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Introduction

Introduction

Density waves in cigar–shaped Bose–Einstein condensates are modeled by
the Gross-Pitaevskii equation

iut + ε2 uxx + (1 − x2)u − |u|2u = 0,

where ε is a small parameter.

Limit ε → 0 is referred to as the hydrodynamics limit or as the Thomas–Fermi
approximation since the work of L.H. Thomas (1927) and E. Fermi (1928).

Theorem(Brezis-Oswald, 1986): There exists a real-valued, positive-definite
global minimizer of the Gross–Pitaevskii energy

Eε(u) =

∫

R

(

1
2

ε2 |ux |2 +
1
2

(x2 − 1)|u|2 +
1
4
|u|4

)

dx

in the energy space

H1 =
{

u ∈ H1(R) : xu ∈ L2(R)
}

,

for sufficiently small ε > 0.
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Introduction

Ground state of energy

Let ηε be a global minimizer of Eε. From Euler–Lagrange equations, it solves

− ε2 η′′
ε (x) +

(

η2
ε + x2 − 1

)

ηε = 0, ∀x ∈ R.

The formal limit for the ground state is

η0(x) =

{

(1 − x2)1/2, for |x | < 1,

0, for |x | > 1,

Recently, Aftalion,Alama, & Bronsard (2005) and Ignat & Millot (2006) justified
convergence to the Thomas-Fermi approximation and proved







(1 − C ε1/3) ≤ ηε(x)
(1−x2)1/2 ≤ 1 for |x | ≤ 1 − ε2/3

0 ≤ ηε(x) ≤ C ε1/3 exp
(

1−x2

4 ε2/3

)

for |x | ≥ 1,

for some C > 0 uniformly in 0 < ε ≪ 1.
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Introduction

Spectral stability

Linearization of the Gross–Pitaevskii equation with

u(x , t) = ηε(x) + [u(x) + iw(x)] eλt + [ū(x) − iw̄(x)] eλ̄t + O(‖u‖2 + ‖w‖2)

results in the non-self-adjoint eigenvalue problem
{

− ε2 u′′ + (x2 − 1 + 3η2
ε)u = −λw ,

− ε2 w ′′ + (x2 − 1 + η2
ε)w = λu,

or, equivalently, in the generalized eigenvalue problem

(

− ε2 ∂2
x + x2 − 1 + η2

ε

)

w = γ
(

− ε2 ∂2
x + x2 − 1 + 3η2

ε

)−1
w ,

where γ = −λ2.

We are concerned here with eigenvalues of the spectral problem in the limit
ε → 0. In the present time, we have results when ηε is replaced by η0. Results
for ηε = η0 + OL∞(ε1/3) will require more work.
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Introduction

Eigenvalues in the hydrodynamics limit

Consider the generalized eigenvalue problem

(

− ε2 ∂2
x + x2 − 1 + η2

0

)

w = γ
(

− ε2 ∂2
x + x2 − 1 + 3η2

0

)−1
w

and restrict it on (−1, 1) as

−
(

− ε2 ∂2
x + 2(1 − x2)

)

w ′′(x) = γ ε−2 w(x).

Let Γ = γ ε−2 and drop ε2 ∂2
x term to obtain the singular Sturm–Liouville

problem
−2(1 − x2)w ′′(x) = Γw(x), −1 < x < 1.

Lemma: The only C2 solutions on [−1, 1] with w(1) = w(−1) = 0 are
Gegenbauer polynomials w = C−1/2

n+1 (x) for Γ = Γn := 2n(n + 1), n ≥ 1.

Stringari (1996); Fliesser et al. (1997); Eberlein et al. (2005); and others
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Main results and applications

Main results

Theorem: Linearized problem for sufficiently small ε > 0 has a purely discrete
spectrum that consists of eigenvalues at {Γε

n}n∈N sorted in the increasing
order and

Γε
n −→ Γn as ε → 0

for every fixed n ∈ N.

Claim: There exists Cn > 0 such that

|Γε
n − Γn| ≤ Cn ε1/3

for sufficiently small ε > 0.

Remark: The convergence rate of eigenvalues may not be sharp and
numerical results indicate that the convergence rate is O(ε2) for a fixed n ∈ N.
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Main results and applications

Possible applications

Oscillations of 1-dim vortices:
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D.P. & P. Kevrekidis, Cont.Math. (2008)
D.P. & P. Kevrekidis, ZAMP (2008)
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Main results and applications

1-dim vortex in the hydrodynamics limit

Gross–Pitaevskii equation

iUτ + Uξξ + (µ − ξ2)U − |U|2U = 0

reduces to
iut + ε2 uxx + (1 − x2)u − |u|2u = 0,

as µ → ∞ by rescaling

x = ε1/2 ξ, t = ε−1 τ, u(x , t) = ε1/2 U(ξ, τ), µ = ε−1 .

1-dim vortex is a solution in the form vε(x)ηε(x), where vε(−x) = −vε(x) with
a single zero at x = 0. Hydrodynamics limit of the 1-dim vortex is

v0(x) = sign(x).
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Main results and applications

Eigenvalues of the 1-dim vortex
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Limiting values as µ → ∞ correspond to eigenvalues of the ground state
{Γn}n∈N plus an additional (smallest) eigenvalue for the 1-dim vortex.
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Proofs

Compact operators of the linearized problem

Eigenvalue problem can be formulated as Aεw = µw , where µ = Γ−1 and

Aε := ε−2(−∂2
x + pε(x))−1(−∂2

x + qε(x))−1 = ε−2(Lε
−)−1(Lε

+)−1,

pε(x) = ε−2(x2−1)1{|x|>1}, qε(x) = ε−2 [

2(1 − x2)1{|x|<1} + (x2 − 1)1{|x|>1}
]

.
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Both Lε
± are positive, self-adjoint, and invertible operators with a compact

resolvent. Therefore, Aε is a compact operator on L2(R) for any fixed ε > 0.
Moreover, eigenvalues are strictly positive since Aε is self-similar to
(Lε

+)−1/2(Lε
−)−1(Lε

+)−1/2.
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Proofs

Limiting operator

As ε → 0, we can formally expect that Aε converges in some sense to

A0 = (−∂2
x + p0)

−1 1
2(1 − x2)

, p0(x) =

{

0 if |x | < 1,

+∞ if |x | > 1.

Properties of A0:

For any u ∈ L2(R), A0u ∈ L2(R) and

{

(A0u)|{|x|>1} ≡ 0,

(A0u)|(−1,1) = (−∆D)−1
(

u
2(1−x2)

)

|(−1,1)
.

where ∆D is the Dirichlet realization of ∂2
x on [−1, 1].

A0u is continuous on R so that (A0u)(±1) = 0

A0 is compact on L2(R).
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Proofs

Spectrum of A0

The spectrum of A0 is purely discrete. 0 is an eigenvalue with an
infinite-dimensional subspace of eigenfunctions with a support on
{x ∈ R : |x | > 1}. Non-zero eigenvalues are found from

−2(1 − x2)w ′′(x) = µ−1w(x), −1 < x < 1,

subject to w(±1) = 0. Let z = x2, u(z) = w(x), and write it as the
hypergeometric equation

z(1 − z)u′′(z) +
1
2

(1 − z)u′(z) +
1

8µ
u(z) = 0, 0 < z < 1.

The only solutions with u(1) = 0 are polynomials for µ = µn = 1
2n(n+1) for an

integer n ≥ 1. Therefore,

σ(A0) =

{

1
2n(n + 1)

, n ≥ 1
}

∪ {0}.
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Proofs

On the proof of the main theorem

Main Theorem follows from the claim that Aε → A0 as ε → 0 in the L2 norm,
that is

∀u, φ ∈ L2(R) : 〈A0u − Aεu, φ〉L2,L2 ≤ C(ε)‖u‖L2‖φ‖L2

and C(ε) → 0 as ε → 0.

The idea of the proof:
‖(Lε

−)−1f‖L∞(|x|>1) . ε2/3 ‖f‖L2(R).

‖(Lε
+)−1f‖L∞(R) . ε ‖f‖L2(R).

‖ ε−2(Lε
+)−1(Lε

−)−1f‖L∞(R) . ε−δ ‖f‖L2(R) for a small δ > 0.
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Convergence rate

ODE system for eigenfunctions

Let w be an eigenvector of Aε for eigenvalue µ = γ−1. It solves formally the
outer problem

ε2 (

−∂2
x + ε−2(x2 − 1)

)2
w(x) = γw(x), for |x | > 1

and the inner problem

−2(1 − x2)w ′′(x) + ε2 w ′′′′(x) = γw(x), for |x | < 1.

Because (Lε
+)−1w ∈ H2(R) ⊂ C1(R), w(x) is C2(R) with jump discontinuities

at x = ±1:

w ′′′|x=1+0
x=1−0 =

2
ε2 w(1), w ′′′|x=−1−0

x=−1+0 =
2
ε2 w(−1)

For simplicity, we can look for even eigenfunctions w(−x) = w(x).

D.Pelinovsky (McMaster University) Eigenvalues in the Thomas–Fermi approximations June 5, 2008 14 / 19



Convergence rate

Solution on the outer interval

Let U(a; z) ≡ D−a−1/2(z) be the Whittaker function of the parabolic cylinder
equation

u′′(z) =

(

a +
z2

4

)

u(z).

Then,
w(x) = c+U(a+; z) + c−U(a−; z), x > 1

where

z =

√
2x√
ε

, a± =
−1 ± ε

√
γ

2 ε
.

Near x = 1, U(a; z) is expanded asymptotically via Airy function, which gives

lim
ε→0

wε(1)

ε2/3 w ′
ε(1)

= lim
ε→0

w ′′
ε (1)

ε2/3 w ′′′
ε (1−)

=
Ai(0)

21/3Ai′(0)
.
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Convergence rate

Solution on the inner interval

Remark: For eigenvalue problem Lε
−w = λw , we have an analytic solution

w =

{

cos(
√

λx) for |x | < 1,

cU(a; z) for |x | > 1,

where c is constant. Then, if λn is the root of cos(
√

λ) = 0, then
|λε

n − λn| ≤ Cn ε2/3 for a fixed n ∈ N and the bound is sharp.

Unfortunately, no explicit solutions are available for the problem
Lε
−w = γ(Lε

+)−1w on [−1, 1]. So, we shall approximate solutions numerically.

Let us consider even eigenfunctions w(x) in x .
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Convergence rate

Solution on the inner interval

Define two particular solutions of the system by boundary conditions
{

w1(1) = 1, w ′′
1 (1) = 0, w ′

1(0) = 0, w ′′′
1 (0) = 0,

w2(1) = 0, w ′′
2 (1) = 1, w ′

2(0) = 0, w ′′′
2 (0) = 0.

Then,
w(x) = a1w1(x) + a2w2(x), 0 < x < 1

and the matching conditions at x = 1 set up a linear homogeneous system on
(a1, a2, c+, c−), which has nonzero solutions if D(γ; ε) = 0, where D(γ; ε) is
analytic in γ > 0 and ε > 0.

Simple zeros of D(γ; ε) are structurally stable and can be traced as ε → 0. We
investigate two smallest zero near γ1 = 4 and γ3 = 24.
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Convergence rate

Numerical results

Rate of convergence:
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Even eigenfunctions:
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Numerical convergence rate suggests |γε
n − γn| ≤ Cn ε2.
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Convergence rate

Further problems

Prove the claim |γε
n − γn| ≤ Cn ε1/3 rigorously.

Extend the bound to justify the numerical convergence rate of O(ε2).

Generalize the analysis to nonlinear ground states ηε = η0 + OL∞(ε1/3).

Consider eigenvalues of the 1-dim vortices.
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