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Metric Graphs

Graphs are one-dimensional ap-
proximations for constrained dy-
namics in which transverse dimen-
sions are small with respect to lon-
gitudinal ones.

A metric graph is realized by a set
of edges and vertices, with a met-
ric structure on each edge. Proper
boundary conditions are needed on
the vertices to ensure that cer-
tain differential operators defined on
graphs are self-adjoint.

Kirchhoff boundary conditions:

I Functions in each edge have the same value at each vertex.

I Sum of fluxes (signed derivatives of functions) is zero at each vertex.



Tadpole Graph
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The ring is placed on the interval [−L,L] and the semi-infinite interval is
[0,∞). The Laplacian operator is defined by

∆Ψ =

[
u′′(x), x ∈ (−L,L)
v′′(y), y ∈ (0,∞)

]
,

acting on functions in the form

Ψ =

[
u(x), x ∈ (−L,L)
v(y), y ∈ (0,∞)

]
,

in the domain

D(∆) =
{ (u, v) ∈ H2(−L,L)×H2(0,∞) :
u(L) = u(−L) = v(0), u′(L)− u′(−L) = v′(0)

}
.



NLS on star graphs

I Gnutzmann-Smilansky-Derevyanko, Phys. Rev. A 83 (2011), 033831:
a complex set of resonances after inserting a single nonlinear edge in a
linear quantum graph; recent rigorous analysis by L.Tentarelli,
arXiv:1503.00455.

I Series of papers on star graphs by Adami-Cacciapuoti-Finco-Noja:
Scattering of solitons; Standing waves and stability (2011-14).

I Recent work by Adami-Serra-Tilli on nonexistence of ground states in
networks with closed cycles, Calc Var PDE (2015)

I Results on dispersive estimates on trees (including star graphs) in
V.Banica-L.Ignat (2011-2014).

I Classification of standing waves and computations of the bifurcation
diagram on tadpole graphs by C.Cacciapuoti, D.Finco, D.Noja, Phys.
Rev. E 91, 013206 (2015); rigorous results on existence, bifurcations,
and stability by D.Noja, D.P., and G.Shaikhova, Nonlinearity (2015).
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NLS on a tadpole graph

i
∂

∂t
Ψ = ∆Ψ + (p+ 1)|Ψ|2pΨ, Ψ ∈ D(∆),

where p > 0 is the parameter for the power nonlinearity. The power
nonlinearity is to be defined ”edge by edge”.

This is an example of interaction between NLS dynamics on a bounded and
unbounded sets. Although it is special, it highlights interesting behavior.

Problems:
I Existence and bifurcations of standing wave solutions Ψ = Φ(x)eiωt

−∆Φ− (p+ 1)|Φ|2pΦ = ωΦ ω ∈ R , Φ ∈ D(∆).

I Spectral and orbital stability of standing waves.



Existence of Standing waves


−u′′(x)− (p+ 1)|u|2pu = ωu, x ∈ (−L,L) ,
−v′′(y)− (p+ 1)|v|2pv = ωv, y ∈ (0,∞) ,
u(L) = u(−L) = v(0) ,
u′(L)− u′(−L) = v′(0) .

Linear spectrum:

I Essential spectrum: σess(−∆) = [0,∞) with resonance at 0.

I Embedded eigenvalues:
{
λn =

(
nπ
L

)2
, n ∈ N

}
⊂ σess(−∆)

The corresponding (normalized) eigenfunctions are:

Υn =
1√
L

(
sin
(nπx
L

)
, 0) n = 1, 2, 3, ...



Existence of Standing waves

The following bifurcation diagram has been computed for p = 1
(Cacciapuoti et al., 2015):
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The diagram describes the families of
stationary states and their possible
relation with the spectrum of −∆.

The model, although simple, exhibits a surprisingly rich behavior

I branches of standing waves bifurcating from the embedded eigenvalues

I pitchfork bifurcation at threshold ω = 0: edge solitons

I saddle-node bifurcations of standing waves (dashed lines)



Standing waves bifurcating from the embedded eigenvalues

Invariant reduction
−u′′(x)− (p+ 1)|u|2pu = ωu, x ∈ (−L,L),
u(L) = u(−L) = 0,
u′(L) = u′(−L).

Associated energy invariant

E =

(
du

dx

)2

+
(
ω + |u|2p

)
u2 = const.

For a given L, there exist two solutions u±n,ω in H2
per,odd(−L,L), n ∈ N for

every ω ∈ (−∞, λn), where λn :=
(
nπ
L

)2
. The map ω 7→ u±n,ω is C1 in ω.

Depending on the sign of ω the effective potential V has two different forms.

ω > 0 ω < 0



Numerical solutions for p = 1
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Figure : Standing wave solutions (u+n,ω , 0) versus x for n = 1 (a) and n = 2 (b)
corresponding to ω = −1.



Standing waves bifurcating from the zero resonance

Let ω = −ε2 and consider small values of ε. For the solution on the tail of
the tadpole, we can scale

v(x) = ε
1
p φ(z), z = εy,

where φ is a decaying solution of the second-order equation

−φ′′(z) + φ− (p+ 1)|φ|2pφ = 0, z > 0.

Let φ0(z) = sech
1
p (pz) be the unique symmetric solitary wave. Then,

φ(z) = φ0(z + a) for unknown parameter a.

Bifurcation problem:
−u′′(x) + ε2u− (p+ 1)|u|2pu = 0, x ∈ (−L,L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L)− u′(−L) = ε
1+ 1

p φ′0(a).

I Primary branch (positive definite) bifurcating from zero solution.

I Higher branches (sign-indefinite) bifurcating from solutions u±n,ω.



Primary branch

Using the scaling transformation

u(x) = ε
1
pψ(z), z = εx,

we can write the bifurcation problem as
−ψ′′(z) + ψ − (p+ 1)|ψ|2pψ = 0, z ∈ (−εL, εL),
ψ(εL) = ψ(−εL) = φ0(a),
ψ′(εL)− ψ′(−εL) = φ′0(a).

Construction of positive solution:

I An even solution is defined near the origin: ψ(0) = ψ0, ψ′(0) = 0.

I The continuity boundary condition

φ0(a) = ψ(εL) = ψ0 +
1

2
ψ′′(0)ε2L2 +O(ε4),

hence ψ0 = φ0(a) +O(ε2) is uniquely defined for every a ∈ R.

I The flux boundary condition

φ′0(a) = 2ψ′(εL) = 2ψ′′(0)εL+O(ε3).

where φ′0(0) = 0 and φ′′0 (0) 6= 0. Hence, a = 2εL+O(ε3) is unique.

I The small solution is unique and positive: ψ = 1 +OC∞(−L,L)(ε
2).
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Higher branches

Bifurcation problem:
−u′′(x) + ε2u− (p+ 1)|u|2pu = 0, x ∈ (−L,L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L)− u′(−L) = ε
1+ 1

p φ′0(a).

(1)

Since u ≈ u±
n,ω=−ε2 6= 0, no scaling transformation can be used.

Construction of particular solutions:

I Take uε := u±
n,ω=−ε2 and translate as u(x) = uε(x+ b) for b ∈ R.

I Since uε is 2L-periodic, the flux boundary condition is satisfied if a = 0.

I The continuity boundary conditions yields

uε(L+ b) = ε
1
p , φ0(0) = 1.

Since uε(L) = 0 and u′ε(L) 6= 0, b = 1
u′
ε(L)

ε
1
p +O

(
ε

3
p

)
is unique.

I Pitchfork bifurcation: two different solutions exist for u′ε(L) ≷ 0.

I Uniqueness of solution u ≈ uε can be shown.
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Numerical solutions for p = 1
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Figure : Standing wave solutions (u, v) versus x for ω = −1 along the primary
branch (a) and the higher branches for n = 1 (b,c).



Summary on existence of standing waves

1. A continuous branch bifurcating
from the zero energy resonance
of the system

2. A continuous branch of edge
solitons displaying a pitchfork
bifurcation at the threshold of
the continuous spectrum
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Open problems:

I Continuation of new branches in ω to ω → −∞
I Prediction of saddle-node bifurcations for dashed branches.



Orbital stability

Recall that NLS has U(1), or phase, symmetry. No stability of equilibrium
points Φ can hold, but stability of equilibrium orbits

{
eiθΦ

}
θ∈R may be

attained in some cases.

Definition
We say that eiωtΦ is orbitally stable in a Banach space V if ∀ε > 0 ∃δ > 0
such that ∀u0 ∈ V with ‖u0 − Φ‖V < δ, NLS has a global solution u(t) ∈ V
with initial datum u0 satisfying

inf
θ∈R
‖u(t)− eiθΦ‖V < ε,

for every t ∈ R.



Spectral stability

Linearization of NLS with Ψ = eiωt (Φ(x) + U(x, t) + iW (x, t)) and the
separation of variables U(x, t) = Ũ(x)eλt results in the spectral problem

L+Ũ = −λW̃ , L−W̃ = λŨ,

associated with the Schrödinger operators L+ and L−. For the tadpole
graph, this yields two self-adjoint problems

L− :


−U ′′(x)− ωU − (p+ 1)|u|2pU = λU, x ∈ (−L,L),
−V ′′(y)− ωV − (p+ 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V (0),
U ′(L)− U ′(−L) = V ′(0),

and

L+ :


−U ′′(x)− ωU − (2p+ 1)(p+ 1)|u|2pU = λU, x ∈ (−L,L),
−V ′′(y)− ωV − (2p+ 1)(p+ 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V (0),
U ′(L)− U ′(−L) = V ′(0).

Definition
We say that the standing wave is spectrally unstable if there exist an
eigenvector Ũ , W̃ ∈ D(−∆) for an eigenvalue with Re(λ) > 0. Otherwise,
we say that it is weakly spectrally stable.



Criteria for spectral stability

Constrained space associated with the U(1), or phase, symmetry:

L2
c :=

{
U ∈ L2 : 〈U,Φ〉L2 = 0

}
.

Denote the number of negative eigenvalues of L± by n(L±) and assume
that L+ is invertible and Ker(L−) is one-dimensional.

The following criteria summarize the results from Shatah–Straus (1983),
Weinstein (1985), Grillakis (1990), Jones (1990),
Kapitula–Kevrekidis–Stanstede (2004), P. (2005), etc.

I If n(L+) = 1 and n(L−) = 0, then
I Φ is spectrally and orbitally stable if n(L+|L2

c
) = 0

I Φ is unstable if n(L+|L2
c
) = 1.

I If n(L+|L2
c
)− n(L−) is nonzero, then Φ is unstable.

I If n(L+|L2
c
) + n(L−) is odd, then Φ is unstable.

I If n(L+|L2
c
) + n(L−) is even, then Φ is stable if there exist

n(L+|L2
c
) + n(L−) eigenvalues λ ∈ iR of negative Krein signature.



Stability of the primary branch for ω = −ε2

Recall that
Φ = ε

1
p (ψ(z), φ(z)), z = εx,

where ψ(z) = 1 +O(z2) and φ(z) = φ0(z + a).

I n(L−) = 0 because Φ is strictly positive.

I n(L+) = 1 because of the reduction to the scalar Schrödinger equation.

The spectral problem for L+ with λ = ε2Λ is
−U ′′(z) + U(z)− (2p+ 1)(p+ 1)|ψ(z)|2pU(z) = ΛU(z), z ∈ (−εL, εL),
−V ′′(z) + V (z)− (2p+ 1)(p+ 1)|φ(z)|2pV (z) = ΛV (z), z ∈ (0,∞),
U(εL) = U(−εL) = V (0),
U ′(εL)− U ′(−εL) = V ′(0),

The leading-order spectral problem is related to the scalar Schrödinger
equation on the line{
−V ′′(z) + V (z)− (2p+ 1)(p+ 1)sech2(pz)V (z) = ΛV (z), z ∈ (0,∞),
V ′(0) = 0,

which has only one negative eigenvalue Λ0 < 0.



Stability of the primary branch

I n(L+|L2
c
) = 0 if the slope condition is satisfied

d

dω
‖Φ‖2 < 0

This can be checked directly from asymptotic solutions:

‖u‖2L2(−L,L) = ε
2
p ‖ψ(ε·)‖2L2(−L,L) = ε

2
p
(
2L+O(ε2)

)
and

‖v‖2L2(0,∞) = ε
2
p
−1‖φ0‖2L2(a,∞) = ε

2
p
−1 (‖φ0‖2L2(0,∞) +O(ε)

)
.

Theorem
For ω = −ε2 with ε > 0 sufficiently small, the primary branch is orbitally
stable for every p ∈ (0, 2) and orbitally unstable for every p ∈ (2,∞).

Open problems:

I For p = 1, show that Φ is a constrained minimizer of Sω, ω < 0.

I For p = 2, the test for orbital stability is inconclusive.



Stability of the higher branches for ω = −ε2

The degenerate higher branches are:

Φ = (u±n,ω(x+ b), 0).

Numerical solutions for p = 1
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Figure : Eigenvalues λ of the spectral stability problem on the complex plane for
the standing wave solutions (u+n,ω , 0) with n = 1 (a) and n = 2 (b) for ω = −1.



Conclusions and Perspectives

- The classification of nonlinear bound states for the cubic NLS equation on
a tadpole graph exhibits behavior previously unknown for the standard
NLS equation with power nonlinearity on the line.

- The analysis suggests soliton bifurcations from the edge of the continuum
spectrum is a general feature when stationary states on a bounded interval
are coupled with stationary states on the unbounded interval. Stability
properties are accessible near the bifurcation.

- Complete the stability analysis:

I Energy minimization properties for the primary branch

I Spectral stability along the higher branches as ω → −∞

- Other graphs: influence of geometry (or more complex topology)?
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