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Metric Graphs

~

Graphs are one-dimensional ap- S
proximations for constrained dy-

namics in which transverse dimen-

sions are small with respect to lon-

gitudinal ones.

A metric graph is realized by a set
of edges and vertices, with a met-
ric structure on each edge. Proper
boundary conditions are needed on
the vertices to ensure that cer-
tain differential operators defined on
graphs are self-adjoint.

Kirchhoff boundary conditions:
» Functions in each edge have the same value at each vertex.

» Sum of fluxes (signed derivatives of functions) is zero at each vertex.



Tadpole Graph

The ring is placed on the interval [—L, L] and the semi-infinite interval is
[0,00). The Laplacian operator is defined by

AU — { u'(z), =€ (=L L) } 7

v"(y), ye€(0,00)

acting on functions in the form

v [ G

in the domain



NLS on star graphs

>

Gnutzmann-Smilansky-Derevyanko, Phys. Rev. A 83 (2011), 033831:
a complex set of resonances after inserting a single nonlinear edge in a
linear quantum graph; recent rigorous analysis by L.Tentarelli,
arXiv:1503.00455.

Series of papers on star graphs by Adami-Cacciapuoti-Finco-Noja:
Scattering of solitons; Standing waves and stability (2011-14).

Recent work by Adami-Serra-Tilli on nonexistence of ground states in
networks with closed cycles, Calc Var PDE (2015)

Results on dispersive estimates on trees (including star graphs) in
V.Banica-L.Ignat (2011-2014).

Classification of standing waves and computations of the bifurcation

diagram on tadpole graphs by C.Cacciapuoti, D.Finco, D.Noja, Phys.
Rev. E 91, 013206 (2015); rigorous results on existence, bifurcations,
and stability by D.Noja, D.P., and G.Shaikhova, Nonlinearity (2015).



NLS on a tadpole graph

NLS on a tadpole graph

i%\lf =AU+ (p+ 1)|Y**¥, ¥eDA),

where p > 0 is the parameter for the power nonlinearity. The power
nonlinearity is to be defined ”edge by edge”.

This is an example of interaction between NLS dynamics on a bounded and
unbounded sets. Although it is special, it highlights interesting behavior.

Problems: )
» Existence and bifurcations of standing wave solutions ¥ = ®(x)e""

—AD— (p+1)[PPP=wd weR, deDA).

» Spectral and orbital stability of standing waves.



Existence of Standing waves

—u"(z) — (p+ D|u|*’v=wu, =€ (-L,L),
() — (p+ Dol v = wv, g€ (0,00)
u(L) = u(-L) =v(0) ,

W' (L) —u'(—=L) ='(0) .

Linear spectrum:

» Essential spectrum: oess(—A) = [0, 00) with resonance at 0.

» Embedded eigenvalues: {)\n = ("—L")2 , nE N} C Oess(—A)

The corresponding (normalized) eigenfunctions are:
nrx

T, = %(sin (T) 0 n=1,23,..
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Existence of Standing waves

The following bifurcation diagram has been computed for p =1
(Cacciapuoti et al., 2015):

llfl

""""""""" § The diagram describes the families of
stationary states and their possible
) relation with the spectrum of —A.

A1l A2 w

The model, although simple, exhibits a surprisingly rich behavior
» branches of standing waves bifurcating from the embedded eigenvalues
» pitchfork bifurcation at threshold w = 0: edge solitons

» saddle-node bifurcations of standing waves (dashed lines)



Standing waves bifurcating from the embedded eigenvalues
Invariant reduction

—u”(z) — (p+ D|u|*’u=wu, =& (-L,L),
u(L) =u(-L) =0,
W' (L) = u'(=L).

Associated energy invariant

du 2 2 2
E = (%> + (w + [u|*") u® = const.

For a given L, there exist two solutions uiw in ngr,odd(—L, L), n €N for

every w € (—00, A\n), where A, := ("L’T)2 The map w — uF,, is C* in w.

n,w

Depending on the sign of w the effective potential V has two different forms.

1




Numerical solutions for p =1
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Figure : Standing wave solutions (us .,,0) versus « for n =1 (a) and n = 2 (b)

corresponding to w = —1.



Standing waves bifurcating from the zero resonance

Let w = —e? and consider small values of €. For the solution on the tail of
the tadpole, we can scale

1
v(z) = €erd(z), z=ey,
where ¢ is a decaying solution of the second-order equation

—¢"(2)+¢— (p+1)|¢[Pp=0, 2z>0.

1
Let ¢o(z) = sech? (pz) be the unique symmetric solitary wave. Then,
@(2) = ¢po(z + a) for unknown parameter a.

Bifurcation problem:

—u’(z) + €u — (pl—i— Djuf*u=0, =z¢c(-L,L),
u(L) = u(~L) = b guo(a),
u'(L) —u/(=L) = € " gy (a).

» Primary branch (positive definite) bifurcating from zero solution.

» Higher branches (sign-indefinite) bifurcating from solutions uiw.



Primary branch
Using the scaling transformation
u(x) = e%d)(z), z = ex,
we can write the bifurcation problem as

() + ¥~ (p+ D[P =0, z€ (—eL,eL),
P(el) = ¢(—eL) = ¢o(a),
' (eL) — 9’ (—€L) = ¢o(a).



Primary branch
Using the scaling transformation
u(x) = e%d)(z), z = ex,
we can write the bifurcation problem as

() + ¥~ (p+ D[P =0, z€ (—eL,eL),
P(el) = ¢(—eL) = ¢o(a),
' (eL) — 9’ (—€L) = ¢o(a).

Construction of positive solution:
» An even solution is defined near the origin: ¥(0) = 19, ¥’ (0) = 0.

» The continuity boundary condition
1
do(a) = Y(eL) = o + 51" (0)’L* + O(c*),
hence 1o = ¢o(a) + O(e?) is uniquely defined for every a € R.
» The flux boundary condition
0h(a) = 20/ (eL) = 20" (0)eL + O(e"),

where ¢4(0) = 0 and ¢§(0) # 0. Hence, a = 2¢L 4 O(¢®) is unique.
» The small solution is unique and positive: ©» =1+ Ocoo(,LyL)(GZ).



Higher branches
Bifurcation problem:

—u'(z) + €u — (p1+ D|ul*’u=0, =z€(-L,L),
u(E) = u(~1) = ¢ oa)
/(L) —u'(=L) = € "7 gg(a).

+

we—_c2 7 0, no scaling transformation can be used.
w=

Since u ~ u



Higher branches
Bifurcation problem:

—u'(z) + €u — (p1+ D|ul*’u=0, =z€(-L,L),
u(L) = u(-L) = e¥ ¢o(a), (1)
/(L) —u'(=L) = € "7 gg(a).

+

we—_c2 7 0, no scaling transformation can be used.
w=

Since u ~ u

Construction of particular solutions:
> Take u, := uiwz_eg and translate as u(z) = uc(z +b) for b € R.
> Since u. is 2L-periodic, the flux boundary condition is satisfied if a = 0.

» The continuity boundary conditions yields
ue(L+b) =er, ¢o(0) =1.

Since ue(L) = 0 and u(L) #0, b = ﬁe% +0 (e%) is unique.

v

Pitchfork bifurcation: two different solutions exist for u, (L) = 0.

» Uniqueness of solution u = u. can be shown.



Numerical solutions for p =1

Figure :
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Summary on existence of standing waves

(<]l

1. A continuous branch bifurcating
from the zero energy resonance
of the system

2. A continuous branch of edge
solitons displaying a pitchfork b
bifurcation at the threshold of
the continuous spectrum

A1

Open problems:
» Continuation of new branches in w to w — —o0

» Prediction of saddle-node bifurcations for dashed branches.

A2



Orbital stability

Recall that NLS has U(1), or phase, symmetry. No stability of equilibrium
points ® can hold, but stability of equilibrium orbits {ezetb}GGR may be
attained in some cases.

Definition

We say that e'‘® is orbitally stable in a Banach space V if Ve > 036 > 0
such that Yug € V with ||up — ®||v < §, NLS has a global solution u(t) € V
with initial datum wo satisfying

in [[u(t) — €@ <,

for every t € R.




Spectral stability

Linearization of NLS with ¥ = ei‘jt (®(z) + U(z,t) +iW(x,t)) and the
separation of variables U (x,t) = U(z)e*" results in the spectral problem

LiU=-\W, L_W=2U,

associated with the Schrédinger operators Ly and L_. For the tadpole
graph, this yields two self-adjoint problems

—U"(x) —wU — (p+ D|u|??U =\U, z¢€(-L,L),
—V"(y) —wV = (p+ D[PV =4V, y € (0,00),
U(L) =U(-L) =V(0),

U'(L) =U'(=L) =V'(0),

L_:

and

~U"(z) —wU — 2p+ 1)(p+ V|u|??U = \U, =z € (-L,L),
—V"(y) —wV = (2p+ D(p + DP|*PV = AV, y € (0,00),
U(L) =U(-L) =V(0),

U'(L) — U'(=L) = V'(0).

Ly :

Definition

We say that the standing wave is spectrally unstable if there exist an
eigenvector U, W € D(—A) for an eigenvalue with Re()\) > 0. Otherwise,
we say that it is weakly spectrally stable.



Criteria for spectral stability
Constrained space associated with the U(1), or phase, symmetry:
L2={Uel’: (U®)=0}.

Denote the number of negative eigenvalues of L1 by n(L+) and assume
that Ly is invertible and Ker(L_) is one-dimensional.

The following criteria summarize the results from Shatah—Straus (1983),
Weinstein (1985), Grillakis (1990), Jones (1990),
Kapitula—Kevrekidis—Stanstede (2004), P. (2005), etc.

» If n(Ly) =1 and n(L_) = 0, then
> & is spectrally and orbitally stable if n(L+|Lg) =0
> @ is unstable if n(Li|;2) = 1.

> If n(L4[r2) —n(L-) is nonzero, then @ is unstable.
> If n(Ly[r2) + n(L-) is odd, then @ is unstable.

> If n(Ly[r2) + n(L-) is even, then ® is stable if there exist
n(Ly|pz) +n(L-) eigenvalues A € iR of negative Krein signature.



Stability of the primary branch for w = —¢?

Recall that .
o :GE(’L/}(Z),d)(Z)), z = €z,
where 1(2) = 14 O(2%) and ¢(2) = ¢o(z + a).

» n(L_) = 0 because ® is strictly positive.
» n(L4+) = 1 because of the reduction to the scalar Schrédinger equation.
The spectral problem for L, with A = €2A is
—U"(2) + U(2) = 2p + D) (p + 1)|9(2)|**U(2) = AU(2), 2 € (—eL,eL),
“V"(2) +V(2) = @+ 1)(p + 1) |¢(2)]*"V (2) = AV (2), 2 € (0,00),
U(eL) =U(—€L) = V(0),
U'(eL) — U'(—eL) = V'(0),

The leading-order spectral problem is related to the scalar Schrodinger
equation on the line

{ —V"(2) +V(2) = (2p+ 1)(p + D)sech?®(pz)V(2) = AV (2), z¢€ (0,00),
V'(0) =0,

which has only one negative eigenvalue Ag < 0.



Stability of the primary branch

» n(L4|r2) = 0 if the slope condition is satisfied
d 2
—||® 0
L <
This can be checked directly from asymptotic solutions:

2 2
||U||%2(7L,L) = €P ||w(6')”%2(7L,L) = €r (2L =+ 0(52)>

and

2_ 2_
ol 220,00y = €7~ b0l 720,00y = €7 (190]1Z2(0,00) + O(€)) -

Theorem
For w = —€* with € > 0 sufficiently small, the primary branch is orbitally
stable for every p € (0,2) and orbitally unstable for every p € (2,00).

Open problems:
» For p = 1, show that ® is a constrained minimizer of S,,, w < 0.

» For p = 2, the test for orbital stability is inconclusive.



Stability of the higher branches for w = —¢?

The degenerate higher branches are:

® = (uf,(z+0),0).

Numerical solutions for p = 1
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Figure : Eigenvalues X of the sEectral stability problem on the complex plane for
the standing wave solutions (u;; .,,0) with n =1 (a) and n = 2 (b) for w = —1.



Conclusions and Perspectives

- The classification of nonlinear bound states for the cubic NLS equation on
a tadpole graph exhibits behavior previously unknown for the standard
NLS equation with power nonlinearity on the line.

- The analysis suggests soliton bifurcations from the edge of the continuum
spectrum is a general feature when stationary states on a bounded interval
are coupled with stationary states on the unbounded interval. Stability
properties are accessible near the bifurcation.

- Complete the stability analysis:
» Energy minimization properties for the primary branch

» Spectral stability along the higher branches as w — —oo

- Other graphs: influence of geometry (or more complex topology)?
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