x +x0, y +y0)V̄1(x−x0, y +y0).
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Rigorous results

First excited state

Consider the non-positive real stationary solutions

ε2 u′′
ε (x) + (1 − x2 − u2

ε(x))uε(x) = 0, x ∈ R.

The first excited state is an odd stationary solution such that

uε(0) = 0, uε(x) > 0 for all x > 0, and lim
x→∞

uε(x) = 0.

Theorem

For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with
properties above and there is C > 0 such that

∥

∥

∥

∥

uε − ηε tanh
( ·√

2 ε

)∥

∥

∥

∥

L∞
≤ C ε2/3 .

In particular, the solution converges pointwise as ε → 0 to

u0(x) := lim
ε→0

uε(x) = η0(x)sign(x), x ∈ R.
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Rigorous results

Steps of the proof

Step 1: Decomposition.
We substitute

uε(x) = ηε(x) tanh
(

x√
2 ε

)

+ wε(x)

and obtain
Lεwε = Hε + Nε(wε),

where

Lε := − ε2 ∂2
x + x2 − 1 + 3η2

ε(x) tanh2
(

x√
2 ε

)

,

Hε(x) := ηε(x)
(

η2
ε(x) − 1

)

sech2
(

x√
2 ε

)

tanh
(

x√
2 ε

)

+
√

2 ε η′
ε(x)sech2

(

x√
2 ε

)

and

Nε(wε)(x) = −3ηε(x) tanh
(

x√
2 ε

)

w2
ε (x) − w3

ε (x).
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Rigorous results

Steps of the proof

Step 2: Linear estimates.
Using variable x =

√
2 ε z, we obtain

L̂ε = −1
2

∂2
z + 2 ε2 z2 − 1 + 3η̂2

ε(z) tanh2(z) = L̂0 + Ûε(z),

where

L̂0 := −1
2

∂2
z + 2 − 3sech2(z)

and
Ûε(z) := 2 ε2 z2 + 3(η̂2

ε(z) − 1) tanh2(z).

The spectrum of L̂0 consists of two eigenvalues at 0 and 3
2 with eigenfunctions

sech2(z) and tanh(z)sech(z) and the continuous spectrum on [2,∞).
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Rigorous results

Steps of the proof
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Figure: Potentials of operators Lε (solid line) and L0 (dots) for the first excited state.

Resolvent of the unperturbed operator:

∃C > 0, α > 0 : ∀f̂ ∈ L2
odd(R) ∩ L∞

α (R) : ‖L̂−1
0 f̂‖H2∩L∞

α

≤ C‖f̂‖L2∩L∞
α

.

Resolvent of the full operator:

∃C > 0 : ∀f̂ ∈ L2
odd(R) : ‖L̂−1

ε f̂‖H2 ≤ C ε−2/3 ‖f̂‖L2 .
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Rigorous results

Steps of the proof

Step 3: Bounds on the inhomogeneous and nonlinear terms.
Recall that we are solving

Lεwε = Hε + Nε(wε),

where
Ĥε ∈ L2

odd(R) and N̂ε(ŵε) : H2
odd(R) 7→ L2

odd(R).

For any ε > 0 and α ∈ (0, 2), we have

‖Ĥε‖L2∩L∞
α

≤ ‖ηε‖L∞‖(1 − η̂2
ε)sech2(·)‖L2∩L∞

α

+
√

2 ε ‖η′
ε‖L∞‖sech2(·)‖L2∩L∞

α

≤ C ε2/3 .

For any ŵε ∈ H2(R), we have

‖N̂ε(ŵε)‖L2 ≤ 3‖ηε‖L∞‖ŵ2
ε ‖H2 + ‖ŵ3

ε ‖H2 ≤ 3‖ŵε‖2
H2 + ‖ŵε‖3

H2 .
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Rigorous results

Steps of the proof

Step 4: Normal-form transformation.
Let

ŵε = ŵ1 + ŵ2 + ϕ̂ε, ŵ1 = L̂−1
0 Ĥε, ŵ2 = −3L̂−1

0 η̂ε tanh(z)ŵ2
1 ,

where
∃C > 0 : ‖ŵ1‖H2∩L∞

α

≤ C ε2/3, ‖ŵ2‖H2∩L∞
α

≤ C ε4/3 .

The remainder term ϕ̂ε solves the new problem

Lεϕ̂ε = Hε + Nε(ϕ̂ε),

where
‖Hε‖L2 ≤ C ε2,

∀ϕ̂ε ∈ Bδ(H2
odd) : ‖Nε(ϕ̂ε)‖L2 ≤ C(δ)‖ϕ̂ε‖2

H2 ,

and

∀ϕ̂ε, φ̂ε ∈ Bδ(H2
odd) : ‖Nε(ϕ̂ε)−Nε(φ̂ε)‖L2 ≤ C(δ)

(

‖ϕ̂ε‖H2 + ‖φ̂ε‖H2

)

‖ϕ̂ε−φ̂‖H2 .
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Rigorous results

Steps of the proof

Step 5: Fixed-point arguments.
Since

∃C > 0 : ∀f̂ ∈ L2
odd(R) : ‖L−1

ε f̂‖H2 ≤ C ε−2/3 ‖f̂‖L2 ,

the map ϕ̂ε 7→ L−1
ε Nε(ϕ̂ε) is a contraction in the ball Bδ(H2

odd) if δ ≪ ε2/3.

On the other hand, the source term L−1
ε Hε is as small as O(ε4/3). Therefore,

Banach’s Fixed-Point Theorem applies in the ball Bδ(H2
odd) with δ ∼ ε4/3.

Step 6: Properties of uε(x). It remains to prove that uε(x) > 0 for all x > 0.
This property does not come immediately from the fixed-point solution

uε(x) = ηε(x) tanh
(

x√
2 ε

)

+ wε(x),

where ‖wε‖L∞ ≤ C ε2/3.
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Rigorous results

Second excited state

The second excited state is an odd stationary solution such that

uε(x) > 0 for all |x | > x0, uε(x) < 0 for all |x | < x0, and lim
x→∞

uε(x) = 0.

Theorem

For sufficiently small ε > 0, there exists a unique solution uε ∈ C∞(R) with
properties above and there exist a > 0 and C > 0 such that

∥

∥

∥

∥

uε − ηε tanh
( · − a√

2 ε

)

tanh
( · + a√

2 ε

)
∥

∥

∥

∥

L∞
≤ C ε2/3

and

a = − ε√
2

(

log(ε) +
1
2

log | log(ε)| − 3
2

log(2) + o(1)

)

as ε → 0.

In particular, x0 = a + O(ε5/3).
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Rigorous results

Steps of the proof
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Figure: Potential of operator Lε (solid line) and L0 (dots) for the second excited state.

Here the leading-order operator

L̂0(ζ) = −1
2
∂2

z + 2 − 3sech2(z + ζ) − 3sech2(z − ζ), ζ =
a√
2 ε

,

has two eigenvalues in the neighborhood of 0 for large ζ because of the
double-well potential centered at z = ±ζ.
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Rigorous results

Summary of our results

We justified asymptotic representations of the ground and excited states

We predicted asymptotic dependence of the distance between individual
solitons/vortices for m-excited states.

We predicted asymptotic dependence of the eigenfrequencies of
oscillations for m-excited states related to the dynamics of
solitons/vortices with respect to each other and to the harmonic potential.

We illustrated both asymptotic predictions numerically.
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