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Introduction

Density waves in cigar—shaped Bose—Einstein condensates are modeled by
the Gross-Pitaevskii equation

iUy + &% Ugx + (1L —x?)u — |ulPu =0,

where ¢ is a small parameter.

Limit e — O is referred to as the hydrodynamics limit or as the Thomas—Fermi
approximation since the work of L.H. Thomas (1927) and E. Fermi (1928).

Theorem(Brezis-Oswald, 1986): There exists a real-valued, positive-definite
global minimizer of the Gross—Pitaevskii energy

} 2 2 } 2 2 } 4
Es(u)—/R(zs 0el? + 502~ 1)Jul? + 7Juf*) dx
in the energy space

Hi={ueH'(R): xuel?R)},

for sufficiently small € > 0.
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Ground state of energy

Let n. be a global minimizer of E.. From Euler—Lagrange equations, it solves
—2n/(x)+ (2 +x2—1)n. =0, Wx eR.
The formal limit for the ground state is
(1—-x3)Y2 for |x| <1,

mo(x) = { 0, for x| > 1,

Recently, Aftalion,Alama, & Bronsard (2005) and Ignat & Millot (2006) justified
convergence to the Thomas-Fermi approximation and proved

(1-Cel/3) < (lﬁ;(;))l/z <1  for |x|<1—¢e2/3

0<n.(x) <Ce'/3exp (j;x/z) for x| > 1,

for some C > 0 uniformly in 0 < ¢ < 1.
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Spectral stability

Linearization of the Gross—Pitaevskii equation with
u(x,t) = 1) + [u(x) + iw(x)] & + [a(x) = iw (x)] X + O(Jul> + |w]]?)
results in the non-self-adjoint eigenvalue problem

—2u"+ (X2 -1+32)u = —Aw,
W'+ (X2 -1+n2)w = Au,

or, equivalently, in the generalized eigenvalue problem
-1
(—5233—|—X2 — 1—|—77§)W :7(—5285—|—X2 — 1—|—377§) W,
2

where v = —\°.

We are concerned here with eigenvalues of the spectral problem in the limit
e — 0. In the present time, we have results when 7. is replaced by 7. Results
for n. = 10 + OL~ (¢*/3) will require more work.
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Introduction

Eigenvalues in the hydrodynamics limit

Consider the generalized eigenvalue problem
(—5283—|—X2 — 1—|—77(2))W :7(—5283—|—X2 — 1+377(2))71W
and restrictit on (—1,1) as
— (=2 +2(1 —x?))w”(x) = ve 2 w(x).

Let I = ye~2 and drop £2 92 term to obtain the singular Sturm-Liouville
problem
—2(1 = x®W”(x) =Tw(x), —-1l<x<1.

Lemma: The only C? solutions on [—1, 1] with w(1) = w(—1) = 0 are
Gegenbauer polynomials w = Cr;ll/z(x) forT =Th:=2n(n+1),n> 1.

Stringari (1996); Fliesser et al. (1997); Eberlein et al. (2005); and others
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Main results and applications

Main results

Theorem: Linearized problem for sufficiently small ¢ > 0 has a purely discrete
spectrum that consists of eigenvalues at {I'¢ }ncy sorted in the increasing
order and

—T, ase—0

for every fixed n € N.

Claim: There exists C, > 0 such that
IFe —Tn| < Cpel/®
for sufficiently small € > 0.

Remark: The convergence rate of eigenvalues may not be sharp and
numerical results indicate that the convergence rate is O(<?) for a fixed n € N.
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Main results and applications

Possible applications

Oscillations of 1-dim vortices:

[u(x,100)|?
o
(62

o

D.P. & P. Kevrekidis, Cont.Math. (2008)
D.P. & P. Kevrekidis, ZAMP (2008)

Eigenvalues in the Thomas—Fermi approximations June 5, 2008 7119

D.Pelinovsky (McMaster University)



Main results and applications

1-dim vortex in the hydrodynamics limit

Gross—Pitaevskii equation
iU, +Uge + (1 —€%)U — [UJPU =0

reduces to
iUy + &% Ugx + (L —x%)u — |ulPu =0,

as u — oo by rescaling

x =e2¢ t=c"17, u(x,t)=eY2U(E,7), p=ct.
1-dim vortex is a solution in the form v.(x)n.(x), where v.(—x) = —v.(x) with
a single zero at x = 0. Hydrodynamics limit of the 1-dim vortex is

Vo(x) = sign(x).
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Main results and applications

Eigenvalues of the 1-dim vortex

-10 -5 0O p 5 10 15

Limiting values as © — oo correspond to eigenvalues of the ground state
{Tn}nen plus an additional (smallest) eigenvalue for the 1-dim vortex.
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Compact operators of the linearized problem

Eigenvalue problem can be formulated as A.w = uw, where = ! and
A= e72(= 0% +p-(x)) H(=0Z + 0. (0)) T = eA(L) L) T

pE(X) = 6_2(X2—1)1{‘X‘>1}, qE(X) = 5_2 [2(1 — Xz)l{‘xKl} + (X2 — 1)1{\X\>l}] .

\ )
\ /

6ol b, 6o | /

. \x aN /
m \/ \/
| VARV

Both L are positive, self-adjoint, and invertible operators with a compact
resolvent. Therefore, A, is a compact operator on L2(R) for any fixed £ > 0.
Moreover, eigenvalues are strictly positive since A, is self-similar to
(L)L) ()2,
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Limiting operator

As ¢ — 0, we can formally expect that A. converges in some sense to

0 if|x| <1,

1
a2 -1+ —
AO*( 8X+po) 2(1—X2)’ po(X){ +00 if|X|>l.

Properties of Ag:
@ For any u € L2(R), Apu € L?(R) and

(Aou)jgxj>1y = O,
(Aou)j(—1,1) = (—Ap) " (ﬁ)\(_m)'

where Ap is the Dirichlet realization of 92 on [—1, 1].
@ Aou is continuous on R so that (Agu)(+1) =0
@ Aq is compact on L?(R).
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Spectrum of Ag

The spectrum of Ag is purely discrete. 0 is an eigenvalue with an
infinite-dimensional subspace of eigenfunctions with a support on
{x e R: |x| > 1}. Non-zero eigenvalues are found from

—2(1 —x®WwW”(x) = ptw(x), —-l<x<1,

subject to w(+1) = 0. Let z = x2, u(z) = w(x), and write it as the
hypergeometric equation

z(1-z)u"(z) + %(1 —z)u'(z) + %u(z) =0, O0<z<1

The only solutions with u(1) = 0 are polynomials for . = pn =
integer n > 1. Therefore,

7(Ao) = {m n> 1} U {0}.

1
prE=y) for an
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On the proof of the main theorem

Main Theorem follows from the claim that A. — Ag as € — 0 in the L% norm,
that is

vu,¢ € LAR) 1 (Aol — AU, )2 2 < C(e)|ulliz | 0],z
and C(e) - 0ase — 0.

The idea of the proof:
® (L) |51y S €22 ||f||Lz<R).
® (L5) Mm@ S € lIflliege)
o |le73(Ls)~ (Lf) Yl em S0 [f]lL2(r) for a small § > 0.

N

W et
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ODE system for eigenfunctions

Let w be an eigenvector of A, for eigenvalue p = v~ 1. It solves formally the
outer problem

e? (—0% +e?(x? - 1))2w(x) =~w(x), for x| >1

and the inner problem
—2(1 = x2)W”(x) + 2w (x) = yw(x), for |x| < 1.

Because (L% ) 'w € H2(R) C C}(R), w(x) is C?(R) with jump discontinuities
atx = +£1:

_ 2 -1 2
W= 2w, w2

For simplicity, we can look for even eigenfunctions w(—x) = w(x).
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Solution on the outer interval

Let U(a;z) = D_a_1/2(2) be the Whittaker function of the parabolic cylinder
equation

u’(z) = <a+ Z;) u(z).

Then,
w(x)=ciU(ar;z)+c_U(a_;z), X >1

where

Vo -l4eyd

RV =7 2¢ '
Near x = 1, U(a; z) is expanded asymptotically via Airy function, which gives

" .
lim W€7“-) — lim w/(1) _ Ai(0)

e—0e2/3w/(1)  =—0e2/3w(1-)  2V3Ai'(0)
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Solution on the inner interval

Remark: For eigenvalue problem L=w = Aw, we have an analytic solution

W= cos(vAx)  for |x| <1,
| cU(a;z) for x| >1,

where c is constant. Then, if \, is the root of cos(v/\) = 0, then
|Af — An| < Cne?/® for a fixed n € N and the bound is sharp.

Unfortunately, no explicit solutions are available for the problem
L=w = v(L3)'w on [-1,1]. So, we shall approximate solutions numerically.

Let us consider even eigenfunctions w(x) in x.
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Solution on the inner interval

Define two particular solutions of the system by boundary conditions

wi(l)=1, w/(1)=0, wi(0)=0, w!(0)=0,
wa(1) =0, w/(1)=1, wi(0)=0, w.’(0)=0.

Then,
w(x) = aiwi(x) +awa(x), 0<x <1
and the matching conditions at x = 1 set up a linear homogeneous system on

(a1,az,c4,c_), which has nonzero solutions if D(v; &) = 0, where D(~; ¢) is
analytic in v > 0 and € > 0.

Simple zeros of D(~; €) are structurally stable and can be traced as ¢ — 0. We
investigate two smallest zero near y; = 4 and 3 = 24.
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Convergence rate

Numerical results

Rate of convergence:

a0t x10t

Even eigenfunctions:

Numerical convergence rate suggests |75 — vn| < Cp 2.
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Convergence rate

Further problems

@ Prove the claim |y — yn| < Cne!/2 rigorously.
@ Extend the bound to justify the numerical convergence rate of O(£2?).
@ Generalize the analysis to nonlinear ground states 7. = 7o + Op~(1/3).

@ Consider eigenvalues of the 1-dim vortices.
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