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Introduction

Graph models for the dynamics of constrained quantum particles were first
suggested by Pauling and then used by Ruedenberg and Scherr in 1953 to
study the spectrum of aromatic hydrocarbons.

Nowadays graph models are widely used in the modeling of quantum
dynamics of thin graph-like structures (quantum wires, nanotechnology,
large molecules, periodic arrays in solids, photonic crystals...).

I G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs
(AMS, Providence, 2013).

I P. Exner, J. Keating, P. Kuchment, T. Sunada, and A. Teplyaev,
Analysis on graphs and its applications, Proceedings of Symposia in
Pure Mathematics, AMS 2008.



Metric Graphs

Graphs are one-dimensional ap-
proximations for constrained dy-
namics in which transverse dimen-
sions are small with respect to lon-
gitudinal ones.

A metric graph is realized by a set
of edges and vertices, with a met-
ric structure on each edge. Proper
boundary conditions are needed on
the vertices to ensure that cer-
tain differential operators defined on
graphs are self-adjoint.

Kirchhoff boundary conditions:

I Functions in each edge have the same value at each vertex.

I Sum of fluxes (signed derivatives of functions) is zero at each vertex.



Tadpole Graph
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The ring is placed on the interval [−L,L] and the semi-infinite interval is
[0,∞). The Laplacian operator is defined by

∆Ψ =

[
u′′(x), x ∈ (−L,L)
v′′(y), y ∈ (0,∞)

]
,

acting on functions in the form

Ψ =

[
u(x), x ∈ (−L,L)
v(y), y ∈ (0,∞)

]
,

in the domain

D(∆) =
{ (u, v) ∈ H2(−L,L)×H2(0,∞) :
u(L) = u(−L) = v(0), u′(L)− u′(−L) = v′(0)

}
.



Laplacian on a Tadpole Graph

x
y

-L

L 0

The Kirchhoff boundary conditions are symmetric:

〈u1, u
′′
2 〉L2(−L,L) + 〈v1, v′′2 〉L2(0,∞) = 〈u′′1 , u2〉L2(−L,L) + 〈v′′1 , v2〉L2(0,∞)

Indeed, we have

〈Ψ1,∆Ψ2〉 − 〈∆Ψ1,Ψ2〉 =
[
ū′1u2 − ū1u

′
2

] ∣∣∣L
−L

+
[
v̄′1v2 − v̄1v′2

] ∣∣∣
0

= 0,

if functions decomposed as Ψ = (u, v) in the “head” and “tail” of the
tadpole satisfy the Kirchhoff boundary conditions:{

u(L) = u(−L) = v(0)

v′(0)− u′(L) + u′(−L) = 0



NLS on star graphs

New subject with several recent results:

I Gnutzmann-Smilansky-Derevyanko, Phys. Rev. A 83 (2011), 033831:
a complex set of resonances after inserting a single nonlinear edge in a
linear quantum graph; recent rigorous analysis by L.Tentarelli,
arXiv:1503.00455.

I Series of papers on star graphs by Adami-Cacciapuoti-Finco-Noja:
Scattering of solitons; Standing waves and stability (2011-14).

I Recent work by Adami-Serra-Tilli on nonexistence of ground states in
networks with closed cycles, arXiv:1406.4036.

I Results on dispersive estimates on trees (including star graphs) in
V.Banica-L.Ignat (2011-2014).

I Classification of standing waves and computations of the bifurcation
diagram on tadpole graphs by C.Cacciapuoti, D.Finco, D.Noja, Phys.
Rev. E 91 (2015), 013206; rigorous results on existence, bifurcations,
and stability by D.Noja, D.P., and G.Shaikhova, Nonlinearity 28
(2015), 2343.



NLS on a tadpole graph
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NLS on a tadpole graph

i
∂

∂t
Ψ = ∆Ψ + (p+ 1)|Ψ|2pΨ, Ψ ∈ D(∆),

where p > 0 is the parameter for the power nonlinearity. The power
nonlinearity is to be defined ”edge by edge”.

This is an example of interaction between NLS dynamics on a bounded and
unbounded sets. Although it is special, it highlights interesting and general
behaviors.

Problems:
I Existence and bifurcations of standing wave solutions Ψ = Φ(x)eiωt

−∆Φ− (p+ 1)|Φ|2pΦ = ωΦ ω ∈ R , Φ ∈ D(∆).

I Spectral and orbital stability of standing waves.



Existence of Standing waves


−u′′(x)− (p+ 1)|u|2pu = ωu, x ∈ (−L,L) ,
−v′′(y)− (p+ 1)|v|2pv = ωv, y ∈ (0,∞) ,
u(L) = u(−L) = v(0) ,
u′(L)− u′(−L) = v′(0) .

Linear spectrum:

I Essential spectrum: σess(−∆) = [0,∞) with resonance at 0.

I Embedded eigenvalues:
{
λn =

(
nπ
L

)2
, n ∈ N

}
⊂ σess(−∆)

The corresponding (normalized) eigenfunctions are:

Υn =
1√
L

(
sin
(nπx
L

)
, 0) n = 1, 2, 3, ...



Existence of Standing waves

The following bifurcation diagram has been computed for p = 1
(Cacciapuoti et al., 2015):

ω
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The diagram describes the families of
stationary states and their possible
relation with the spectrum of −∆.

The model, although simple, exhibits a surprisingly rich behavior

I branches of standing waves bifurcating from the embedded eigenvalues

I pitchfork bifurcation at threshold ω = 0: edge solitons

I branches of non linearly related standing waves (dashed lines)



Standing waves bifurcating from the embedded eigenvalues

Invariant reduction
−u′′(x)− (p+ 1)|u|2pu = ωu, x ∈ (−L,L),
u(L) = u(−L) = 0,
u′(L) = u′(−L).

Associated energy invariant

E =

(
du

dx

)2

+
(
ω + |u|2p

)
u2 = const.

Depending on the sign of ω the effective potential V has two different forms.

ω > 0 ω < 0



Standing waves bifurcating from the embedded eigenvalues

Proposition

The existence problem with ω ∈ (−∞, λn) admits two solutions u±n,ω in
H2

per,odd(−L,L), n ∈ N. The map ω 7→ u±n,ω ∈ H2
per,odd(−L,L) is C1 in ω.

Steps:

I Two C1 solution branches u±n,ω bifurcate from λn =
(
nπ
L

)2
and exist

for ω . λn. By symmetry, u−n,ω(x) = u+
n,ω(−x).

I If ω ∈ (0, λn), then Tn = L/n belongs to the range
(

0, π√
ω

)
and the

two C1 solution branches correspond to the energy level En = E(Tn).

I If ω ≤ 0, the two C1 solution branches continue uniquely for the same
energy level En.

ω > 0 ω < 0
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Numerical solutions for p = 1
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Figure : Standing wave solutions (u+n,ω , 0) versus x for n = 1 (a) and n = 2 (b)
corresponding to ω = −1.



Standing waves bifurcating from the zero resonance

Let ω = −ε2 and consider small values of ε. For the solution on the tail of
the tadpole, we can scale

v(x) = ε
1
p φ(z), z = εy,

where φ is a decaying solution of the second-order equation

−φ′′(z) + φ− (p+ 1)|φ|2pφ = 0, z > 0.

Let φ0(z) = sech
1
p (pz) be the unique symmetric solitary wave. Then,

φ(z) = φ0(z + a) for unknown parameter a.

Bifurcation problem:
−u′′(x) + ε2u− (p+ 1)|u|2pu = 0, x ∈ (−L,L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L)− u′(−L) = ε
1+ 1

p φ′0(a).

(1)

I Primary branch (positive definite) bifurcating from zero solution.

I Higher branches (sign-indefinite) bifurcating from solutions u±n,ω.



Primary branch

Using the scaling transformation

u(x) = ε
1
pψ(z), z = εx,

we can write the bifurcation problem as
−ψ′′(z) + ψ − (p+ 1)|ψ|2pψ = 0, z ∈ (−εL, εL),
ψ(εL) = ψ(−εL) = φ0(a),
ψ′(εL)− ψ′(−εL) = φ′0(a).

Construction of positive solution:

I An even solution is defined near the origin: ψ(0) = ψ0, ψ′(0) = 0.

I The continuity boundary condition

φ0(a) = ψ(εL) = ψ0 +
1

2
ψ′′(0)ε2L2 +O(ε4),

hence ψ0 = φ0(a) +O(ε2) is uniquely defined for every a ∈ R.

I The flux boundary condition

φ′0(a) = 2ψ′(εL) = 2ψ′′(0)εL+O(ε3).

where φ′0(0) = 0 and φ′′0 (0) 6= 0. Hence, a = 2εL+O(ε3) is unique.

I The small solution is unique and positive: u = ε
1
p (1 +OC∞(−L,L)(ε

2)).
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Higher branches

Bifurcation problem:
−u′′(x) + ε2u− (p+ 1)|u|2pu = 0, x ∈ (−L,L),

u(L) = u(−L) = ε
1
p φ0(a),

u′(L)− u′(−L) = ε
1+ 1

p φ′0(a).

(2)

Since u ≈ u±
n,ω=−ε2 6= 0, no scaling transformation can be used.

Construction of particular solutions:

I Take uε := u±
n,ω=−ε2 and translate as u(x) = uε(x+ b) for b ∈ R.

I Since uε is 2L-periodic, the flux boundary condition is satisfied if a = 0.

I The continuity boundary conditions yields

uε(L+ b) = ε
1
p , φ0(0) = 1.

Since uε(L) = 0 and u′ε(L) 6= 0, b = 1
u′
ε(L)

ε
1
p +O

(
ε

3
p

)
is unique.

I Pitchfork bifurcation: two different solutions exist for u′ε(L) ≷ 0.

Uniqueness of solution u ≈ uε can be shown.
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Numerical solutions for p = 1

−3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

 

 

u

v

−3 −2 −1 0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

u

v

−3 −2 −1 0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

u

v

Figure : Standing wave solutions (u, v) versus x for ω = −1 along the primary
branch (a) and the higher branches for n = 1 (b,c).



Existence of Standing waves

1. A continuous branch bifurcating
from the zero energy resonance
of the system

2. A continuous branch of edge
solitons displaying a pitchfork
bifurcation at the threshold of
the continuous spectrum
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Open problems:

I Continuation of new branches in ω to ω → −∞
I Prediction of saddle-node bifurcations observed for the dashed

branches.



Orbital stability

Recall that NLS has U(1), or phase, symmetry. No stability of equilibrium
points Φ can hold, but stability of equilibrium orbits

{
eiθΦ

}
θ∈R may be

attained in some cases.

Definition
We say that eiωtΦ is orbitally stable in a Banach space V if ∀ε > 0 ∃δ > 0
such that ∀u0 ∈ V with ‖u0 − Φ‖V < δ, NLS has a global solution u(t) ∈ V
with initial datum u0 satisfying

inf
θ∈R
‖u(t)− eiθΦ‖V < ε,

for every t ∈ R.



Spectral stability

Linearization of NLS with Ψ = eiωt (Φ(x) + U(x, t) + iW (x, t)) and the
separation of variables U(x, t) = Ũ(x)eλt results in the spectral problem

L+Ũ = −λW̃ , L−W̃ = λŨ,

associated with the Schrödinger operators L+ and L−. For the tadpole
graph, this yields two self-adjoint problems

L− :


−U ′′(x)− ωU − (p+ 1)|u|2pU = λU, x ∈ (−L,L),
−V ′′(y)− ωV − (p+ 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V (0),
U ′(L)− U ′(−L) = V ′(0),

and

L+ :


−U ′′(x)− ωU − (2p+ 1)(p+ 1)|u|2pU = λU, x ∈ (−L,L),
−V ′′(y)− ωV − (2p+ 1)(p+ 1)|v|2pV = λV, y ∈ (0,∞),
U(L) = U(−L) = V (0),
U ′(L)− U ′(−L) = V ′(0).

Definition
We say that the standing wave is spectrally unstable if there exist an
eigenvector Ũ , W̃ ∈ D(−∆) for an eigenvalue with Re(λ) > 0. Otherwise,
we say that it is weakly spectrally stable.



Criteria for spectral stability

Constrained space associated with the U(1), or phase, symmetry:

L2
c :=

{
U ∈ L2 : 〈U,Φ〉L2 = 0

}
.

Denote the number of negative eigenvalues of L± by n(L±) and assume
that L+ is invertible and Ker(L−) is one-dimensional.

The following criteria summarize the results from Shatah–Straus (1983),
Weinstein (1985), Grillakis (1990), Jones (1990),
Kapitula–Kevrekidis–Stanstede (2004), P. (2005), etc.

I If n(L+) = 1 and n(L−) = 0, then
I Φ is spectrally and orbitally stable if n(L+|L2

c
) = 0

I Φ is spectrally and orbitally unstable if n(L+|L2
c
) = 1.

I If n(L+|L2
c
)− n(L−) is nonzero, then Φ is unstable.

I If n(L+|L2
c
) + n(L−) is odd, then Φ is unstable.

I If n(L+|L2
c
) + n(L−) is even, then Φ is spectrally stable if there exist

n(L+|L2
c
) + n(L−) eigenvalues λ ∈ iR of negative Krein signature.



Stability of the primary branch for ω = −ε2

Recall that
Φ = ε

1
p (ψ(z), φ(z)), z = εx,

where ψ(z) = 1 +O(z2) and φ(z) = φ0(z + a).

I n(L−) = 0 because Φ is strictly positive.

I n(L+) = 1 because of the scaling arguments.

The spectral problem for L+ with λ = ε2Λ is
−U ′′(z) + U(z)− (2p+ 1)(p+ 1)|ψ(z)|2pU(z) = ΛU(z), z ∈ (−εL, εL),
−V ′′(z) + V (z)− (2p+ 1)(p+ 1)|φ(z)|2pV (z) = ΛV (z), z ∈ (0,∞),
U(εL) = U(−εL) = V (0),
U ′(εL)− U ′(−εL) = V ′(0),

The leading-order spectral problem is related to the scalar Schrödinger
equation on the line{
−V ′′(z) + V (z)− (2p+ 1)(p+ 1)sech2(pz)V (z) = ΛV (z), z ∈ (0,∞),
V ′(0) = 0,

which has only one negative eigenvalue Λ0 < 0.



Stability of the primary branch

I n(L+|L2
c
) = 0 if the slope condition is satisfied

d

dω
‖Φ‖2 < 0

This can be checked directly from asymptotic solutions:

‖u‖2L2(−L,L) = ε
2
p ‖ψ(ε·)‖2L2(−L,L) = ε

2
p
(
2L+O(ε2)

)
and

‖v‖2L2(0,∞) = ε
2
p
−1‖φ0‖2L2(a,∞) = ε

2
p
−1 (‖φ0‖2L2(0,∞) +O(ε)

)
.

Theorem
For ω = −ε2 with ε > 0 sufficiently small, the primary branch is orbitally
stable for every p ∈ (0, 2) and orbitally unstable for every p ∈ (2,∞).

Open problems:

I For p = 1, show that Φ is a constrained minimizer of Sω, ω < 0.

I For p = 2, the test for orbital stability is inconclusive.



Spectral instability for (u±n,ω(x+ b), ε
1
pφ0(εy))

I n(L−) = 2n− 1

I n(L+) = 2n+ 1

I n(L+|L2
c
) = 2n if the slope condition is satisfied

d

dω
‖Φ‖2 < 0

Theorem
For ω = −ε2 with ε > 0 sufficiently small, all higher branches are spectrally
unstable with at least one pair (two pairs) of real eigenvalues λ in the above
spectral stability problem for p ∈ (0, 2] (respectively, p ∈ (2,∞)).

Open problems:

I Show that this conclusion remains for every ω < 0.



Spectral instability for (u±n,ω(x), 0)

I n(L−) = 2n− 1

I n(L+) = 2n

I n(L+|L2
c
) = 2n− 1 for p ∈ (0, 2] because

d

dω
‖u±n,ω‖2L2 < 0, ω ∈ (−∞, λn)

(Fukuizumi et al., 2012)

I Spectral stability test is inconclusive.

I The spectral bands overlap on iR and admit no gaps for eigenvalues
λ ∈ iR of negative Krein signature.

Open problems:

I Prove the spectral instability for small ε.

I Consider stability changes for large negative values of ω.



Numerical solutions for p = 1
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Figure : Eigenvalues λ of the spectral stability problem on the complex plane for
the standing wave solutions (u+n,ω , 0) with n = 1 (a) and n = 2 (b) corresponding
to ω = −1.



Numerical solutions for p = 1
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Figure : Real and imaginary parts of the unstable eigenvalues λ of the spectral
stability problem versus parameter ω for the standing wave solutions (u+n,ω , 0)
with n = 1 (a) and n = 2 (b).



Conclusions and Perspectives

- The classification of nonlinear bound states for the cubic NLS equation on
a tadpole graph exhibits a variety of behaviors previously unknown for the
standard NLS equation with power nonlinearity on the line.

- The analysis suggests soliton bifurcations from the edge of the continuum
spectrum is a general feature when stationary states on a bounded interval
are coupled with stationary states on the unbounded interval. Stability
properties are accessible near the bifurcation.

- Complete the stability analysis:

I Energy minimization properties for the primary branch

I Spectral stability along the higher branches as ω → −∞

- Recent progress:

I Ground states on a dumbbell graph (with J. Marzuola)

I NLS reductions on a periodic graph (with G. Schneider)
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